/** * @author Rich Tibbett / https://github.com/richtr * @author mrdoob / http://mrdoob.com/ * @author Tony Parisi / http://www.tonyparisi.com/ * @author Takahiro / https://github.com/takahirox * @author Don McCurdy / https://www.donmccurdy.com */ THREE.GLTFLoader = (function () { function GLTFLoader(manager) { this.manager = (manager !== undefined) ? manager : THREE.DefaultLoadingManager; this.dracoLoader = null; } GLTFLoader.prototype = { constructor: GLTFLoader, crossOrigin: 'Anonymous', load: function (url, onLoad, onProgress, onError) { var scope = this; var path = this.path !== undefined ? this.path : THREE.LoaderUtils.extractUrlBase(url); var loader = new THREE.FileLoader(scope.manager); loader.setResponseType('arraybuffer'); loader.load(url, function (data) { try { scope.parse(data, path, onLoad, onError); } catch (e) { if (onError !== undefined) { onError(e); } else { throw e; } } }, onProgress, onError); }, setCrossOrigin: function (value) { this.crossOrigin = value; return this; }, setPath: function (value) { this.path = value; return this; }, setDRACOLoader: function (dracoLoader) { this.dracoLoader = dracoLoader; return this; }, parse: function (data, path, onLoad, onError) { var content; var extensions = {}; if (typeof data === 'string') { content = data; } else { var magic = THREE.LoaderUtils.decodeText(new Uint8Array(data, 0, 4)); if (magic === BINARY_EXTENSION_HEADER_MAGIC) { try { extensions[EXTENSIONS.KHR_BINARY_GLTF] = new GLTFBinaryExtension(data); } catch (error) { if (onError) onError(error); return; } content = extensions[EXTENSIONS.KHR_BINARY_GLTF].content; } else { content = THREE.LoaderUtils.decodeText(new Uint8Array(data)); } } var json = JSON.parse(content); if (json.asset === undefined || json.asset.version[0] < 2) { if (onError) onError(new Error('THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported. Use LegacyGLTFLoader instead.')); return; } if (json.extensionsUsed) { for (var i = 0; i < json.extensionsUsed.length; ++i) { var extensionName = json.extensionsUsed[i]; var extensionsRequired = json.extensionsRequired || []; switch (extensionName) { case EXTENSIONS.KHR_LIGHTS: extensions[extensionName] = new GLTFLightsExtension(json); break; case EXTENSIONS.KHR_MATERIALS_UNLIT: extensions[extensionName] = new GLTFMaterialsUnlitExtension(json); break; case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: extensions[extensionName] = new GLTFMaterialsPbrSpecularGlossinessExtension(); break; case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: extensions[extensionName] = new GLTFDracoMeshCompressionExtension(json, this.dracoLoader); break; case EXTENSIONS.MSFT_TEXTURE_DDS: extensions[EXTENSIONS.MSFT_TEXTURE_DDS] = new GLTFTextureDDSExtension(); break; default: if (extensionsRequired.indexOf(extensionName) >= 0) { console.warn('THREE.GLTFLoader: Unknown extension "' + extensionName + '".'); } } } } var parser = new GLTFParser(json, extensions, { path: path || this.path || '', crossOrigin: this.crossOrigin, manager: this.manager }); parser.parse(function (scene, scenes, cameras, animations, json) { var glTF = { scene: scene, scenes: scenes, cameras: cameras, animations: animations, asset: json.asset, parser: parser, userData: {} }; addUnknownExtensionsToUserData(extensions, glTF, json); onLoad(glTF); }, onError); } }; /* GLTFREGISTRY */ function GLTFRegistry() { var objects = {}; return { get: function (key) { return objects[key]; }, add: function (key, object) { objects[key] = object; }, remove: function (key) { delete objects[key]; }, removeAll: function () { objects = {}; } }; } /*********************************/ /********** EXTENSIONS ***********/ /*********************************/ var EXTENSIONS = { KHR_BINARY_GLTF: 'KHR_binary_glTF', KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression', KHR_LIGHTS: 'KHR_lights', KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness', KHR_MATERIALS_UNLIT: 'KHR_materials_unlit', MSFT_TEXTURE_DDS: 'MSFT_texture_dds' }; /** * DDS Texture Extension * * Specification: * https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds * */ function GLTFTextureDDSExtension() { if (!THREE.DDSLoader) { throw new Error('THREE.GLTFLoader: Attempting to load .dds texture without importing THREE.DDSLoader'); } this.name = EXTENSIONS.MSFT_TEXTURE_DDS; this.ddsLoader = new THREE.DDSLoader(); } /** * Lights Extension * * Specification: PENDING */ function GLTFLightsExtension(json) { this.name = EXTENSIONS.KHR_LIGHTS; this.lights = {}; var extension = (json.extensions && json.extensions[EXTENSIONS.KHR_LIGHTS]) || {}; var lights = extension.lights || {}; for (var lightId in lights) { var light = lights[lightId]; var lightNode; var color = new THREE.Color().fromArray(light.color); switch (light.type) { case 'directional': lightNode = new THREE.DirectionalLight(color); lightNode.target.position.set(0, 0, 1); lightNode.add(lightNode.target); break; case 'point': lightNode = new THREE.PointLight(color); break; case 'spot': lightNode = new THREE.SpotLight(color); // Handle spotlight properties. light.spot = light.spot || {}; light.spot.innerConeAngle = light.spot.innerConeAngle !== undefined ? light.spot.innerConeAngle : 0; light.spot.outerConeAngle = light.spot.outerConeAngle !== undefined ? light.spot.outerConeAngle : Math.PI / 4.0; lightNode.angle = light.spot.outerConeAngle; lightNode.penumbra = 1.0 - light.spot.innerConeAngle / light.spot.outerConeAngle; lightNode.target.position.set(0, 0, 1); lightNode.add(lightNode.target); break; case 'ambient': lightNode = new THREE.AmbientLight(color); break; } if (lightNode) { lightNode.decay = 2; if (light.intensity !== undefined) { lightNode.intensity = light.intensity; } lightNode.name = light.name || ('light_' + lightId); this.lights[lightId] = lightNode; } } } /** * Unlit Materials Extension (pending) * * PR: https://github.com/KhronosGroup/glTF/pull/1163 */ function GLTFMaterialsUnlitExtension(json) { this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; } GLTFMaterialsUnlitExtension.prototype.getMaterialType = function (material) { return THREE.MeshBasicMaterial; }; GLTFMaterialsUnlitExtension.prototype.extendParams = function (materialParams, material, parser) { var pending = []; materialParams.color = new THREE.Color(1.0, 1.0, 1.0); materialParams.opacity = 1.0; var metallicRoughness = material.pbrMetallicRoughness; if (metallicRoughness) { if (Array.isArray(metallicRoughness.baseColorFactor)) { var array = metallicRoughness.baseColorFactor; materialParams.color.fromArray(array); materialParams.opacity = array[3]; } if (metallicRoughness.baseColorTexture !== undefined) { pending.push(parser.assignTexture(materialParams, 'map', metallicRoughness.baseColorTexture.index)); } } return Promise.all(pending); }; /* BINARY EXTENSION */ var BINARY_EXTENSION_BUFFER_NAME = 'binary_glTF'; var BINARY_EXTENSION_HEADER_MAGIC = 'glTF'; var BINARY_EXTENSION_HEADER_LENGTH = 12; var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 }; function GLTFBinaryExtension(data) { this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null; var headerView = new DataView(data, 0, BINARY_EXTENSION_HEADER_LENGTH); this.header = { magic: THREE.LoaderUtils.decodeText(new Uint8Array(data.slice(0, 4))), version: headerView.getUint32(4, true), length: headerView.getUint32(8, true) }; if (this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC) { throw new Error('THREE.GLTFLoader: Unsupported glTF-Binary header.'); } else if (this.header.version < 2.0) { throw new Error('THREE.GLTFLoader: Legacy binary file detected. Use LegacyGLTFLoader instead.'); } var chunkView = new DataView(data, BINARY_EXTENSION_HEADER_LENGTH); var chunkIndex = 0; while (chunkIndex < chunkView.byteLength) { var chunkLength = chunkView.getUint32(chunkIndex, true); chunkIndex += 4; var chunkType = chunkView.getUint32(chunkIndex, true); chunkIndex += 4; if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON) { var contentArray = new Uint8Array(data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength); this.content = THREE.LoaderUtils.decodeText(contentArray); } else if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN) { var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice(byteOffset, byteOffset + chunkLength); } // Clients must ignore chunks with unknown types. chunkIndex += chunkLength; } if (this.content === null) { throw new Error('THREE.GLTFLoader: JSON content not found.'); } } /** * DRACO Mesh Compression Extension * * Specification: https://github.com/KhronosGroup/glTF/pull/874 */ function GLTFDracoMeshCompressionExtension(json, dracoLoader) { if (!dracoLoader) { throw new Error('THREE.GLTFLoader: No DRACOLoader instance provided.'); } this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.json = json; this.dracoLoader = dracoLoader; } GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function (primitive, parser) { var json = this.json; var dracoLoader = this.dracoLoader; var bufferViewIndex = primitive.extensions[this.name].bufferView; var gltfAttributeMap = primitive.extensions[this.name].attributes; var threeAttributeMap = {}; var attributeNormalizedMap = {}; var attributeTypeMap = {}; for (var attributeName in gltfAttributeMap) { if (!