;(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'], factory) : factory((global.THREE = {})) })(this, function (exports) { 'use strict' // Polyfills if (Number.EPSILON === undefined) { Number.EPSILON = Math.pow(2, -52) } if (Number.isInteger === undefined) { // Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger Number.isInteger = function (value) { return typeof value === 'number' && isFinite(value) && Math.floor(value) === value } } // if (Math.sign === undefined) { // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign Math.sign = function (x) { return x < 0 ? -1 : x > 0 ? 1 : +x } } if ('name' in Function.prototype === false) { // Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name Object.defineProperty(Function.prototype, 'name', { get: function () { return this.toString().match(/^\s*function\s*([^\(\s]*)/)[1] } }) } if (Object.assign === undefined) { // Missing in IE // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign ;(function () { Object.assign = function (target) { if (target === undefined || target === null) { throw new TypeError('Cannot convert undefined or null to object') } var output = Object(target) for (var index = 1; index < arguments.length; index++) { var source = arguments[index] if (source !== undefined && source !== null) { for (var nextKey in source) { if (Object.prototype.hasOwnProperty.call(source, nextKey)) { output[nextKey] = source[nextKey] } } } } return output } })() } /** * https://github.com/mrdoob/eventdispatcher.js/ */ function EventDispatcher() {} Object.assign(EventDispatcher.prototype, { addEventListener: function (type, listener) { if (this._listeners === undefined) this._listeners = {} var listeners = this._listeners if (listeners[type] === undefined) { listeners[type] = [] } if (listeners[type].indexOf(listener) === -1) { listeners[type].push(listener) } }, hasEventListener: function (type, listener) { if (this._listeners === undefined) return false var listeners = this._listeners return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1 }, removeEventListener: function (type, listener) { if (this._listeners === undefined) return var listeners = this._listeners var listenerArray = listeners[type] if (listenerArray !== undefined) { var index = listenerArray.indexOf(listener) if (index !== -1) { listenerArray.splice(index, 1) } } }, dispatchEvent: function (event) { if (this._listeners === undefined) return var listeners = this._listeners var listenerArray = listeners[event.type] if (listenerArray !== undefined) { event.target = this var array = listenerArray.slice(0) for (var i = 0, l = array.length; i < l; i++) { array[i].call(this, event) } } } }) var REVISION = '90' var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 } var CullFaceNone = 0 var CullFaceBack = 1 var CullFaceFront = 2 var CullFaceFrontBack = 3 var FrontFaceDirectionCW = 0 var FrontFaceDirectionCCW = 1 var BasicShadowMap = 0 var PCFShadowMap = 1 var PCFSoftShadowMap = 2 var FrontSide = 0 var BackSide = 1 var DoubleSide = 2 var FlatShading = 1 var SmoothShading = 2 var NoColors = 0 var FaceColors = 1 var VertexColors = 2 var NoBlending = 0 var NormalBlending = 1 var AdditiveBlending = 2 var SubtractiveBlending = 3 var MultiplyBlending = 4 var CustomBlending = 5 var AddEquation = 100 var SubtractEquation = 101 var ReverseSubtractEquation = 102 var MinEquation = 103 var MaxEquation = 104 var ZeroFactor = 200 var OneFactor = 201 var SrcColorFactor = 202 var OneMinusSrcColorFactor = 203 var SrcAlphaFactor = 204 var OneMinusSrcAlphaFactor = 205 var DstAlphaFactor = 206 var OneMinusDstAlphaFactor = 207 var DstColorFactor = 208 var OneMinusDstColorFactor = 209 var SrcAlphaSaturateFactor = 210 var NeverDepth = 0 var AlwaysDepth = 1 var LessDepth = 2 var LessEqualDepth = 3 var EqualDepth = 4 var GreaterEqualDepth = 5 var GreaterDepth = 6 var NotEqualDepth = 7 var MultiplyOperation = 0 var MixOperation = 1 var AddOperation = 2 var NoToneMapping = 0 var LinearToneMapping = 1 var ReinhardToneMapping = 2 var Uncharted2ToneMapping = 3 var CineonToneMapping = 4 var UVMapping = 300 var CubeReflectionMapping = 301 var CubeRefractionMapping = 302 var EquirectangularReflectionMapping = 303 var EquirectangularRefractionMapping = 304 var SphericalReflectionMapping = 305 var CubeUVReflectionMapping = 306 var CubeUVRefractionMapping = 307 var RepeatWrapping = 1000 var ClampToEdgeWrapping = 1001 var MirroredRepeatWrapping = 1002 var NearestFilter = 1003 var NearestMipMapNearestFilter = 1004 var NearestMipMapLinearFilter = 1005 var LinearFilter = 1006 var LinearMipMapNearestFilter = 1007 var LinearMipMapLinearFilter = 1008 var UnsignedByteType = 1009 var ByteType = 1010 var ShortType = 1011 var UnsignedShortType = 1012 var IntType = 1013 var UnsignedIntType = 1014 var FloatType = 1015 var HalfFloatType = 1016 var UnsignedShort4444Type = 1017 var UnsignedShort5551Type = 1018 var UnsignedShort565Type = 1019 var UnsignedInt248Type = 1020 var AlphaFormat = 1021 var RGBFormat = 1022 var RGBAFormat = 1023 var LuminanceFormat = 1024 var LuminanceAlphaFormat = 1025 var RGBEFormat = RGBAFormat var DepthFormat = 1026 var DepthStencilFormat = 1027 var RGB_S3TC_DXT1_Format = 33776 var RGBA_S3TC_DXT1_Format = 33777 var RGBA_S3TC_DXT3_Format = 33778 var RGBA_S3TC_DXT5_Format = 33779 var RGB_PVRTC_4BPPV1_Format = 35840 var RGB_PVRTC_2BPPV1_Format = 35841 var RGBA_PVRTC_4BPPV1_Format = 35842 var RGBA_PVRTC_2BPPV1_Format = 35843 var RGB_ETC1_Format = 36196 var RGBA_ASTC_4x4_Format = 37808 var RGBA_ASTC_5x4_Format = 37809 var RGBA_ASTC_5x5_Format = 37810 var RGBA_ASTC_6x5_Format = 37811 var RGBA_ASTC_6x6_Format = 37812 var RGBA_ASTC_8x5_Format = 37813 var RGBA_ASTC_8x6_Format = 37814 var RGBA_ASTC_8x8_Format = 37815 var RGBA_ASTC_10x5_Format = 37816 var RGBA_ASTC_10x6_Format = 37817 var RGBA_ASTC_10x8_Format = 37818 var RGBA_ASTC_10x10_Format = 37819 var RGBA_ASTC_12x10_Format = 37820 var RGBA_ASTC_12x12_Format = 37821 var LoopOnce = 2200 var LoopRepeat = 2201 var LoopPingPong = 2202 var InterpolateDiscrete = 2300 var InterpolateLinear = 2301 var InterpolateSmooth = 2302 var ZeroCurvatureEnding = 2400 var ZeroSlopeEnding = 2401 var WrapAroundEnding = 2402 var TrianglesDrawMode = 0 var TriangleStripDrawMode = 1 var TriangleFanDrawMode = 2 var LinearEncoding = 3000 var sRGBEncoding = 3001 var GammaEncoding = 3007 var RGBEEncoding = 3002 var LogLuvEncoding = 3003 var RGBM7Encoding = 3004 var RGBM16Encoding = 3005 var RGBDEncoding = 3006 var BasicDepthPacking = 3200 var RGBADepthPacking = 3201 /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ var _Math = { DEG2RAD: Math.PI / 180, RAD2DEG: 180 / Math.PI, generateUUID: (function () { // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 var lut = [] for (var i = 0; i < 256; i++) { lut[i] = (i < 16 ? '0' : '') + i.toString(16).toUpperCase() } return function generateUUID() { var d0 = (Math.random() * 0xffffffff) | 0 var d1 = (Math.random() * 0xffffffff) | 0 var d2 = (Math.random() * 0xffffffff) | 0 var d3 = (Math.random() * 0xffffffff) | 0 return ( lut[d0 & 0xff] + lut[(d0 >> 8) & 0xff] + lut[(d0 >> 16) & 0xff] + lut[(d0 >> 24) & 0xff] + '-' + lut[d1 & 0xff] + lut[(d1 >> 8) & 0xff] + '-' + lut[((d1 >> 16) & 0x0f) | 0x40] + lut[(d1 >> 24) & 0xff] + '-' + lut[(d2 & 0x3f) | 0x80] + lut[(d2 >> 8) & 0xff] + '-' + lut[(d2 >> 16) & 0xff] + lut[(d2 >> 24) & 0xff] + lut[d3 & 0xff] + lut[(d3 >> 8) & 0xff] + lut[(d3 >> 16) & 0xff] + lut[(d3 >> 24) & 0xff] ) } })(), clamp: function (value, min, max) { return Math.max(min, Math.min(max, value)) }, // compute euclidian modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation euclideanModulo: function (n, m) { return ((n % m) + m) % m }, // Linear mapping from range to range mapLinear: function (x, a1, a2, b1, b2) { return b1 + ((x - a1) * (b2 - b1)) / (a2 - a1) }, // https://en.wikipedia.org/wiki/Linear_interpolation lerp: function (x, y, t) { return (1 - t) * x + t * y }, // http://en.wikipedia.org/wiki/Smoothstep smoothstep: function (x, min, max) { if (x <= min) return 0 if (x >= max) return 1 x = (x - min) / (max - min) return x * x * (3 - 2 * x) }, smootherstep: function (x, min, max) { if (x <= min) return 0 if (x >= max) return 1 x = (x - min) / (max - min) return x * x * x * (x * (x * 6 - 15) + 10) }, // Random integer from interval randInt: function (low, high) { return low + Math.floor(Math.random() * (high - low + 1)) }, // Random float from interval randFloat: function (low, high) { return low + Math.random() * (high - low) }, // Random float from <-range/2, range/2> interval randFloatSpread: function (range) { return range * (0.5 - Math.random()) }, degToRad: function (degrees) { return degrees * _Math.DEG2RAD }, radToDeg: function (radians) { return radians * _Math.RAD2DEG }, isPowerOfTwo: function (value) { return (value & (value - 1)) === 0 && value !== 0 }, ceilPowerOfTwo: function (value) { return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2)) }, floorPowerOfTwo: function (value) { return Math.pow(2, Math.floor(Math.log(value) / Math.LN2)) } } /** * @author mrdoob / http://mrdoob.com/ * @author philogb / http://blog.thejit.org/ * @author egraether / http://egraether.com/ * @author zz85 / http://www.lab4games.net/zz85/blog */ function Vector2(x, y) { this.x = x || 0 this.y = y || 0 } Object.defineProperties(Vector2.prototype, { width: { get: function () { return this.x }, set: function (value) { this.x = value } }, height: { get: function () { return this.y }, set: function (value) { this.y = value } } }) Object.assign(Vector2.prototype, { isVector2: true, set: function (x, y) { this.x = x this.y = y return this }, setScalar: function (scalar) { this.x = scalar this.y = scalar return this }, setX: function (x) { this.x = x return this }, setY: function (y) { this.y = y return this }, setComponent: function (index, value) { switch (index) { case 0: this.x = value break case 1: this.y = value break default: throw new Error('index is out of range: ' + index) } return this }, getComponent: function (index) { switch (index) { case 0: return this.x case 1: return this.y default: throw new Error('index is out of range: ' + index) } }, clone: function () { return new this.constructor(this.x, this.y) }, copy: function (v) { this.x = v.x this.y = v.y return this }, add: function (v, w) { if (w !== undefined) { console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ) return this.addVectors(v, w) } this.x += v.x this.y += v.y return this }, addScalar: function (s) { this.x += s this.y += s return this }, addVectors: function (a, b) { this.x = a.x + b.x this.y = a.y + b.y return this }, addScaledVector: function (v, s) { this.x += v.x * s this.y += v.y * s return this }, sub: function (v, w) { if (w !== undefined) { console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ) return this.subVectors(v, w) } this.x -= v.x this.y -= v.y return this }, subScalar: function (s) { this.x -= s this.y -= s return this }, subVectors: function (a, b) { this.x = a.x - b.x this.y = a.y - b.y return this }, multiply: function (v) { this.x *= v.x this.y *= v.y return this }, multiplyScalar: function (scalar) { this.x *= scalar this.y *= scalar return this }, divide: function (v) { this.x /= v.x this.y /= v.y return this }, divideScalar: function (scalar) { return this.multiplyScalar(1 / scalar) }, applyMatrix3: function (m) { var x = this.x, y = this.y var e = m.elements this.x = e[0] * x + e[3] * y + e[6] this.y = e[1] * x + e[4] * y + e[7] return this }, min: function (v) { this.x = Math.min(this.x, v.x) this.y = Math.min(this.y, v.y) return this }, max: function (v) { this.x = Math.max(this.x, v.x) this.y = Math.max(this.y, v.y) return this }, clamp: function (min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)) this.y = Math.max(min.y, Math.min(max.y, this.y)) return this }, clampScalar: (function () { var min = new Vector2() var max = new Vector2() return function clampScalar(minVal, maxVal) { min.set(minVal, minVal) max.set(maxVal, maxVal) return this.clamp(min, max) } })(), clampLength: function (min, max) { var length = this.length() return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))) }, floor: function () { this.x = Math.floor(this.x) this.y = Math.floor(this.y) return this }, ceil: function () { this.x = Math.ceil(this.x) this.y = Math.ceil(this.y) return this }, round: function () { this.x = Math.round(this.x) this.y = Math.round(this.y) return this }, roundToZero: function () { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x) this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y) return this }, negate: function () { this.x = -this.x this.y = -this.y return this }, dot: function (v) { return this.x * v.x + this.y * v.y }, lengthSq: function () { return this.x * this.x + this.y * this.y }, length: function () { return Math.sqrt(this.x * this.x + this.y * this.y) }, manhattanLength: function () { return Math.abs(this.x) + Math.abs(this.y) }, normalize: function () { return this.divideScalar(this.length() || 1) }, angle: function () { // computes the angle in radians with respect to the positive x-axis var angle = Math.atan2(this.y, this.x) if (angle < 0) angle += 2 * Math.PI return angle }, distanceTo: function (v) { return Math.sqrt(this.distanceToSquared(v)) }, distanceToSquared: function (v) { var dx = this.x - v.x, dy = this.y - v.y return dx * dx + dy * dy }, manhattanDistanceTo: function (v) { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) }, setLength: function (length) { return this.normalize().multiplyScalar(length) }, lerp: function (v, alpha) { this.x += (v.x - this.x) * alpha this.y += (v.y - this.y) * alpha return this }, lerpVectors: function (v1, v2, alpha) { return this.subVectors(v2, v1).multiplyScalar(alpha).add(v1) }, equals: function (v) { return v.x === this.x && v.y === this.y }, fromArray: function (array, offset) { if (offset === undefined) offset = 0 this.x = array[offset] this.y = array[offset + 1] return this }, toArray: function (array, offset) { if (array === undefined) array = [] if (offset === undefined) offset = 0 array[offset] = this.x array[offset + 1] = this.y return array }, fromBufferAttribute: function (attribute, index, offset) { if (offset !