(attributeName in ATTRIBUTES)) continue; threeAttributeMap[ATTRIBUTES[attributeName]] = gltfAttributeMap[attributeName]; } for (attributeName in primitive.attributes) { if (ATTRIBUTES[attributeName] !== undefined && gltfAttributeMap[attributeName] !== undefined) { var accessorDef = json.accessors[primitive.attributes[attributeName]]; var componentType = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; attributeTypeMap[ATTRIBUTES[attributeName]] = componentType; attributeNormalizedMap[ATTRIBUTES[attributeName]] = accessorDef.normalized === true; } } return parser.getDependency('bufferView', bufferViewIndex).then(function (bufferView) { return new Promise(function (resolve) { dracoLoader.decodeDracoFile(bufferView, function (geometry) { for (var attributeName in geometry.attributes) { var attribute = geometry.attributes[attributeName]; var normalized = attributeNormalizedMap[attributeName]; if (normalized !== undefined) attribute.normalized = normalized; } resolve(geometry); }, threeAttributeMap, attributeTypeMap); }); }); }; /** * Specular-Glossiness Extension * * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness */ function GLTFMaterialsPbrSpecularGlossinessExtension() { return { name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS, specularGlossinessParams: [ 'color', 'map', 'lightMap', 'lightMapIntensity', 'aoMap', 'aoMapIntensity', 'emissive', 'emissiveIntensity', 'emissiveMap', 'bumpMap', 'bumpScale', 'normalMap', 'displacementMap', 'displacementScale', 'displacementBias', 'specularMap', 'specular', 'glossinessMap', 'glossiness', 'alphaMap', 'envMap', 'envMapIntensity', 'refractionRatio', ], getMaterialType: function () { return THREE.ShaderMaterial; }, extendParams: function (params, material, parser) { var pbrSpecularGlossiness = material.extensions[this.name]; var shader = THREE.ShaderLib['standard']; var uniforms = THREE.UniformsUtils.clone(shader.uniforms); var specularMapParsFragmentChunk = [ '#ifdef USE_SPECULARMAP', ' uniform sampler2D specularMap;', '#endif' ].join('\n'); var glossinessMapParsFragmentChunk = [ '#ifdef USE_GLOSSINESSMAP', ' uniform sampler2D glossinessMap;', '#endif' ].join('\n'); var specularMapFragmentChunk = [ 'vec3 specularFactor = specular;', '#ifdef USE_SPECULARMAP', ' vec4 texelSpecular = texture2D( specularMap, vUv );', ' texelSpecular = sRGBToLinear( texelSpecular );', ' // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture', ' specularFactor *= texelSpecular.rgb;', '#endif' ].join('\n'); var glossinessMapFragmentChunk = [ 'float glossinessFactor = glossiness;', '#ifdef USE_GLOSSINESSMAP', ' vec4 texelGlossiness = texture2D( glossinessMap, vUv );', ' // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture', ' glossinessFactor *= texelGlossiness.a;', '#endif' ].join('\n'); var lightPhysicalFragmentChunk = [ 'PhysicalMaterial material;', 'material.diffuseColor = diffuseColor.rgb;', 'material.specularRoughness = clamp( 1.0 - glossinessFactor, 0.04, 1.0 );', 'material.specularColor = specularFactor.rgb;', ].join('\n'); var fragmentShader = shader.fragmentShader .replace('uniform float roughness;', 'uniform vec3 specular;') .replace('uniform float metalness;', 'uniform float glossiness;') .replace('#include ', specularMapParsFragmentChunk) .replace('#include ', glossinessMapParsFragmentChunk) .replace('#include ', specularMapFragmentChunk) .replace('#include ', glossinessMapFragmentChunk) .replace('#include ', lightPhysicalFragmentChunk); delete uniforms.roughness; delete uniforms.metalness; delete uniforms.roughnessMap; delete uniforms.metalnessMap; uniforms.specular = { value: new THREE.Color().setHex(0x111111) }; uniforms.glossiness = { value: 0.5 }; uniforms.specularMap = { value: null }; uniforms.glossinessMap = { value: null }; params.vertexShader = shader.vertexShader; params.fragmentShader = fragmentShader; params.uniforms = uniforms; params.defines = { 'STANDARD': '' }; params.color = new THREE.Color(1.0, 1.0, 1.0); params.opacity = 1.0; var pending = []; if (Array.isArray(pbrSpecularGlossiness.diffuseFactor)) { var array = pbrSpecularGlossiness.diffuseFactor; params.color.fromArray(array); params.opacity = array[3]; } if (pbrSpecularGlossiness.diffuseTexture !== undefined) { pending.push(parser.assignTexture(params, 'map', pbrSpecularGlossiness.diffuseTexture.index)); } params.emissive = new THREE.Color(0.0, 0.0, 0.0); params.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0; params.specular = new THREE.Color(1.0, 1.0, 1.0); if (Array.isArray(pbrSpecularGlossiness.specularFactor)) { params.specular.fromArray(pbrSpecularGlossiness.specularFactor); } if (pbrSpecularGlossiness.specularGlossinessTexture !== undefined) { var specGlossIndex = pbrSpecularGlossiness.specularGlossinessTexture.index; pending.push(parser.assignTexture(params, 'glossinessMap', specGlossIndex)); pending.push(parser.assignTexture(params, 'specularMap', specGlossIndex)); } return Promise.all(pending); }, createMaterial: function (params) { // setup material properties based on MeshStandardMaterial for Specular-Glossiness var material = new THREE.ShaderMaterial({ defines: params.defines, vertexShader: params.vertexShader, fragmentShader: params.fragmentShader, uniforms: params.uniforms, fog: true, lights: true, opacity: params.opacity, transparent: params.transparent }); material.isGLTFSpecularGlossinessMaterial = true; material.color = params.color; material.map = params.map === undefined ? null : params.map; material.lightMap = null; material.lightMapIntensity = 1.0; material.aoMap = params.aoMap === undefined ? null : params.aoMap; material.aoMapIntensity = 1.0; material.emissive = params.emissive; material.emissiveIntensity = 1.0; material.emissiveMap = params.emissiveMap === undefined ? null : params.emissiveMap; material.bumpMap = params.bumpMap === undefined ? null : params.bumpMap; material.bumpScale = 1; material.normalMap = params.normalMap === undefined ? null : params.normalMap; if (params.normalScale) material.normalScale = params.normalScale; material.displacementMap = null; material.displacementScale = 1; material.displacementBias = 0; material.specularMap = params.specularMap === undefined ? null : params.specularMap; material.specular = params.specular; material.glossinessMap = params.glossinessMap === undefined ? null : params.glossinessMap; material.glossiness = params.glossiness; material.alphaMap = null; material.envMap = params.envMap === undefined ? null : params.envMap; material.envMapIntensity = 1.0; material.refractionRatio = 0.98; material.extensions.derivatives = true; return material; }, /** * Clones a GLTFSpecularGlossinessMaterial instance. The ShaderMaterial.copy() method can * copy only properties it knows about or inherits, and misses many properties that would * normally be defined by MeshStandardMaterial. * * This method allows GLTFSpecularGlossinessMaterials to be cloned in the process of * loading a glTF model, but cloning later (e.g. by the user) would require these changes * AND also updating `.onBeforeRender` on the parent mesh. * * @param {THREE.ShaderMaterial} source * @return {THREE.ShaderMaterial} */ cloneMaterial: function (source) { var target = source.clone(); target.isGLTFSpecularGlossinessMaterial = true; var params = this.specularGlossinessParams; for (var i = 0, il = params.length; i < il; i++) { target[params[i]] = source[params[i]]; } return target; }, // Here's based on refreshUniformsCommon() and refreshUniformsStandard() in WebGLRenderer. refreshUniforms: function (renderer, scene, camera, geometry, material, group) { if (material.isGLTFSpecularGlossinessMaterial !