== undefined) { console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().') } this.x = attribute.getX(index) this.y = attribute.getY(index) return this }, rotateAround: function (center, angle) { var c = Math.cos(angle), s = Math.sin(angle) var x = this.x - center.x var y = this.y - center.y this.x = x * c - y * s + center.x this.y = x * s + y * c + center.y return this } }) /** * @author mrdoob / http://mrdoob.com/ * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author jordi_ros / http://plattsoft.com * @author D1plo1d / http://github.com/D1plo1d * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author timknip / http://www.floorplanner.com/ * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */ function Matrix4() { this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] if (arguments.length > 0) { console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.') } } Object.assign(Matrix4.prototype, { isMatrix4: true, set: function (n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) { var te = this.elements te[0] = n11 te[4] = n12 te[8] = n13 te[12] = n14 te[1] = n21 te[5] = n22 te[9] = n23 te[13] = n24 te[2] = n31 te[6] = n32 te[10] = n33 te[14] = n34 te[3] = n41 te[7] = n42 te[11] = n43 te[15] = n44 return this }, identity: function () { this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) return this }, clone: function () { return new Matrix4().fromArray(this.elements) }, copy: function (m) { var te = this.elements var me = m.elements te[0] = me[0] te[1] = me[1] te[2] = me[2] te[3] = me[3] te[4] = me[4] te[5] = me[5] te[6] = me[6] te[7] = me[7] te[8] = me[8] te[9] = me[9] te[10] = me[10] te[11] = me[11] te[12] = me[12] te[13] = me[13] te[14] = me[14] te[15] = me[15] return this }, copyPosition: function (m) { var te = this.elements, me = m.elements te[12] = me[12] te[13] = me[13] te[14] = me[14] return this }, extractBasis: function (xAxis, yAxis, zAxis) { xAxis.setFromMatrixColumn(this, 0) yAxis.setFromMatrixColumn(this, 1) zAxis.setFromMatrixColumn(this, 2) return this }, makeBasis: function (xAxis, yAxis, zAxis) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ) return this }, extractRotation: (function () { var v1 = new Vector3() return function extractRotation(m) { var te = this.elements var me = m.elements var scaleX = 1 / v1.setFromMatrixColumn(m, 0).length() var scaleY = 1 / v1.setFromMatrixColumn(m, 1).length() var scaleZ = 1 / v1.setFromMatrixColumn(m, 2).length() te[0] = me[0] * scaleX te[1] = me[1] * scaleX te[2] = me[2] * scaleX te[4] = me[4] * scaleY te[5] = me[5] * scaleY te[6] = me[6] * scaleY te[8] = me[8] * scaleZ te[9] = me[9] * scaleZ te[10] = me[10] * scaleZ return this } })(), makeRotationFromEuler: function (euler) { if (!(euler && euler.isEuler)) { console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' ) } var te = this.elements var x = euler.x, y = euler.y, z = euler.z var a = Math.cos(x), b = Math.sin(x) var c = Math.cos(y), d = Math.sin(y) var e = Math.cos(z), f = Math.sin(z) if (euler.order === 'XYZ') { var ae = a * e, af = a * f, be = b * e, bf = b * f te[0] = c * e te[4] = -c * f te[8] = d te[1] = af + be * d te[5] = ae - bf * d te[9] = -b * c te[2] = bf - ae * d te[6] = be + af * d te[10] = a * c } else if (euler.order === 'YXZ') { var ce = c * e, cf = c * f, de = d * e, df = d * f te[0] = ce + df * b te[4] = de * b - cf te[8] = a * d te[1] = a * f te[5] = a * e te[9] = -b te[2] = cf * b - de te[6] = df + ce * b te[10] = a * c } else if (euler.order === 'ZXY') { var ce = c * e, cf = c * f, de = d * e, df = d * f te[0] = ce - df * b te[4] = -a * f te[8] = de + cf * b te[1] = cf + de * b te[5] = a * e te[9] = df - ce * b te[2] = -a * d te[6] = b te[10] = a * c } else if (euler.order === 'ZYX') { var ae = a * e, af = a * f, be = b * e, bf = b * f te[0] = c * e te[4] = be * d - af te[8] = ae * d + bf te[1] = c * f te[5] = bf * d + ae te[9] = af * d - be te[2] = -d te[6] = b * c te[10] = a * c } else if (euler.order === 'YZX') { var ac = a * c, ad = a * d, bc = b * c, bd = b * d te[0] = c * e te[4] = bd - ac * f te[8] = bc * f + ad te[1] = f te[5] = a * e te[9] = -b * e te[2] = -d * e te[6] = ad * f + bc te[10] = ac - bd * f } else if (euler.order === 'XZY') { var ac = a * c, ad = a * d, bc = b * c, bd = b * d te[0] = c * e te[4] = -f te[8] = d * e te[1] = ac * f + bd te[5] = a * e te[9] = ad * f - bc te[2] = bc * f - ad te[6] = b * e te[10] = bd * f + ac } // last column te[3] = 0 te[7] = 0 te[11] = 0 // bottom row te[12] = 0 te[13] = 0 te[14] = 0 te[15] = 1 return this }, makeRotationFromQuaternion: function (q) { var te = this.elements var x = q._x, y = q._y, z = q._z, w = q._w var x2 = x + x, y2 = y + y, z2 = z + z var xx = x * x2, xy = x * y2, xz = x * z2 var yy = y * y2, yz = y * z2, zz = z * z2 var wx = w * x2, wy = w * y2, wz = w * z2 te[0] = 1 - (yy + zz) te[4] = xy - wz te[8] = xz + wy te[1] = xy + wz te[5] = 1 - (xx + zz) te[9] = yz - wx te[2] = xz - wy te[6] = yz + wx te[10] = 1 - (xx + yy) // last column te[3] = 0 te[7] = 0 te[11] = 0 // bottom row te[12] = 0 te[13] = 0 te[14] = 0 te[15] = 1 return this }, lookAt: (function () { var x = new Vector3() var y = new Vector3() var z = new Vector3() return function lookAt(eye, target, up) { var te = this.elements z.subVectors(eye, target) if (z.lengthSq() === 0) { // eye and target are in the same position z.z = 1 } z.normalize() x.crossVectors(up, z) if (x.lengthSq() === 0) { // up and z are parallel if (Math.abs(up.z) === 1) { z.x += 0.0001 } else { z.z += 0.0001 } z.normalize() x.crossVectors(up, z) } x.normalize() y.crossVectors(z, x) te[0] = x.x te[4] = y.x te[8] = z.x te[1] = x.y te[5] = y.y te[9] = z.y te[2] = x.z te[6] = y.z te[10] = z.z return this } })(), multiply: function (m, n) { if (n !== undefined) { console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' ) return this.multiplyMatrices(m, n) } return this.multiplyMatrices(this, m) }, premultiply: function (m) { return this.multiplyMatrices(m, this) }, multiplyMatrices: function (a, b) { var ae = a.elements var be = b.elements var te = this.elements var a11 = ae[0], a12 = ae[4], a13 = ae[8], a14 = ae[12] var a21 = ae[1], a22 = ae[5], a23 = ae[9], a24 = ae[13] var a31 = ae[2], a32 = ae[6], a33 = ae[10], a34 = ae[14] var a41 = ae[3], a42 = ae[7], a43 = ae[11], a44 = ae[15] var b11 = be[0], b12 = be[4], b13 = be[8], b14 = be[12] var b21 = be[1], b22 = be[5], b23 = be[9], b24 = be[13] var b31 = be[2], b32 = be[6], b33 = be[10], b34 = be[14] var b41 = be[3], b42 = be[7], b43 = be[11], b44 = be[15] te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41 te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42 te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43 te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44 te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41 te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42 te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43 te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44 te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41 te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42 te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43 te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44 te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41 te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42 te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43 te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44 return this }, multiplyScalar: function (s) { var te = this.elements te[0] *= s te[4] *= s te[8] *= s te[12] *= s te[1] *= s te[5] *= s te[9] *= s te[13] *= s te[2] *= s te[6] *= s te[10] *= s te[14] *= s te[3] *= s te[7] *= s te[11] *= s te[15] *= s return this }, applyToBufferAttribute: (function () { var v1 = new Vector3() return function applyToBufferAttribute(attribute) { for (var i = 0, l = attribute.count; i < l; i++) { v1.x = attribute.getX(i) v1.y = attribute.getY(i) v1.z = attribute.getZ(i) v1.applyMatrix4(this) attribute.setXYZ(i, v1.x, v1.y, v1.z) } return attribute } })(), determinant: function () { var te = this.elements var n11 = te[0], n12 = te[4], n13 = te[8], n14 = te[12] var n21 = te[1], n22 = te[5], n23 = te[9], n24 = te[13] var n31 = te[2], n32 = te[6], n33 = te[10], n34 = te[14] var n41 = te[3], n42 = te[7], n43 = te[11], n44 = te[15] //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31) ) }, transpose: function () { var te = this.elements var tmp tmp = te[1] te[1] = te[4] te[4] = tmp tmp = te[2] te[2] = te[8] te[8] = tmp tmp = te[6] te[6] = te[9] te[9] = tmp tmp = te[3] te[3] = te[12] te[12] = tmp tmp = te[7] te[7] = te[13] te[13] = tmp tmp = te[11] te[11] = te[14] te[14] = tmp return this }, setPosition: function (v) { var te = this.elements te[12] = v.x te[13] = v.y te[14] = v.z return this }, getInverse: function (m, throwOnDegenerate) { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm var te = this.elements, me = m.elements, n11 = me[0], n21 = me[1], n31 = me[2], n41 = me[3], n12 = me[4], n22 = me[5], n32 = me[6], n42 = me[7], n13 = me[8], n23 = me[9], n33 = me[10], n43 = me[11], n14 = me[12], n24 = me[13], n34 = me[14], n44 = me[15], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14 if (det === 0) { var msg = "THREE.Matrix4: .getInverse() can't invert matrix, determinant is 0" if (throwOnDegenerate === true) { throw new Error(msg) } else { console.warn(msg) } return this.identity() } var detInv = 1 / det te[0] = t11 * detInv te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv te[4] = t12 * detInv te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv te[8] = t13 * detInv te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv te[12] = t14 * detInv te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv return this }, scale: function (v) { var te = this.elements var x = v.x, y = v.y, z = v.z te[0] *= x te[4] *= y te[8] *= z te[1] *= x te[5] *= y te[9] *= z te[2] *= x te[6] *= y te[10] *= z te[3] *= x te[7] *= y te[11] *= z return this }, getMaxScaleOnAxis: function () { var te = this.elements var scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2] var scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6] var scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10] return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq)) }, makeTranslation: function (x, y, z) { this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1) return this }, makeRotationX: function (theta) { var c = Math.cos(theta), s = Math.sin(theta) this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1) return this }, makeRotationY: function (theta) { var c = Math.cos(theta), s = Math.sin(theta) this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1) return this }, makeRotationZ: function (theta) { var c = Math.cos(theta), s = Math.sin(theta) this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) return this }, makeRotationAxis: function (axis, angle) { // Based on http://www.gamedev.net/reference/articles/article1199.asp var c = Math.cos(angle) var s = Math.sin(angle) var t = 1 - c var x = axis.x, y = axis.y, z = axis.z var tx = t * x, ty = t * y this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ) return this }, makeScale: function (x, y, z) { this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1) return this }, makeShear: function (x, y, z) { this.set(1, y, z, 0, x, 1, z, 0, x, y, 1, 0, 0, 0, 0, 1) return this }, compose: function (position, quaternion, scale) { this.makeRotationFromQuaternion(quaternion) this.scale(scale) this.setPosition(position) return this }, decompose: (function () { var vector = new Vector3() var matrix = new Matrix4() return function decompose(position, quaternion, scale) { var te = this.elements var sx = vector.set(te[0], te[1], te[2]).length() var sy = vector.set(te[4], te[5], te[6]).length() var sz = vector.set(te[8], te[9], te[10]).length() // if determine is negative, we need to invert one scale var det = this.determinant() if (det < 0) sx = -sx position.x = te[12] position.y = te[13] position.z = te[14] // scale the rotation part matrix.copy(this) var invSX = 1 / sx var invSY = 1 / sy var invSZ = 1 / sz matrix.elements[0] *= invSX matrix.elements[1] *= invSX matrix.elements[2] *= invSX matrix.elements[4] *= invSY matrix.elements[5] *= invSY matrix.elements[6] *= invSY matrix.elements[8] *= invSZ matrix.elements[9] *= invSZ matrix.elements[10] *= invSZ quaternion.setFromRotationMatrix(matrix) scale.x = sx scale.y = sy scale.z = sz return this } })(), makePerspective: function (left, right, top, bottom, near, far) { if (far === undefined) { console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' ) } var te = this.elements var x = (2 * near) / (right - left) var y = (2 * near) / (top - bottom) var a = (right + left) / (right - left) var b = (top + bottom) / (top - bottom) var c = -(far + near) / (far - near) var d = (-2 * far * near) / (far - near) te[0] = x te[4] = 0 te[8] = a te[12] = 0 te[1] = 0 te[5] = y te[9] = b te[13] = 0 te[2] = 0 te[6] = 0 te[10] = c te[14] = d te[3] = 0 te[7] = 0 te[11] = -1 te[15] = 0 return this }, makeOrthographic: function (left, right, top, bottom, near, far) { var te = this.elements var w = 1.0 / (right - left) var h = 1.0 / (top - bottom) var p = 1.0 / (far - near) var x = (right + left) * w var y = (top + bottom) * h var z = (far + near) * p te[0] = 2 * w te[4] = 0 te[8] = 0 te[12] = -x te[1] = 0 te[5] = 2 * h te[9] = 0 te[13] = -y te[2] = 0 te[6] = 0 te[10] = -2 * p te[14] = -z te[3] = 0 te[7] = 0 te[11] = 0 te[15] = 1 return this }, equals: function (matrix) { var te = this.elements var me = matrix.elements for (var i = 0; i < 16; i++) { if (te[i] !== me[i]) return false } return true }, fromArray: function (array, offset) { if (offset === undefined) offset = 0 for (var i = 0; i < 16; i++) { this.elements[i] = array[i + offset] } return this }, toArray: function (array, offset) { if (array === undefined) array = [] if (offset === undefined) offset = 0 var te = this.elements array[offset] = te[0] array[offset + 1] = te[1] array[offset + 2] = te[2] array[offset + 3] = te[3] array[offset + 4] = te[4] array[offset + 5] = te[5] array[offset + 6] = te[6] array[offset + 7] = te[7] array[offset + 8] = te[8] array[offset + 9] = te[9] array[offset + 10] = te[10] array[offset + 11] = te[11] array[offset + 12] = te[12] array[offset + 13] = te[13] array[offset + 14] = te[14] array[offset + 15] = te[15] return array } }) /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */ function Quaternion(x, y, z, w) { this._x = x || 0 this._y = y || 0 this._z = z || 0 this._w = w !