== true) { return; } var uniforms = material.uniforms; var defines = material.defines; uniforms.opacity.value = material.opacity; uniforms.diffuse.value.copy(material.color); uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity); uniforms.map.value = material.map; uniforms.specularMap.value = material.specularMap; uniforms.alphaMap.value = material.alphaMap; uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map var uvScaleMap; if (material.map) { uvScaleMap = material.map; } else if (material.specularMap) { uvScaleMap = material.specularMap; } else if (material.displacementMap) { uvScaleMap = material.displacementMap; } else if (material.normalMap) { uvScaleMap = material.normalMap; } else if (material.bumpMap) { uvScaleMap = material.bumpMap; } else if (material.glossinessMap) { uvScaleMap = material.glossinessMap; } else if (material.alphaMap) { uvScaleMap = material.alphaMap; } else if (material.emissiveMap) { uvScaleMap = material.emissiveMap; } if (uvScaleMap !== undefined) { // backwards compatibility if (uvScaleMap.isWebGLRenderTarget) { uvScaleMap = uvScaleMap.texture; } var offset; var repeat; if (uvScaleMap.matrix !== undefined) { // > r88. if (uvScaleMap.matrixAutoUpdate === true) { offset = uvScaleMap.offset; repeat = uvScaleMap.repeat; var rotation = uvScaleMap.rotation; var center = uvScaleMap.center; uvScaleMap.matrix.setUvTransform(offset.x, offset.y, repeat.x, repeat.y, rotation, center.x, center.y); } uniforms.uvTransform.value.copy(uvScaleMap.matrix); } else { // <= r87. Remove when reasonable. offset = uvScaleMap.offset; repeat = uvScaleMap.repeat; uniforms.offsetRepeat.value.set(offset.x, offset.y, repeat.x, repeat.y); } } uniforms.envMap.value = material.envMap; uniforms.envMapIntensity.value = material.envMapIntensity; uniforms.flipEnvMap.value = (material.envMap && material.envMap.isCubeTexture) ? -1 : 1; uniforms.refractionRatio.value = material.refractionRatio; uniforms.specular.value.copy(material.specular); uniforms.glossiness.value = material.glossiness; uniforms.glossinessMap.value = material.glossinessMap; uniforms.emissiveMap.value = material.emissiveMap; uniforms.bumpMap.value = material.bumpMap; uniforms.normalMap.value = material.normalMap; uniforms.displacementMap.value = material.displacementMap; uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; if (uniforms.glossinessMap.value !== null && defines.USE_GLOSSINESSMAP === undefined) { defines.USE_GLOSSINESSMAP = ''; // set USE_ROUGHNESSMAP to enable vUv defines.USE_ROUGHNESSMAP = ''; } if (uniforms.glossinessMap.value === null && defines.USE_GLOSSINESSMAP !== undefined) { delete defines.USE_GLOSSINESSMAP; delete defines.USE_ROUGHNESSMAP; } } }; } /*********************************/ /********** INTERPOLATION ********/ /*********************************/ // Spline Interpolation // Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation function GLTFCubicSplineInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) { THREE.Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer); }; GLTFCubicSplineInterpolant.prototype = Object.create(THREE.Interpolant.prototype); GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant; GLTFCubicSplineInterpolant.prototype.interpolate_ = function (i1, t0, t, t1) { var result = this.resultBuffer; var values = this.sampleValues; var stride = this.valueSize; var stride2 = stride * 2; var stride3 = stride * 3; var td = t1 - t0; var p = (t - t0) / td; var pp = p * p; var ppp = pp * p; var offset1 = i1 * stride3; var offset0 = offset1 - stride3; var s0 = 2 * ppp - 3 * pp + 1; var s1 = ppp - 2 * pp + p; var s2 = -2 * ppp + 3 * pp; var s3 = ppp - pp; // Layout of keyframe output values for CUBICSPLINE animations: // [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ] for (var i = 0; i !== stride; i++) { var p0 = values[offset0 + i + stride]; // splineVertex_k var m0 = values[offset0 + i + stride2] * td; // outTangent_k * (t_k+1 - t_k) var p1 = values[offset1 + i + stride]; // splineVertex_k+1 var m1 = values[offset1 + i] * td; // inTangent_k+1 * (t_k+1 - t_k) result[i] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; } return result; }; /*********************************/ /********** INTERNALS ************/ /*********************************/ /* CONSTANTS */ var WEBGL_CONSTANTS = { FLOAT: 5126, //FLOAT_MAT2: 35674, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 }; var WEBGL_TYPE = { 5126: Number, //35674: THREE.Matrix2, 35675: THREE.Matrix3, 35676: THREE.Matrix4, 35664: THREE.Vector2, 35665: THREE.Vector3, 35666: THREE.Vector4, 35678: THREE.Texture }; var WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array }; var WEBGL_FILTERS = { 9728: THREE.NearestFilter, 9729: THREE.LinearFilter, 9984: THREE.NearestMipMapNearestFilter, 9985: THREE.LinearMipMapNearestFilter, 9986: THREE.NearestMipMapLinearFilter, 9987: THREE.LinearMipMapLinearFilter }; var WEBGL_WRAPPINGS = { 33071: THREE.ClampToEdgeWrapping, 33648: THREE.MirroredRepeatWrapping, 10497: THREE.RepeatWrapping }; var WEBGL_TEXTURE_FORMATS = { 6406: THREE.AlphaFormat, 6407: THREE.RGBFormat, 6408: THREE.RGBAFormat, 6409: THREE.LuminanceFormat, 6410: THREE.LuminanceAlphaFormat }; var WEBGL_TEXTURE_DATATYPES = { 5121: THREE.UnsignedByteType, 32819: THREE.UnsignedShort4444Type, 32820: THREE.UnsignedShort5551Type, 33635: THREE.UnsignedShort565Type }; var WEBGL_SIDES = { 1028: THREE.BackSide, // Culling front 1029: THREE.FrontSide // Culling back //1032: THREE.NoSide // Culling front and back, what to do? }; var WEBGL_DEPTH_FUNCS = { 512: THREE.NeverDepth, 513: THREE.LessDepth, 514: THREE.EqualDepth, 515: THREE.LessEqualDepth, 516: THREE.GreaterEqualDepth, 517: THREE.NotEqualDepth, 518: THREE.GreaterEqualDepth, 519: THREE.AlwaysDepth }; var WEBGL_BLEND_EQUATIONS = { 32774: THREE.AddEquation, 32778: THREE.SubtractEquation, 32779: THREE.ReverseSubtractEquation }; var WEBGL_BLEND_FUNCS = { 0: THREE.ZeroFactor, 1: THREE.OneFactor, 768: THREE.SrcColorFactor, 769: THREE.OneMinusSrcColorFactor, 770: THREE.SrcAlphaFactor, 771: THREE.OneMinusSrcAlphaFactor, 772: THREE.DstAlphaFactor, 773: THREE.OneMinusDstAlphaFactor, 774: THREE.DstColorFactor, 775: THREE.OneMinusDstColorFactor, 776: THREE.SrcAlphaSaturateFactor // The followings are not supported by Three.js yet //32769: CONSTANT_COLOR, //32770: ONE_MINUS_CONSTANT_COLOR, //32771: CONSTANT_ALPHA, //32772: ONE_MINUS_CONSTANT_COLOR }; var WEBGL_TYPE_SIZES = { 'SCALAR': 1, 'VEC2': 2, 'VEC3': 3, 'VEC4': 4, 'MAT2': 4, 'MAT3': 9, 'MAT4': 16 }; var ATTRIBUTES = { POSITION: 'position', NORMAL: 'normal', TEXCOORD_0: 'uv', TEXCOORD0: 'uv', // deprecated TEXCOORD: 'uv', // deprecated TEXCOORD_1: 'uv2', COLOR_0: 'color', COLOR0: 'color', // deprecated COLOR: 'color', // deprecated WEIGHTS_0: 'skinWeight', WEIGHT: 'skinWeight', // deprecated JOINTS_0: 'skinIndex', JOINT: 'skinIndex' // deprecated } var PATH_PROPERTIES = { scale: 'scale', translation: 'position', rotation: 'quaternion', weights: 'morphTargetInfluences' }; var INTERPOLATION = { CUBICSPLINE: THREE.InterpolateSmooth, // We use custom interpolation GLTFCubicSplineInterpolation for CUBICSPLINE. // KeyframeTrack.optimize() can't handle glTF Cubic Spline output values layout, // using THREE.InterpolateSmooth for KeyframeTrack instantiation to prevent optimization. // See KeyframeTrack.optimize() for the detail. LINEAR: THREE.InterpolateLinear, STEP: THREE.InterpolateDiscrete }; var STATES_ENABLES = { 2884: 'CULL_FACE', 2929: 'DEPTH_TEST', 3042: 'BLEND', 3089: 'SCISSOR_TEST', 32823: 'POLYGON_OFFSET_FILL', 32926: 'SAMPLE_ALPHA_TO_COVERAGE' }; var ALPHA_MODES = { OPAQUE: 'OPAQUE', MASK: 'MASK', BLEND: 'BLEND' }; /* UTILITY FUNCTIONS */ function resolveURL(url, path) { // Invalid URL if (typeof url !== 'string' || url === '') return ''; // Absolute URL http://,https://,// if (/^(https?:)?\/\//i.test(url)) return url; // Data URI if (/^data:.*,.*$/i.test(url)) return url; // Blob URL if (/^blob:.*$/i.test(url)) return url; // Relative URL return path + url; } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material */ function createDefaultMaterial() { return new THREE.MeshStandardMaterial({ color: 0xFFFFFF, emissive: 0x000000, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: THREE.FrontSide }); } function addUnknownExtensionsToUserData(knownExtensions, object, objectDef) { // Add unknown glTF extensions to an object's userData. for (var name in objectDef.extensions) { if (knownExtensions[name] === undefined) { object.userData.gltfExtensions = object.userData.gltfExtensions || {}; object.userData.gltfExtensions[name] = objectDef.extensions[name]; } } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets * * @param {THREE.Geometry} geometry * @param {Array} targets * @param {Array} accessors */ function addMorphTargets(geometry, targets, accessors) { var hasMorphPosition = false; var hasMorphNormal = false; for (var i = 0, il = targets.length; i < il; i++) { var target = targets[i]; if (target.POSITION !