== undefined ? w : 1 } Object.assign(Quaternion, { slerp: function (qa, qb, qm, t) { return qm.copy(qa).slerp(qb, t) }, slerpFlat: function (dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) { // fuzz-free, array-based Quaternion SLERP operation var x0 = src0[srcOffset0 + 0], y0 = src0[srcOffset0 + 1], z0 = src0[srcOffset0 + 2], w0 = src0[srcOffset0 + 3], x1 = src1[srcOffset1 + 0], y1 = src1[srcOffset1 + 1], z1 = src1[srcOffset1 + 2], w1 = src1[srcOffset1 + 3] if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) { var s = 1 - t, cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = cos >= 0 ? 1 : -1, sqrSin = 1 - cos * cos // Skip the Slerp for tiny steps to avoid numeric problems: if (sqrSin > Number.EPSILON) { var sin = Math.sqrt(sqrSin), len = Math.atan2(sin, cos * dir) s = Math.sin(s * len) / sin t = Math.sin(t * len) / sin } var tDir = t * dir x0 = x0 * s + x1 * tDir y0 = y0 * s + y1 * tDir z0 = z0 * s + z1 * tDir w0 = w0 * s + w1 * tDir // Normalize in case we just did a lerp: if (s === 1 - t) { var f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0) x0 *= f y0 *= f z0 *= f w0 *= f } } dst[dstOffset] = x0 dst[dstOffset + 1] = y0 dst[dstOffset + 2] = z0 dst[dstOffset + 3] = w0 } }) Object.defineProperties(Quaternion.prototype, { x: { get: function () { return this._x }, set: function (value) { this._x = value this.onChangeCallback() } }, y: { get: function () { return this._y }, set: function (value) { this._y = value this.onChangeCallback() } }, z: { get: function () { return this._z }, set: function (value) { this._z = value this.onChangeCallback() } }, w: { get: function () { return this._w }, set: function (value) { this._w = value this.onChangeCallback() } } }) Object.assign(Quaternion.prototype, { set: function (x, y, z, w) { this._x = x this._y = y this._z = z this._w = w this.onChangeCallback() return this }, clone: function () { return new this.constructor(this._x, this._y, this._z, this._w) }, copy: function (quaternion) { this._x = quaternion.x this._y = quaternion.y this._z = quaternion.z this._w = quaternion.w this.onChangeCallback() return this }, setFromEuler: function (euler, update) { if (!(euler && euler.isEuler)) { throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' ) } var x = euler._x, y = euler._y, z = euler._z, order = euler.order // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m var cos = Math.cos var sin = Math.sin var c1 = cos(x / 2) var c2 = cos(y / 2) var c3 = cos(z / 2) var s1 = sin(x / 2) var s2 = sin(y / 2) var s3 = sin(z / 2) if (order === 'XYZ') { this._x = s1 * c2 * c3 + c1 * s2 * s3 this._y = c1 * s2 * c3 - s1 * c2 * s3 this._z = c1 * c2 * s3 + s1 * s2 * c3 this._w = c1 * c2 * c3 - s1 * s2 * s3 } else if (order === 'YXZ') { this._x = s1 * c2 * c3 + c1 * s2 * s3 this._y = c1 * s2 * c3 - s1 * c2 * s3 this._z = c1 * c2 * s3 - s1 * s2 * c3 this._w = c1 * c2 * c3 + s1 * s2 * s3 } else if (order === 'ZXY') { this._x = s1 * c2 * c3 - c1 * s2 * s3 this._y = c1 * s2 * c3 + s1 * c2 * s3 this._z = c1 * c2 * s3 + s1 * s2 * c3 this._w = c1 * c2 * c3 - s1 * s2 * s3 } else if (order === 'ZYX') { this._x = s1 * c2 * c3 - c1 * s2 * s3 this._y = c1 * s2 * c3 + s1 * c2 * s3 this._z = c1 * c2 * s3 - s1 * s2 * c3 this._w = c1 * c2 * c3 + s1 * s2 * s3 } else if (order === 'YZX') { this._x = s1 * c2 * c3 + c1 * s2 * s3 this._y = c1 * s2 * c3 + s1 * c2 * s3 this._z = c1 * c2 * s3 - s1 * s2 * c3 this._w = c1 * c2 * c3 - s1 * s2 * s3 } else if (order === 'XZY') { this._x = s1 * c2 * c3 - c1 * s2 * s3 this._y = c1 * s2 * c3 - s1 * c2 * s3 this._z = c1 * c2 * s3 + s1 * s2 * c3 this._w = c1 * c2 * c3 + s1 * s2 * s3 } if (update !== false) this.onChangeCallback() return this }, setFromAxisAngle: function (axis, angle) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized var halfAngle = angle / 2, s = Math.sin(halfAngle) this._x = axis.x * s this._y = axis.y * s this._z = axis.z * s this._w = Math.cos(halfAngle) this.onChangeCallback() return this }, setFromRotationMatrix: function (m) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10], trace = m11 + m22 + m33, s if (trace > 0) { s = 0.5 / Math.sqrt(trace + 1.0) this._w = 0.25 / s this._x = (m32 - m23) * s this._y = (m13 - m31) * s this._z = (m21 - m12) * s } else if (m11 > m22 && m11 > m33) { s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33) this._w = (m32 - m23) / s this._x = 0.25 * s this._y = (m12 + m21) / s this._z = (m13 + m31) / s } else if (m22 > m33) { s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33) this._w = (m13 - m31) / s this._x = (m12 + m21) / s this._y = 0.25 * s this._z = (m23 + m32) / s } else { s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22) this._w = (m21 - m12) / s this._x = (m13 + m31) / s this._y = (m23 + m32) / s this._z = 0.25 * s } this.onChangeCallback() return this }, setFromUnitVectors: (function () { // assumes direction vectors vFrom and vTo are normalized var v1 = new Vector3() var r var EPS = 0.000001 return function setFromUnitVectors(vFrom, vTo) { if (v1 === undefined) v1 = new Vector3() r = vFrom.dot(vTo) + 1 if (r < EPS) { r = 0 if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) { v1.set(-vFrom.y, vFrom.x, 0) } else { v1.set(0, -vFrom.z, vFrom.y) } } else { v1.crossVectors(vFrom, vTo) } this._x = v1.x this._y = v1.y this._z = v1.z this._w = r return this.normalize() } })(), inverse: function () { // quaternion is assumed to have unit length return this.conjugate() }, conjugate: function () { this._x *= -1 this._y *= -1 this._z *= -1 this.onChangeCallback() return this }, dot: function (v) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w }, lengthSq: function () { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w }, length: function () { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ) }, normalize: function () { var l = this.length() if (l === 0) { this._x = 0 this._y = 0 this._z = 0 this._w = 1 } else { l = 1 / l this._x = this._x * l this._y = this._y * l this._z = this._z * l this._w = this._w * l } this.onChangeCallback() return this }, multiply: function (q, p) { if (p !== undefined) { console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' ) return this.multiplyQuaternions(q, p) } return this.multiplyQuaternions(this, q) }, premultiply: function (q) { return this.multiplyQuaternions(q, this) }, multiplyQuaternions: function (a, b) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz this.onChangeCallback() return this }, slerp: function (qb, t) { if (t === 0) return this if (t === 1) return this.copy(qb) var x = this._x, y = this._y, z = this._z, w = this._w // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z if (cosHalfTheta < 0) { this._w = -qb._w this._x = -qb._x this._y = -qb._y this._z = -qb._z cosHalfTheta = -cosHalfTheta } else { this.copy(qb) } if (cosHalfTheta >= 1.0) { this._w = w this._x = x this._y = y this._z = z return this } var sinHalfTheta = Math.sqrt(1.0 - cosHalfTheta * cosHalfTheta) if (Math.abs(sinHalfTheta) < 0.001) { this._w = 0.5 * (w + this._w) this._x = 0.5 * (x + this._x) this._y = 0.5 * (y + this._y) this._z = 0.5 * (z + this._z) return this } var halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta) var ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta, ratioB = Math.sin(t * halfTheta) / sinHalfTheta this._w = w * ratioA + this._w * ratioB this._x = x * ratioA + this._x * ratioB this._y = y * ratioA + this._y * ratioB this._z = z * ratioA + this._z * ratioB this.onChangeCallback() return this }, equals: function (quaternion) { return ( quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w ) }, fromArray: function (array, offset) { if (offset === undefined) offset = 0 this._x = array[offset] this._y = array[offset + 1] this._z = array[offset + 2] this._w = array[offset + 3] this.onChangeCallback() return this }, toArray: function (array, offset) { if (array === undefined) array = [] if (offset === undefined) offset = 0 array[offset] = this._x array[offset + 1] = this._y array[offset + 2] = this._z array[offset + 3] = this._w return array }, onChange: function (callback) { this.onChangeCallback = callback return this }, onChangeCallback: function () {} }) /** * @author mrdoob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ function Vector3(x, y, z) { this.x = x || 0 this.y = y || 0 this.z = z || 0 } Object.assign(Vector3.prototype, { isVector3: true, set: function (x, y, z) { this.x = x this.y = y this.z = z return this }, setScalar: function (scalar) { this.x = scalar this.y = scalar this.z = scalar return this }, setX: function (x) { this.x = x return this }, setY: function (y) { this.y = y return this }, setZ: function (z) { this.z = z return this }, setComponent: function (index, value) { switch (index) { case 0: this.x = value break case 1: this.y = value break case 2: this.z = value break default: throw new Error('index is out of range: ' + index) } return this }, getComponent: function (index) { switch (index) { case 0: return this.x case 1: return this.y case 2: return this.z default: throw new Error('index is out of range: ' + index) } }, clone: function () { return new this.constructor(this.x, this.y, this.z) }, copy: function (v) { this.x = v.x this.y = v.y this.z = v.z return this }, add: function (v, w) { if (w !== undefined) { console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ) return this.addVectors(v, w) } this.x += v.x this.y += v.y this.z += v.z return this }, addScalar: function (s) { this.x += s this.y += s this.z += s return this }, addVectors: function (a, b) { this.x = a.x + b.x this.y = a.y + b.y this.z = a.z + b.z return this }, addScaledVector: function (v, s) { this.x += v.x * s this.y += v.y * s this.z += v.z * s return this }, sub: function (v, w) { if (w !== undefined) { console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ) return this.subVectors(v, w) } this.x -= v.x this.y -= v.y this.z -= v.z return this }, subScalar: function (s) { this.x -= s this.y -= s this.z -= s return this }, subVectors: function (a, b) { this.x = a.x - b.x this.y = a.y - b.y this.z = a.z - b.z return this }, multiply: function (v, w) { if (w !== undefined) { console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' ) return this.multiplyVectors(v, w) } this.x *= v.x this.y *= v.y this.z *= v.z return this }, multiplyScalar: function (scalar) { this.x *= scalar this.y *= scalar this.z *= scalar return this }, multiplyVectors: function (a, b) { this.x = a.x * b.x this.y = a.y * b.y this.z = a.z * b.z return this }, applyEuler: (function () { var quaternion = new Quaternion() return function applyEuler(euler) { if (!(euler && euler.isEuler)) { console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' ) } return this.applyQuaternion(quaternion.setFromEuler(euler)) } })(), applyAxisAngle: (function () { var quaternion = new Quaternion() return function applyAxisAngle(axis, angle) { return this.applyQuaternion(quaternion.setFromAxisAngle(axis, angle)) } })(), applyMatrix3: function (m) { var x = this.x, y = this.y, z = this.z var e = m.elements this.x = e[0] * x + e[3] * y + e[6] * z this.y = e[1] * x + e[4] * y + e[7] * z this.z = e[2] * x + e[5] * y + e[8] * z return this }, applyMatrix4: function (m) { var x = this.x, y = this.y, z = this.z var e = m.elements var w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]) this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w return this }, applyQuaternion: function (q) { var x = this.x, y = this.y, z = this.z var qx = q.x, qy = q.y, qz = q.z, qw = q.w // calculate quat * vector var ix = qw * x + qy * z - qz * y var iy = qw * y + qz * x - qx * z var iz = qw * z + qx * y - qy * x var iw = -qx * x - qy * y - qz * z // calculate result * inverse quat this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx return this }, project: (function () { var matrix = new Matrix4() return function project(camera) { matrix.multiplyMatrices(camera.projectionMatrix, matrix.getInverse(camera.matrixWorld)) return this.applyMatrix4(matrix) } })(), unproject: (function () { var matrix = new Matrix4() return function unproject(camera) { matrix.multiplyMatrices(camera.matrixWorld, matrix.getInverse(camera.projectionMatrix)) return this.applyMatrix4(matrix) } })(), transformDirection: function (m) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction var x = this.x, y = this.y, z = this.z var e = m.elements this.x = e[0] * x + e[4] * y + e[8] * z this.y = e[1] * x + e[5] * y + e[9] * z this.z = e[2] * x + e[6] * y + e[10] * z return this.normalize() }, divide: function (v) { this.x /= v.x this.y /= v.y this.z /= v.z return this }, divideScalar: function (scalar) { return this.multiplyScalar(1 / scalar) }, min: function (v) { this.x = Math.min(this.x, v.x) this.y = Math.min(this.y, v.y) this.z = Math.min(this.z, v.z) return this }, max: function (v) { this.x = Math.max(this.x, v.x) this.y = Math.max(this.y, v.y) this.z = Math.max(this.z, v.z) return this }, clamp: function (min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)) this.y = Math.max(min.y, Math.min(max.y, this.y)) this.z = Math.max(min.z, Math.min(max.z, this.z)) return this }, clampScalar: (function () { var min = new Vector3() var max = new Vector3() return function clampScalar(minVal, maxVal) { min.set(minVal, minVal, minVal) max.set(maxVal, maxVal, maxVal) return this.clamp(min, max) } })(), clampLength: function (min, max) { var length = this.length() return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))) }, floor: function () { this.x = Math.floor(this.x) this.y = Math.floor(this.y) this.z = Math.floor(this.z) return this }, ceil: function () { this.x = Math.ceil(this.x) this.y = Math.ceil(this.y) this.z = Math.ceil(this.z) return this }, round: function () { this.x = Math.round(this.x) this.y = Math.round(this.y) this.z = Math.round(this.z) return this }, roundToZero: function () { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x) this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y) this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z) return this }, negate: function () { this.x = -this.x this.y = -this.y this.z = -this.z return this }, dot: function (v) { return this.x * v.x + this.y * v.y + this.z * v.z }, // TODO lengthSquared? lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z }, length: function () { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z) }, manhattanLength: function () { return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) }, normalize: function () { return this.divideScalar(this.length() || 1) }, setLength: function (length) { return this.normalize().multiplyScalar(length) }, lerp: function (v, alpha) { this.x += (v.x - this.x) * alpha this.y += (v.y - this.y) * alpha this.z += (v.z - this.z) * alpha return this }, lerpVectors: function (v1, v2, alpha) { return this.subVectors(v2, v1).multiplyScalar(alpha).add(v1) }, cross: function (v, w) { if (w !== undefined) { console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' ) return this.crossVectors(v, w) } return this.crossVectors(this, v) }, crossVectors: function (a, b) { var ax = a.x, ay = a.y, az = a.z var bx = b.x, by = b.y, bz = b.z this.x = ay * bz - az * by this.y = az * bx - ax * bz this.z = ax * by - ay * bx return this }, projectOnVector: function (vector) { var scalar = vector.dot(this) / vector.lengthSq() return this.copy(vector).multiplyScalar(scalar) }, projectOnPlane: (function () { var v1 = new Vector3() return function projectOnPlane(planeNormal) { v1.copy(this).projectOnVector(planeNormal) return this.sub(v1) } })(), reflect: (function () { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length var v1 = new Vector3() return function reflect(normal) { return this.sub(v1.copy(normal).multiplyScalar(2 * this.dot(normal))) } })(), angleTo: function (v) { var theta = this.dot(v) / Math.sqrt(this.lengthSq() * v.lengthSq()) // clamp, to handle numerical problems return Math.acos(_Math.clamp(theta, -1, 1)) }, distanceTo: function (v) { return Math.sqrt(this.distanceToSquared(v)) }, distanceToSquared: function (v) { var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z return dx * dx + dy * dy + dz * dz }, manhattanDistanceTo: function (v) { return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z) }, setFromSpherical: function (s) { var sinPhiRadius = Math.sin(s.phi) * s.radius this.x = sinPhiRadius * Math.sin(s.theta) this.y = Math.cos(s.phi) * s.radius this.z = sinPhiRadius * Math.cos(s.theta) return this }, setFromCylindrical: function (c) { this.x = c.radius * Math.sin(c.theta) this.y = c.y this.z = c.radius * Math.cos(c.theta) return this }, setFromMatrixPosition: function (m) { var e = m.elements this.x = e[12] this.y = e[13] this.z = e[14] return this }, setFromMatrixScale: function (m) { var sx = this.setFromMatrixColumn(m, 0).length() var sy = this.setFromMatrixColumn(m, 1).length() var sz = this.setFromMatrixColumn(m, 2).length() this.x = sx this.y = sy this.z = sz return this }, setFromMatrixColumn: function (m, index) { return this.fromArray(m.elements, index * 4) }, equals: function (v) { return v.x === this.x && v.y === this.y && v.z === this.z }, fromArray: function (array, offset) { if (offset === undefined) offset = 0 this.x = array[offset] this.y = array[offset + 1] this.z = array[offset + 2] return this }, toArray: function (array, offset) { if (array === undefined) array = [] if (offset === undefined) offset = 0 array[offset] = this.x array[offset + 1] = this.y array[offset + 2] = this.z return array }, fromBufferAttribute: function (attribute, index, offset) { if (offset !== undefined) { console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().') } this.x = attribute.getX(index) this.y = attribute.getY(index) this.z = attribute.getZ(index) return this } }) /** * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io * @author tschw */ function Matrix3() { this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1] if (arguments.length > 0) { console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.') } } Object.assign(Matrix3.prototype, { isMatrix3: true, set: function (n11, n12, n13, n21, n22, n23, n31, n32, n33) { var te = this.elements te[0] = n11 te[1] = n21 te[2] = n31 te[3] = n12 te[4] = n22 te[5] = n32 te[6] = n13 te[7] = n23 te[8] = n33 return this }, identity: function () { this.set(1, 0, 0, 0, 1, 0, 0, 0, 1) return this }, clone: function () { return new this.constructor().fromArray(this.elements) }, copy: function (m) { var te = this.elements var me = m.elements te[0] = me[0] te[1] = me[1] te[2] = me[2] te[3] = me[3] te[4] = me[4] te[5] = me[5] te[6] = me[6] te[7] = me[7] te[8] = me[8] return this }, setFromMatrix4: function (m) { var me = m.elements this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]) return this }, applyToBufferAttribute: (function () { var v1 = new Vector3() return function applyToBufferAttribute(attribute) { for (var i = 0, l = attribute.count; i < l; i++) { v1.x = attribute.getX(i) v1.y = attribute.getY(i) v1.z = attribute.getZ(i) v1.applyMatrix3(this) attribute.setXYZ(i, v1.x, v1.y, v1.z) } return attribute } })(), multiply: function (m) { return this.multiplyMatrices(this, m) }, premultiply: function (m) { return this.multiplyMatrices(m, this) }, multiplyMatrices: function (a, b) { var ae = a.elements var be = b.elements var te = this.elements var a11 = ae[0], a12 = ae[3], a13 = ae[6] var a21 = ae[1], a22 = ae[4], a23 = ae[7] var a31 = ae[2], a32 = ae[5], a33 = ae[8] var b11 = be[0], b12 = be[3], b13 = be[6] var b21 = be[1], b22 = be[4], b23 = be[7] var b31 = be[2], b32 = be[5], b33 = be[8] te[0] = a11 * b11 + a12 * b21 + a13 * b31 te[3] = a11 * b12 + a12 * b22 + a13 * b32 te[6] = a11 * b13 + a12 * b23 + a13 * b33 te[1] = a21 * b11 + a22 * b21 + a23 * b31 te[4] = a21 * b12 + a22 * b22 + a23 * b32 te[7] = a21 * b13 + a22 * b23 + a23 * b33 te[2] = a31 * b11 + a32 * b21 + a33 * b31 te[5] = a31 * b12 + a32 * b22 + a33 * b32 te[8] = a31 * b13 + a32 * b23 + a33 * b33 return this }, multiplyScalar: function (s) { var te = this.elements te[0] *= s te[3] *= s te[6] *= s te[1] *= s te[4] *= s te[7] *= s te[2] *= s te[5] *= s te[8] *= s return this }, determinant: function () { var te = this.elements var a = te[0], b = te[1], c = te[2], d = te[3], e = te[4], f = te[5], g = te[6], h = te[7], i = te[8] return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g }, getInverse: function (matrix, throwOnDegenerate) { if (matrix && matrix.isMatrix4) { console.error('THREE.Matrix3: .getInverse() no longer takes a Matrix4 argument.') } var me = matrix.elements, te = this.elements, n11 = me[0], n21 = me[1], n31 = me[2], n12 = me[3], n22 = me[4], n32 = me[5], n13 = me[6], n23 = me[7], n33 = me[8], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13 if (det === 0) { var msg = "THREE.Matrix3: .getInverse() can't invert matrix, determinant is 0" if (throwOnDegenerate === true) { throw new Error(msg) } else { console.warn(msg) } return this.identity() } var detInv = 1 / det te[0] = t11 * detInv te[1] = (n31 * n23 - n33 * n21) * detInv te[2] = (n32 * n21 - n31 * n22) * detInv te[3] = t12 * detInv te[4] = (n33 * n11 - n31 * n13) * detInv te[5] = (n31 * n12 - n32 * n11) * detInv te[6] = t13 * detInv te[7] = (n21 * n13 - n23 * n11) * detInv te[8] = (n22 * n11 - n21 * n12) * detInv return this }, transpose: function () { var tmp, m = this.elements tmp = m[1] m[1] = m[3] m[3] = tmp tmp = m[2] m[2] = m[6] m[6] = tmp tmp = m[5] m[5] = m[7] m[7] = tmp return this }, getNormalMatrix: function (matrix4) { return this.setFromMatrix4(matrix4).getInverse(this).transpose() }, transposeIntoArray: function (r) { var m = this.elements r[0] = m[0] r[1] = m[3] r[2] = m[6] r[3] = m[1] r[4] = m[4] r[5] = m[7] r[6] = m[2] r[7] = m[5] r[8] = m[8] return this }, setUvTransform: function (tx, ty, sx, sy, rotation, cx, cy) { var c = Math.cos(rotation) var s = Math.sin(rotation) this.set( sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1 ) }, scale: function (sx, sy) { var te = this.elements te[0] *= sx te[3] *= sx te[6] *= sx te[1] *= sy te[4] *= sy te[7] *= sy return this }, rotate: function (theta) { var c = Math.cos(theta) var s = Math.sin(theta) var te = this.elements var a11 = te[0], a12 = te[3], a13 = te[6] var a21 = te[1], a22 = te[4], a23 = te[7] te[0] = c * a11 + s * a21 te[3] = c * a12 + s * a22 te[6] = c * a13 + s * a23 te[1] = -s * a11 + c * a21 te[4] = -s * a12 + c * a22 te[7] = -s * a13 + c * a23 return this }, translate: function (tx, ty) { var te = this.elements te[0] += tx * te[2] te[3] += tx * te[5] te[6] += tx * te[8] te[1] += ty * te[2] te[4] += ty * te[5] te[7] += ty * te[8] return this }, equals: function (matrix) { var te = this.elements var me = matrix.elements for (var i = 0; i < 9; i++) { if (te[i] !