== undefined) hasMorphPosition = true; if (target.NORMAL !== undefined) hasMorphNormal = true; if (hasMorphPosition && hasMorphNormal) break; } if (!hasMorphPosition && !hasMorphNormal) return; var morphPositions = []; var morphNormals = []; for (var i = 0, il = targets.length; i < il; i++) { var target = targets[i]; var attributeName = 'morphTarget' + i; if (hasMorphPosition) { // Three.js morph position is absolute value. The formula is // basePosition // + weight0 * ( morphPosition0 - basePosition ) // + weight1 * ( morphPosition1 - basePosition ) // ... // while the glTF one is relative // basePosition // + weight0 * glTFmorphPosition0 // + weight1 * glTFmorphPosition1 // ... // then we need to convert from relative to absolute here. if (target.POSITION !== undefined) { // Cloning not to pollute original accessor var positionAttribute = cloneBufferAttribute(accessors[target.POSITION]); positionAttribute.name = attributeName; var position = geometry.attributes.position; for (var j = 0, jl = positionAttribute.count; j < jl; j++) { positionAttribute.setXYZ( j, positionAttribute.getX(j) + position.getX(j), positionAttribute.getY(j) + position.getY(j), positionAttribute.getZ(j) + position.getZ(j) ); } } else { positionAttribute = geometry.attributes.position; } morphPositions.push(positionAttribute); } if (hasMorphNormal) { // see target.POSITION's comment var normalAttribute; if (target.NORMAL !== undefined) { var normalAttribute = cloneBufferAttribute(accessors[target.NORMAL]); normalAttribute.name = attributeName; var normal = geometry.attributes.normal; for (var j = 0, jl = normalAttribute.count; j < jl; j++) { normalAttribute.setXYZ( j, normalAttribute.getX(j) + normal.getX(j), normalAttribute.getY(j) + normal.getY(j), normalAttribute.getZ(j) + normal.getZ(j) ); } } else { normalAttribute = geometry.attributes.normal; } morphNormals.push(normalAttribute); } } if (hasMorphPosition) geometry.morphAttributes.position = morphPositions; if (hasMorphNormal) geometry.morphAttributes.normal = morphNormals; } /** * @param {THREE.Mesh} mesh * @param {GLTF.Mesh} meshDef */ function updateMorphTargets(mesh, meshDef) { mesh.updateMorphTargets(); if (meshDef.weights !== undefined) { for (var i = 0, il = meshDef.weights.length; i < il; i++) { mesh.morphTargetInfluences[i] = meshDef.weights[i]; } } // .extras has user-defined data, so check that .extras.targetNames is an array. if (meshDef.extras && Array.isArray(meshDef.extras.targetNames)) { var targetNames = meshDef.extras.targetNames; if (mesh.morphTargetInfluences.length === targetNames.length) { mesh.morphTargetDictionary = {}; for (var i = 0, il = targetNames.length; i < il; i++) { mesh.morphTargetDictionary[targetNames[i]] = i; } } else { console.warn('THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.'); } } } function isPrimitiveEqual(a, b) { if (a.indices !== b.indices) { return false; } return isObjectEqual(a.attributes, b.attributes); } function isObjectEqual(a, b) { if (Object.keys(a).length !== Object.keys(b).length) return false; for (var key in a) { if (a[key] !== b[key]) return false; } return true; } function isArrayEqual(a, b) { if (a.length !== b.length) return false; for (var i = 0, il = a.length; i < il; i++) { if (a[i] !== b[i]) return false; } return true; } function getCachedGeometry(cache, newPrimitive) { for (var i = 0, il = cache.length; i < il; i++) { var cached = cache[i]; if (isPrimitiveEqual(cached.primitive, newPrimitive)) return cached.promise; } return null; } function getCachedCombinedGeometry(cache, geometries) { for (var i = 0, il = cache.length; i < il; i++) { var cached = cache[i]; if (isArrayEqual(geometries, cached.baseGeometries)) return cached.geometry; } return null; } function getCachedMultiPassGeometry(cache, geometry, primitives) { for (var i = 0, il = cache.length; i < il; i++) { var cached = cache[i]; if (geometry === cached.baseGeometry && isArrayEqual(primitives, cached.primitives)) return cached.geometry; } return null; } function cloneBufferAttribute(attribute) { if (attribute.isInterleavedBufferAttribute) { var count = attribute.count; var itemSize = attribute.itemSize; var array = attribute.array.slice(0, count * itemSize); for (var i = 0; i < count; ++i) { array[i] = attribute.getX(i); if (itemSize >= 2) array[i + 1] = attribute.getY(i); if (itemSize >= 3) array[i + 2] = attribute.getZ(i); if (itemSize >= 4) array[i + 3] = attribute.getW(i); } return new THREE.BufferAttribute(array, itemSize, attribute.normalized); } return attribute.clone(); } /** * Checks if we can build a single Mesh with MultiMaterial from multiple primitives. * Returns true if all primitives use the same attributes/morphAttributes/mode * and also have index. Otherwise returns false. * * @param {Array} primitives * @return {Boolean} */ function isMultiPassGeometry(primitives) { if (primitives.length < 2) return false; var primitive0 = primitives[0]; var targets0 = primitive0.targets || []; if (primitive0.indices === undefined) return false; for (var i = 1, il = primitives.length; i < il; i++) { var primitive = primitives[i]; if (primitive0.mode !== primitive.mode) return false; if (primitive.indices === undefined) return false; if (!isObjectEqual(primitive0.attributes, primitive.attributes)) return false; var targets = primitive.targets || []; if (targets0.length !== targets.length) return false; for (var j = 0, jl = targets0.length; j < jl; j++) { if (!isObjectEqual(targets0[j], targets[j])) return false; } } return true; } /* GLTF PARSER */ function GLTFParser(json, extensions, options) { this.json = json || {}; this.extensions = extensions || {}; this.options = options || {}; // loader object cache this.cache = new GLTFRegistry(); // BufferGeometry caching this.primitiveCache = []; this.multiplePrimitivesCache = []; this.multiPassGeometryCache = [] this.textureLoader = new THREE.TextureLoader(this.options.manager); this.textureLoader.setCrossOrigin(this.options.crossOrigin); this.fileLoader = new THREE.FileLoader(this.options.manager); this.fileLoader.setResponseType('arraybuffer'); } GLTFParser.prototype.parse = function (onLoad, onError) { var json = this.json; // Clear the loader cache this.cache.removeAll(); // Mark the special nodes/meshes in json for efficient parse this.markDefs(); // Fire the callback on complete this.getMultiDependencies([ 'scene', 'animation', 'camera' ]).then(function (dependencies) { var scenes = dependencies.scenes || []; var scene = scenes[json.scene || 0]; var animations = dependencies.animations || []; var cameras = dependencies.cameras || []; onLoad(scene, scenes, cameras, animations, json); }).catch(onError); }; /** * Marks the special nodes/meshes in json for efficient parse. */ GLTFParser.prototype.markDefs = function () { var nodeDefs = this.json.nodes || []; var skinDefs = this.json.skins || []; var meshDefs = this.json.meshes || []; var meshReferences = {}; var meshUses = {}; // Nothing in the node definition indicates whether it is a Bone or an // Object3D. Use the skins' joint references to mark bones. for (var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex++) { var joints = skinDefs[skinIndex].joints; for (var i = 0, il = joints.length; i < il; i++) { nodeDefs[joints[i]].isBone = true; } } // Meshes can (and should) be reused by multiple nodes in a glTF asset. To // avoid having more than one THREE.Mesh with the same name, count // references and rename instances below. // // Example: CesiumMilkTruck sample model reuses "Wheel" meshes. for (var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) { var nodeDef = nodeDefs[nodeIndex]; if (nodeDef.mesh !== undefined) { if (meshReferences[nodeDef.mesh] === undefined) { meshReferences[nodeDef.mesh] = meshUses[nodeDef.mesh] = 0; } meshReferences[nodeDef.mesh]++; // Nothing in the mesh definition indicates whether it is // a SkinnedMesh or Mesh. Use the node's mesh reference // to mark SkinnedMesh if node has skin. if (nodeDef.skin !== undefined) { meshDefs[nodeDef.mesh].isSkinnedMesh = true; } } } this.json.meshReferences = meshReferences; this.json.meshUses = meshUses; }; /** * Requests the specified dependency asynchronously, with caching. * @param {string} type * @param {number} index * @return {Promise} */ GLTFParser.prototype.getDependency = function (type, index) { var cacheKey = type + ':' + index; var dependency = this.cache.get(cacheKey); if (!dependency) { switch (type) { case 'scene': dependency = this.loadScene(index); break; case 'node': dependency = this.loadNode(index); break; case 'mesh': dependency = this.loadMesh(index); break; case 'accessor': dependency = this.loadAccessor(index); break; case 'bufferView': dependency = this.loadBufferView(index); break; case 'buffer': dependency = this.loadBuffer(index); break; case 'material': dependency = this.loadMaterial(index); break; case 'texture': dependency = this.loadTexture(index); break; case 'skin': dependency = this.loadSkin(index); break; case 'animation': dependency = this.loadAnimation(index); break; case 'camera': dependency = this.loadCamera(index); break; default: throw new Error('Unknown type: ' + type); } this.cache.add(cacheKey, dependency); } return dependency; }; /** * Requests all dependencies of the specified type asynchronously, with caching. * @param {string} type * @return {Promise>} */ GLTFParser.prototype.getDependencies = function (type) { var dependencies = this.cache.get(type); if (!dependencies) { var parser = this; var defs = this.json[type + (type === 'mesh' ? 'es' : 's')] || []; dependencies = Promise.all(defs.map(function (def, index) { return parser.getDependency(type, index); })); this.cache.add(type, dependencies); } return dependencies; }; /** * Requests all multiple dependencies of the specified types asynchronously, with caching. * @param {Array} types * @return {Promise>>} */ GLTFParser.prototype.getMultiDependencies = function (types) { var results = {}; var pendings = []; for (var i = 0, il = types.length; i < il; i++) { var type = types[i]; var value = this.getDependencies(type); value = value.then(function (key, value) { results[key] = value; }.bind(this, type + (type === 'mesh' ? 'es' : 's'))); pendings.push(value); } return Promise.all(pendings).then(function () { return results; }); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferIndex * @return {Promise} */ GLTFParser.prototype.loadBuffer = function (bufferIndex) { var bufferDef = this.json.buffers[bufferIndex]; var loader = this.fileLoader; if (bufferDef.type && bufferDef.type !== 'arraybuffer') { throw new Error('THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.'); } // If present, GLB container is required to be the first buffer. if (bufferDef.uri === undefined && bufferIndex === 0) { return Promise.resolve(this.extensions[EXTENSIONS.KHR_BINARY_GLTF].body); } var options = this.options; return new Promise(function (resolve, reject) { loader.load(resolveURL(bufferDef.uri, options.path), resolve, undefined, function () { reject(new Error('THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".')); }); }); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views * @param {number} bufferViewIndex * @return {Promise} */ GLTFParser.prototype.loadBufferView = function (bufferViewIndex) { var bufferViewDef = this.json.bufferViews[bufferViewIndex]; return this.getDependency('buffer', bufferViewDef.buffer).then(function (buffer) { var byteLength = bufferViewDef.byteLength || 0; var byteOffset = bufferViewDef.byteOffset || 0; return buffer.slice(byteOffset, byteOffset + byteLength); }); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors * @param {number} accessorIndex * @return {Promise} */ GLTFParser.prototype.loadAccessor = function (accessorIndex) { var parser = this; var json = this.json; var accessorDef = this.json.accessors[accessorIndex]; if (accessorDef.bufferView === undefined && accessorDef.sparse === undefined) { // Ignore empty accessors, which may be used to declare runtime // information about attributes coming from another source (e.g. Draco // compression extension). return null; } var pendingBufferViews = []; if (accessorDef.bufferView !== undefined) { pendingBufferViews.push(this.getDependency('bufferView', accessorDef.bufferView)); } else { pendingBufferViews.push(null); } if (accessorDef.sparse !== undefined) { pendingBufferViews.push(this.getDependency('bufferView', accessorDef.sparse.indices.bufferView)); pendingBufferViews.push(this.getDependency('bufferView', accessorDef.sparse.values.bufferView)); } return Promise.all(pendingBufferViews).then(function (bufferViews) { var bufferView = bufferViews[0]; var itemSize = WEBGL_TYPE_SIZES[accessorDef.type]; var TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; // For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12. var elementBytes = TypedArray.BYTES_PER_ELEMENT; var itemBytes = elementBytes * itemSize; var byteOffset = accessorDef.byteOffset || 0; var byteStride = json.bufferViews[accessorDef.bufferView].byteStride; var normalized = accessorDef.normalized === true; var array, bufferAttribute; // The buffer is not interleaved if the stride is the item size in bytes. if (byteStride && byteStride !== itemBytes) { var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType; var ib = parser.cache.get(ibCacheKey); if (!ib) { // Use the full buffer if it's interleaved. array = new TypedArray(bufferView); // Integer parameters to IB/IBA are in array elements, not bytes. ib = new THREE.InterleavedBuffer(array, byteStride / elementBytes); parser.cache.add(ibCacheKey, ib); } bufferAttribute = new THREE.InterleavedBufferAttribute(ib, itemSize, byteOffset / elementBytes, normalized); } else { if (bufferView === null) { array = new TypedArray(accessorDef.count * itemSize); } else { array = new TypedArray(bufferView, byteOffset, accessorDef.count * itemSize); } bufferAttribute = new THREE.BufferAttribute(array, itemSize, normalized); } // https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors if (accessorDef.sparse !== undefined) { var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; var TypedArrayIndices = WEBGL_COMPONENT_TYPES[accessorDef.sparse.indices.componentType]; var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0; var sparseIndices = new TypedArrayIndices(bufferViews[1], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices); var sparseValues = new TypedArray(bufferViews[2], byteOffsetValues, accessorDef.sparse.count * itemSize); if (bufferView !== null) { // Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes. bufferAttribute.setArray(bufferAttribute.array.slice()); } for (var i = 0, il = sparseIndices.length; i < il; i++) { var index = sparseIndices[i]; bufferAttribute.setX(index, sparseValues[i * itemSize]); if (itemSize >= 2) bufferAttribute.setY(index, sparseValues[i * itemSize + 1]); if (itemSize >= 3) bufferAttribute.setZ(index, sparseValues[i * itemSize + 2]); if (itemSize >= 4) bufferAttribute.setW(index, sparseValues[i * itemSize + 3]); if (itemSize >= 5) throw new Error('THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.'); } } return bufferAttribute; }); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures * @param {number} textureIndex * @return {Promise} */ GLTFParser.prototype.loadTexture = function (textureIndex) { var parser = this; var json = this.json; var options = this.options; var textureLoader = this.textureLoader; var URL = window.URL || window.webkitURL; var textureDef = json.textures[textureIndex]; var textureExtensions = textureDef.extensions || {}; var source; if (textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS]) { source = json.images[textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS].source]; } else { source = json.images[textureDef.source]; } var sourceURI = source.uri; var isObjectURL = false; if (source.bufferView !== undefined) { // Load binary image data from bufferView, if provided. sourceURI = parser.getDependency('bufferView', source.bufferView).then(function (bufferView) { isObjectURL = true; var blob = new Blob([bufferView], { type: source.mimeType }); sourceURI = URL.createObjectURL(blob); return sourceURI; }); } return Promise.resolve(sourceURI).then(function (sourceURI) { // Load Texture resource. var loader = THREE.Loader.Handlers.get(sourceURI); if (!loader) { loader = textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS] ? parser.extensions[EXTENSIONS.MSFT_TEXTURE_DDS].ddsLoader : textureLoader; } return new Promise(function (resolve, reject) { loader.load(resolveURL(sourceURI, options.path), resolve, undefined, reject); }); }).then(function (texture) { // Clean up resources and configure Texture. if (isObjectURL === true) { URL.revokeObjectURL(sourceURI); } texture.flipY = false; if (textureDef.name !== undefined) texture.name = textureDef.name; // .format of dds texture is set in DDSLoader if (!textureExtensions[EXTENSIONS.MSFT_TEXTURE_DDS]) { texture.format = textureDef.format !== undefined ? WEBGL_TEXTURE_FORMATS[textureDef.format] : THREE.RGBAFormat; } if (textureDef.internalFormat !== undefined && texture.format !== WEBGL_TEXTURE_FORMATS[textureDef.internalFormat]) { console.warn('THREE.GLTFLoader: Three.js does not support texture internalFormat which is different from texture format. ' + 'internalFormat will be forced to be the same value as format.'); } texture.type = textureDef.type !== undefined ? WEBGL_TEXTURE_DATATYPES[textureDef.type] : THREE.UnsignedByteType; var samplers = json.samplers || {}; var sampler = samplers[textureDef.sampler] || {}; texture.magFilter = WEBGL_FILTERS[sampler.magFilter] || THREE.LinearFilter; texture.minFilter = WEBGL_FILTERS[sampler.minFilter] || THREE.LinearMipMapLinearFilter; texture.wrapS = WEBGL_WRAPPINGS[sampler.wrapS] || THREE.RepeatWrapping; texture.wrapT = WEBGL_WRAPPINGS[sampler.wrapT] || THREE.RepeatWrapping; return texture; }); }; /** * Asynchronously assigns a texture to the given material parameters. * @param {Object} materialParams * @param {string} textureName * @param {number} textureIndex * @return {Promise} */ GLTFParser.prototype.assignTexture = function (materialParams, textureName, textureIndex) { return this.getDependency('texture', textureIndex).then(function (texture) { materialParams[textureName] = texture; }); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials * @param {number} materialIndex * @return {Promise} */ GLTFParser.prototype.loadMaterial = function (materialIndex) { var parser = this; var json = this.json; var extensions = this.extensions; var materialDef = this.json.materials[materialIndex]; var materialType; var materialParams = {}; var materialExtensions = materialDef.extensions || {}; var pending = []; if (materialExtensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS]) { var sgExtension = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS]; materialType = sgExtension.getMaterialType(materialDef); pending.push(sgExtension.extendParams(materialParams, materialDef, parser)); } else if (materialExtensions[EXTENSIONS.KHR_MATERIALS_UNLIT]) { var kmuExtension = extensions[EXTENSIONS.KHR_MATERIALS_UNLIT]; materialType = kmuExtension.getMaterialType(materialDef); pending.push(kmuExtension.extendParams(materialParams, materialDef, parser)); } else { // Specification: // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material materialType = THREE.MeshStandardMaterial; var metallicRoughness = materialDef.pbrMetallicRoughness || {}; materialParams.color = new THREE.Color(1.0, 1.0, 1.0); materialParams.opacity = 1.0; if (Array.isArray(metallicRoughness.baseColorFactor)) { var array = metallicRoughness.baseColorFactor; materialParams.color.fromArray(array); materialParams.opacity = array[3]; } if (metallicRoughness.baseColorTexture !== undefined) { pending.push(parser.assignTexture(materialParams, 'map', metallicRoughness.baseColorTexture.index)); } materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0; materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0; if (metallicRoughness.metallicRoughnessTexture !== undefined) { var textureIndex = metallicRoughness.metallicRoughnessTexture.index; pending.push(parser.assignTexture(materialParams, 'metalnessMap', textureIndex)); pending.push(parser.assignTexture(materialParams, 'roughnessMap', textureIndex)); } } if (materialDef.doubleSided === true) { materialParams.side = THREE.DoubleSide; } var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE; if (alphaMode === ALPHA_MODES.BLEND) { materialParams.transparent = true; } else { materialParams.transparent = false; if (alphaMode === ALPHA_MODES.MASK) { materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5; } } if (materialDef.normalTexture !== undefined && materialType !== THREE.MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, 'normalMap', materialDef.normalTexture.index)); materialParams.normalScale = new THREE.Vector2(1, 1); if (materialDef.normalTexture.scale !== undefined) { materialParams.normalScale.set(materialDef.normalTexture.scale, materialDef.normalTexture.scale); } } if (materialDef.occlusionTexture !== undefined && materialType !== THREE.MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, 'aoMap', materialDef.occlusionTexture.index)); if (materialDef.occlusionTexture.strength !== undefined) { materialParams.aoMapIntensity = materialDef.occlusionTexture.strength; } } if (materialDef.emissiveFactor !== undefined && materialType !== THREE.MeshBasicMaterial) { materialParams.emissive = new THREE.Color().fromArray(materialDef.emissiveFactor); } if (materialDef.emissiveTexture !== undefined && materialType !== THREE.MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, 'emissiveMap', materialDef.emissiveTexture.index)); } return Promise.all(pending).then(function () { var material; if (materialType === THREE.ShaderMaterial) { material = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].createMaterial(materialParams); } else { material = new materialType(materialParams); } if (materialDef.name !== undefined) material.name = materialDef.name; // Normal map textures use OpenGL conventions: // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#materialnormaltexture if (material.normalScale) { material.normalScale.y = -material.normalScale.y; } // baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding. if (material.map) material.map.encoding = THREE.sRGBEncoding; if (material.emissiveMap) material.emissiveMap.encoding = THREE.sRGBEncoding; if (material.specularMap) material.specularMap.encoding = THREE.sRGBEncoding; if (materialDef.extras) material.userData = materialDef.extras; if (materialDef.extensions) addUnknownExtensionsToUserData(extensions, material, materialDef); return material; }); }; /** * @param {THREE.BufferGeometry} geometry * @param {GLTF.Primitive} primitiveDef * @param {Array} accessors */ function addPrimitiveAttributes(geometry, primitiveDef, accessors) { var attributes = primitiveDef.attributes; for (var gltfAttributeName in attributes) { var threeAttributeName = ATTRIBUTES[gltfAttributeName]; var bufferAttribute = accessors[attributes[gltfAttributeName]]; // Skip attributes already provided by e.g. Draco extension. if (!threeAttributeName) continue; if (threeAttributeName in geometry.attributes) continue; geometry.addAttribute(threeAttributeName, bufferAttribute); } if (primitiveDef.indices !== undefined && !geometry.index) { geometry.setIndex(accessors[primitiveDef.indices]); } if (primitiveDef.targets !== undefined) { addMorphTargets(geometry, primitiveDef.targets, accessors); } if (primitiveDef.extras !== undefined) { geometry.userData = primitiveDef.extras; } } /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry * * Creates BufferGeometries from primitives. * If we can build a single BufferGeometry with .groups from multiple primitives, returns one BufferGeometry. * Otherwise, returns BufferGeometries without .groups as many as primitives. * * @param {Array} primitives * @return {Promise>} */ GLTFParser.prototype.loadGeometries = function (primitives) { var parser = this; var extensions = this.extensions; var cache = this.primitiveCache; var isMultiPass = isMultiPassGeometry(primitives); var originalPrimitives; if (isMultiPass) { originalPrimitives = primitives; // save original primitives and use later // We build a single BufferGeometry with .groups from multiple primitives // because all primitives share the same attributes/morph/mode and have indices. primitives = [primitives[0]]; // Sets .groups and combined indices to a geometry later in this method. } return this.getDependencies('accessor').then(function (accessors) { var pending = []; for (var i = 0, il = primitives.length; i < il; i++) { var primitive = primitives[i]; // See if we've already created this geometry var cached = getCachedGeometry(cache, primitive); if (cached) { // Use the cached geometry if it exists pending.push(cached); } else if (primitive.extensions && primitive.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]) { // Use DRACO geometry if available var geometryPromise = extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION] .decodePrimitive(primitive, parser) .then(function (geometry) { addPrimitiveAttributes(geometry, primitive, accessors); return geometry; }); cache.push({ primitive: primitive, promise: geometryPromise }); pending.push(geometryPromise); } else { // Otherwise create a new geometry var geometry = new THREE.BufferGeometry(); addPrimitiveAttributes(geometry, primitive, accessors); var geometryPromise = Promise.resolve(geometry); // Cache this geometry cache.push({ primitive: primitive, promise: geometryPromise }); pending.push(geometryPromise); } } return Promise.all(pending).then(function (geometries) { if (isMultiPass) { var baseGeometry = geometries[0]; // See if we've already created this combined geometry var cache = parser.multiPassGeometryCache; var cached = getCachedMultiPassGeometry(cache, baseGeometry, originalPrimitives); if (cached !== null) return [cached.geometry]; // Cloning geometry because of index override. // Attributes can be reused so cloning by myself here. var geometry = new THREE.BufferGeometry(); geometry.name = baseGeometry.name; geometry.userData = baseGeometry.userData; for (var key in baseGeometry.attributes) geometry.addAttribute(key, baseGeometry.attributes[key]); for (var key in baseGeometry.morphAttributes) geometry.morphAttributes[key] = baseGeometry.morphAttributes[key]; var indices = []; var offset = 0; for (var i = 0, il = originalPrimitives.length; i < il; i++) { var accessor = accessors[originalPrimitives[i].indices]; for (var j = 0, jl = accessor.count; j < jl; j++) indices.push(accessor.array[j]); geometry.addGroup(offset, accessor.count, i); offset += accessor.count; } geometry.setIndex(indices); cache.push({ geometry: geometry, baseGeometry: baseGeometry, primitives: originalPrimitives }); return [geometry]; } else if (geometries.length > 1 && THREE.BufferGeometryUtils !== undefined) { // Tries to merge geometries with BufferGeometryUtils if possible for (var i = 1, il = primitives.length; i < il; i++) { // can't merge if draw mode is different if (primitives[0].mode !== primitives[i].mode) return geometries; } // See if we've already created this combined geometry var cache = parser.multiplePrimitivesCache; var cached = getCachedCombinedGeometry(cache, geometries); if (cached) { if (cached.geometry !== null) return [cached.geometry]; } else { var geometry = THREE.BufferGeometryUtils.mergeBufferGeometries(geometries, true); cache.push({ geometry: geometry, baseGeometries: geometries }); if (geometry !== null) return [geometry]; } } return geometries; }); }); }; /** * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes * @param {number} meshIndex * @return {Promise} */ GLTFParser.prototype.loadMesh = function (meshIndex) { var scope = this; var json = this.json; var extensions = this.extensions; var meshDef = this.json.meshes[meshIndex]; return this.getMultiDependencies([ 'accessor', 'material' ]).then(function (dependencies) { var primitives = meshDef.primitives; var originalMaterials = []; for (var i = 0, il = primitives.length; i < il; i++) { originalMaterials[i] = primitives[i].material === undefined ? createDefaultMaterial() : dependencies.materials[primitives[i].material]; } return scope.loadGeometries(primitives).then(function (geometries) { var isMultiMaterial = geometries.length === 1 && geometries[0].groups.length > 0; var meshes = []; for (var i = 0, il = geometries.length; i < il; i++) { var geometry = geometries[i]; var primitive = primitives[i]; // 1. create Mesh var mesh; var material = isMultiMaterial ? originalMaterials : originalMaterials[i] if (primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === undefined) { // .isSkinnedMesh isn't in glTF spec. See .markDefs() mesh = meshDef.isSkinnedMesh === true ? new THREE.SkinnedMesh(geometry, material) : new THREE.Mesh(geometry, material); if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP) { mesh.drawMode = THREE.TriangleStripDrawMode; } else if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN) { mesh.drawMode = THREE.TriangleFanDrawMode; } } else if (primitive.mode === WEBGL_CONSTANTS.LINES) { mesh = new THREE.LineSegments(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.LINE_STRIP) { mesh = new THREE.Line(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.LINE_LOOP) { mesh = new THREE.LineLoop(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.POINTS) { mesh = new THREE.Points(geometry, material); } else { throw new Error('THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode); } if (Object.keys(mesh.geometry.morphAttributes).length > 0) { updateMorphTargets(mesh, meshDef); } mesh.name = meshDef.name || ('mesh_' + meshIndex); if (geometries.length > 1) mesh.name += '_' + i; if (meshDef.extras !== undefined) mesh.userData = meshDef.extras; meshes.push(mesh); // 2. update Material depending on Mesh and BufferGeometry var materials = isMultiMaterial ? mesh.material : [mesh.material]; var useVertexColors = geometry.attributes.color !== undefined; var useFlatShading = geometry.attributes.normal === undefined; var useSkinning = mesh.isSkinnedMesh === true; var useMorphTargets = Object.keys(geometry.morphAttributes).length > 0; var useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined; for (var j = 0, jl = materials.length; j < jl; j++) { var material = materials[j]; if (mesh.isPoints) { var cacheKey = 'PointsMaterial:' + material.uuid; var pointsMaterial = scope.cache.get(cacheKey); if (!pointsMaterial) { pointsMaterial = new THREE.PointsMaterial(); THREE.Material.prototype.copy.call(pointsMaterial, material); pointsMaterial.color.copy(material.color); pointsMaterial.map = material.map; pointsMaterial.lights = false; // PointsMaterial doesn't support lights yet scope.cache.add(cacheKey, pointsMaterial); } material = pointsMaterial; } else if (mesh.isLine) { var cacheKey = 'LineBasicMaterial:' + material.uuid; var lineMaterial = scope.cache.get(cacheKey); if (!lineMaterial) { lineMaterial = new THREE.LineBasicMaterial(); THREE.Material.prototype.copy.call(lineMaterial, material); lineMaterial.color.copy(material.color); lineMaterial.lights = false; // LineBasicMaterial doesn't support lights yet scope.cache.add(cacheKey, lineMaterial); } material = lineMaterial; } // Clone the material if it will be modified if (useVertexColors || useFlatShading || useSkinning || useMorphTargets) { var cacheKey = 'ClonedMaterial:' + material.uuid + ':'; if (material.isGLTFSpecularGlossinessMaterial) cacheKey += 'specular-glossiness:'; if (useSkinning) cacheKey += 'skinning:'; if (useVertexColors) cacheKey += 'vertex-colors:'; if (useFlatShading) cacheKey += 'flat-shading:'; if (useMorphTargets) cacheKey += 'morph-targets:'; if (useMorphNormals) cacheKey += 'morph-normals:'; var cachedMaterial = scope.cache.get(cacheKey); if (!cachedMaterial) { cachedMaterial = material.isGLTFSpecularGlossinessMaterial ? extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].cloneMaterial(material) : material.clone(); if (useSkinning) cachedMaterial.skinning = true; if (useVertexColors) cachedMaterial.vertexColors = THREE.VertexColors; if (useFlatShading) cachedMaterial.flatShading = true; if (useMorphTargets) cachedMaterial.morphTargets = true; if (useMorphNormals) cachedMaterial.morphNormals = true; scope.cache.add(cacheKey, cachedMaterial); } material = cachedMaterial; } materials[j] = material; // workarounds for mesh and geometry if (material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined) { console.log('THREE.GLTFLoader: Duplicating UVs to support aoMap.'); geometry.addAttribute('uv2', new THREE.BufferAttribute(geometry.attributes.uv.array, 2)); } if (material.isGLTFSpecularGlossinessMaterial) { // for GLTFSpecularGlossinessMaterial(ShaderMaterial) uniforms runtime update mesh.onBeforeRender = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].refreshUniforms; } } mesh.material = isMultiMaterial ? materials : materials[0]; } if (meshes.length === 1) { return meshes[0]; } var group = new THREE.Group(); for (var i = 0, il = meshes.length; i < il; i++) { group.add(meshes[i]); } return group; }); }); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras * @param {number} cameraIndex * @return {Promise} */ GLTFParser.prototype.loadCamera = function (cameraIndex) { var camera; var cameraDef = this.json.cameras[cameraIndex]; var params = cameraDef[cameraDef.type]; if (!params) { console.warn('THREE.GLTFLoader: Missing camera parameters.'); return; } if (cameraDef.type === 'perspective') { camera = new THREE.PerspectiveCamera(THREE.Math.radToDeg(params.yfov), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6); } else if (cameraDef.type === 'orthographic') { camera = new THREE.OrthographicCamera(params.xmag / -2, params.xmag / 2, params.ymag / 2, params.ymag / -2, params.znear, params.zfar); } if (cameraDef.name !== undefined) camera.name = cameraDef.name; if (cameraDef.extras) camera.userData = cameraDef.extras; return Promise.resolve(camera); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins * @param {number} skinIndex * @return {Promise} */ GLTFParser.prototype.loadSkin = function (skinIndex) { var skinDef = this.json.skins[skinIndex]; var skinEntry = { joints: skinDef.joints }; if (skinDef.inverseBindMatrices === undefined) { return Promise.resolve(skinEntry); } return this.getDependency('accessor', skinDef.inverseBindMatrices).then(function (accessor) { skinEntry.inverseBindMatrices = accessor; return skinEntry; }); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations * @param {number} animationIndex * @return {Promise} */ GLTFParser.prototype.loadAnimation = function (animationIndex) { var json = this.json; var animationDef = this.json.animations[animationIndex]; return this.getMultiDependencies([ 'accessor', 'node' ]).then(function (dependencies) { var tracks = []; for (var i = 0, il = animationDef.channels.length; i < il; i++) { var channel = animationDef.channels[i]; var sampler = animationDef.samplers[channel.sampler]; if (sampler) { var target = channel.target; var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated. var input = animationDef.parameters !== undefined ? animationDef.parameters[sampler.input] : sampler.input; var output = animationDef.parameters !== undefined ? animationDef.parameters[sampler.output] : sampler.output; var inputAccessor = dependencies.accessors[input]; var outputAccessor = dependencies.accessors[output]; var node = dependencies.nodes[name]; if (node) { node.updateMatrix(); node.matrixAutoUpdate = true; var TypedKeyframeTrack; switch (PATH_PROPERTIES[target.path]) { case PATH_PROPERTIES.weights: TypedKeyframeTrack = THREE.NumberKeyframeTrack; break; case PATH_PROPERTIES.rotation: TypedKeyframeTrack = THREE.QuaternionKeyframeTrack; break; case PATH_PROPERTIES.position: case PATH_PROPERTIES.scale: default: TypedKeyframeTrack = THREE.VectorKeyframeTrack; break; } var targetName = node.name ? node.name : node.uuid; var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[sampler.interpolation] : THREE.InterpolateLinear; var targetNames = []; if (PATH_PROPERTIES[target.path] === PATH_PROPERTIES.weights) { // node can be THREE.Group here but // PATH_PROPERTIES.weights(morphTargetInfluences) should be // the property of a mesh object under group. node.traverse(function (object) { if (object.isMesh === true && object.morphTargetInfluences) { targetNames.push(object.name ? object.name : object.uuid); } }); } else { targetNames.push(targetName); } // KeyframeTrack.optimize() will modify given 'times' and 'values' // buffers before creating a truncated copy to keep. Because buffers may // be reused by other tracks, make copies here. for (var j = 0, jl = targetNames.length; j < jl; j++) { var track = new TypedKeyframeTrack( targetNames[j] + '.' + PATH_PROPERTIES[target.path], THREE.AnimationUtils.arraySlice(inputAccessor.array, 0), THREE.AnimationUtils.arraySlice(outputAccessor.array, 0), interpolation ); // Here is the trick to enable custom interpolation. // Overrides .createInterpolant in a factory method which creates custom interpolation. if (sampler.interpolation === 'CUBICSPLINE') { track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline(result) { // A CUBICSPLINE keyframe in glTF has three output values for each input value, // representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize() // must be divided by three to get the interpolant's sampleSize argument. return new GLTFCubicSplineInterpolant(this.times, this.values, this.getValueSize() / 3, result); }; // Workaround, provide an alternate way to know if the interpolant type is cubis spline to track. // track.getInterpolation() doesn't return valid value for custom interpolant. track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true; } tracks.push(track); } } } } var name = animationDef.name !== undefined ? animationDef.name : 'animation_' + animationIndex; return new THREE.AnimationClip(name, undefined, tracks); }); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy * @param {number} nodeIndex * @return {Promise} */ GLTFParser.prototype.loadNode = function (nodeIndex) { var json = this.json; var extensions = this.extensions; var meshReferences = this.json.meshReferences; var meshUses = this.json.meshUses; var nodeDef = this.json.nodes[nodeIndex]; return this.getMultiDependencies([ 'mesh', 'skin', 'camera', 'light' ]).then(function (dependencies) { var node; // .isBone isn't in glTF spec. See .markDefs if (nodeDef.isBone === true) { node = new THREE.Bone(); } else if (nodeDef.mesh !== undefined) { var mesh = dependencies.meshes[nodeDef.mesh]; node = mesh.clone(); // for Specular-Glossiness if (mesh.isGroup === true) { for (var i = 0, il = mesh.children.length; i < il; i++) { var child = mesh.children[i]; if (child.material && child.material.isGLTFSpecularGlossinessMaterial === true) { node.children[i].onBeforeRender = child.onBeforeRender; } } } else { if (mesh.material && mesh.material.isGLTFSpecularGlossinessMaterial === true) { node.onBeforeRender = mesh.onBeforeRender; } } if (meshReferences[nodeDef.mesh] > 1) { node.name += '_instance_' + meshUses[nodeDef.mesh]++; } } else if (nodeDef.camera !== undefined) { node = dependencies.cameras[nodeDef.camera]; } else if (nodeDef.extensions && nodeDef.extensions[EXTENSIONS.KHR_LIGHTS] && nodeDef.extensions[EXTENSIONS.KHR_LIGHTS].light !== undefined) { var lights = extensions[EXTENSIONS.KHR_LIGHTS].lights; node = lights[nodeDef.extensions[EXTENSIONS.KHR_LIGHTS].light]; } else { node = new THREE.Object3D(); } if (nodeDef.name !== undefined) { node.name = THREE.PropertyBinding.sanitizeNodeName(nodeDef.name); } if (nodeDef.extras) node.userData = nodeDef.extras; if (nodeDef.extensions) addUnknownExtensionsToUserData(extensions, node, nodeDef); if (nodeDef.matrix !== undefined) { var matrix = new THREE.Matrix4(); matrix.fromArray(nodeDef.matrix); node.applyMatrix(matrix); } else { if (nodeDef.translation !== undefined) { node.position.fromArray(nodeDef.translation); } if (nodeDef.rotation !== undefined) { node.quaternion.fromArray(nodeDef.rotation); } if (nodeDef.scale !== undefined) { node.scale.fromArray(nodeDef.scale); } } return node; }); }; /** * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes * @param {number} sceneIndex * @return {Promise} */ GLTFParser.prototype.loadScene = function () { // scene node hierachy builder function buildNodeHierachy(nodeId, parentObject, json, allNodes, skins) { var node = allNodes[nodeId]; var nodeDef = json.nodes[nodeId]; // build skeleton here as well if (nodeDef.skin !== undefined) { var meshes = node.isGroup === true ? node.children : [node]; for (var i = 0, il = meshes.length; i < il; i++) { var mesh = meshes[i]; var skinEntry = skins[nodeDef.skin]; var bones = []; var boneInverses = []; for (var j = 0, jl = skinEntry.joints.length; j < jl; j++) { var jointId = skinEntry.joints[j]; var jointNode = allNodes[jointId]; if (jointNode) { bones.push(jointNode); var mat = new THREE.Matrix4(); if (skinEntry.inverseBindMatrices !== undefined) { mat.fromArray(skinEntry.inverseBindMatrices.array, j * 16); } boneInverses.push(mat); } else { console.warn('THREE.GLTFLoader: Joint "%s" could not be found.', jointId); } } mesh.bind(new THREE.Skeleton(bones, boneInverses), mesh.matrixWorld); } } // build node hierachy parentObject.add(node); if (nodeDef.children) { var children = nodeDef.children; for (var i = 0, il = children.length; i < il; i++) { var child = children[i]; buildNodeHierachy(child, node, json, allNodes, skins); } } } return function loadScene(sceneIndex) { var json = this.json; var extensions = this.extensions; var sceneDef = this.json.scenes[sceneIndex]; return this.getMultiDependencies([ 'node', 'skin' ]).then(function (dependencies) { var scene = new THREE.Scene(); if (sceneDef.name !== undefined) scene.name = sceneDef.name; if (sceneDef.extras) scene.userData = sceneDef.extras; if (sceneDef.extensions) addUnknownExtensionsToUserData(extensions, scene, sceneDef); var nodeIds = sceneDef.nodes || []; for (var i = 0, il = nodeIds.length; i < il; i++) { buildNodeHierachy(nodeIds[i], scene, json, dependencies.nodes, dependencies.skins); } // Ambient lighting, if present, is always attached to the scene root. if (sceneDef.extensions && sceneDef.extensions[EXTENSIONS.KHR_LIGHTS] && sceneDef.extensions[EXTENSIONS.KHR_LIGHTS].light !== undefined) { var lights = extensions[EXTENSIONS.KHR_LIGHTS].lights; scene.add(lights[sceneDef.extensions[EXTENSIONS.KHR_LIGHTS].light]); } return scene; }); }; }(); return GLTFLoader; })();