== me[i]) return false } return true }, fromArray: function (array, offset) { if (offset === undefined) offset = 0 for (var i = 0; i < 9; i++) { this.elements[i] = array[i + offset] } return this }, toArray: function (array, offset) { if (array === undefined) array = [] if (offset === undefined) offset = 0 var te = this.elements array[offset] = te[0] array[offset + 1] = te[1] array[offset + 2] = te[2] array[offset + 3] = te[3] array[offset + 4] = te[4] array[offset + 5] = te[5] array[offset + 6] = te[6] array[offset + 7] = te[7] array[offset + 8] = te[8] return array } }) /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ */ var textureId = 0 function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { Object.defineProperty(this, 'id', { value: textureId++ }) this.uuid = _Math.generateUUID() this.name = '' this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE this.mipmaps = [] this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping this.magFilter = magFilter !== undefined ? magFilter : LinearFilter this.minFilter = minFilter !== undefined ? minFilter : LinearMipMapLinearFilter this.anisotropy = anisotropy !== undefined ? anisotropy : 1 this.format = format !== undefined ? format : RGBAFormat this.type = type !== undefined ? type : UnsignedByteType this.offset = new Vector2(0, 0) this.repeat = new Vector2(1, 1) this.center = new Vector2(0, 0) this.rotation = 0 this.matrixAutoUpdate = true this.matrix = new Matrix3() this.generateMipmaps = true this.premultiplyAlpha = false this.flipY = true this.unpackAlignment = 4 // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) // Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap. // // Also changing the encoding after already used by a Material will not automatically make the Material // update. You need to explicitly call Material.needsUpdate to trigger it to recompile. this.encoding = encoding !== undefined ? encoding : LinearEncoding this.version = 0 this.onUpdate = null } Texture.DEFAULT_IMAGE = undefined Texture.DEFAULT_MAPPING = UVMapping Texture.prototype = Object.assign(Object.create(EventDispatcher.prototype), { constructor: Texture, isTexture: true, clone: function () { return new this.constructor().copy(this) }, copy: function (source) { this.name = source.name this.image = source.image this.mipmaps = source.mipmaps.slice(0) this.mapping = source.mapping this.wrapS = source.wrapS this.wrapT = source.wrapT this.magFilter = source.magFilter this.minFilter = source.minFilter this.anisotropy = source.anisotropy this.format = source.format this.type = source.type this.offset.copy(source.offset) this.repeat.copy(source.repeat) this.center.copy(source.center) this.rotation = source.rotation this.matrixAutoUpdate = source.matrixAutoUpdate this.matrix.copy(source.matrix) this.generateMipmaps = source.generateMipmaps this.premultiplyAlpha = source.premultiplyAlpha this.flipY = source.flipY this.unpackAlignment = source.unpackAlignment this.encoding = source.encoding return this }, toJSON: function (meta) { var isRootObject = meta === undefined || typeof meta === 'string' if (!isRootObject && meta.textures[this.uuid] !== undefined) { return meta.textures[this.uuid] } function getDataURL(image) { var canvas if (image instanceof HTMLCanvasElement) { canvas = image } else { canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas') canvas.width = image.width canvas.height = image.height var context = canvas.getContext('2d') if (image instanceof ImageData) { context.putImageData(image, 0, 0) } else { context.drawImage(image, 0, 0, image.width, image.height) } } if (canvas.width > 2048 || canvas.height > 2048) { return canvas.toDataURL('image/jpeg', 0.6) } else { return canvas.toDataURL('image/png') } } var output = { metadata: { version: 4.5, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, mapping: this.mapping, repeat: [this.repeat.x, this.repeat.y], offset: [this.offset.x, this.offset.y], center: [this.center.x, this.center.y], rotation: this.rotation, wrap: [this.wrapS, this.wrapT], minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY } if (this.image !== undefined) { // TODO: Move to THREE.Image var image = this.image if (image.uuid === undefined) { image.uuid = _Math.generateUUID() // UGH } if (!isRootObject && meta.images[image.uuid] === undefined) { meta.images[image.uuid] = { uuid: image.uuid, url: getDataURL(image) } } output.image = image.uuid } if (!isRootObject) { meta.textures[this.uuid] = output } return output }, dispose: function () { this.dispatchEvent({ type: 'dispose' }) }, transformUv: function (uv) { if (this.mapping !== UVMapping) return uv.applyMatrix3(this.matrix) if (uv.x < 0 || uv.x > 1) { switch (this.wrapS) { case RepeatWrapping: uv.x = uv.x - Math.floor(uv.x) break case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1 break case MirroredRepeatWrapping: if (Math.abs(Math.floor(uv.x) % 2) === 1) { uv.x = Math.ceil(uv.x) - uv.x } else { uv.x = uv.x - Math.floor(uv.x) } break } } if (uv.y < 0 || uv.y > 1) { switch (this.wrapT) { case RepeatWrapping: uv.y = uv.y - Math.floor(uv.y) break case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1 break case MirroredRepeatWrapping: if (Math.abs(Math.floor(uv.y) % 2) === 1) { uv.y = Math.ceil(uv.y) - uv.y } else { uv.y = uv.y - Math.floor(uv.y) } break } } if (this.flipY) { uv.y = 1 - uv.y } } }) Object.defineProperty(Texture.prototype, 'needsUpdate', { set: function (value) { if (value === true) this.version++ } }) /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author philogb / http://blog.thejit.org/ * @author mikael emtinger / http://gomo.se/ * @author egraether / http://egraether.com/ * @author WestLangley / http://github.com/WestLangley */ function Vector4(x, y, z, w) { this.x = x || 0 this.y = y || 0 this.z = z || 0 this.w = w !== undefined ? w : 1 } Object.assign(Vector4.prototype, { isVector4: true, set: function (x, y, z, w) { this.x = x this.y = y this.z = z this.w = w return this }, setScalar: function (scalar) { this.x = scalar this.y = scalar this.z = scalar this.w = scalar return this }, setX: function (x) { this.x = x return this }, setY: function (y) { this.y = y return this }, setZ: function (z) { this.z = z return this }, setW: function (w) { this.w = w return this }, setComponent: function (index, value) { switch (index) { case 0: this.x = value break case 1: this.y = value break case 2: this.z = value break case 3: this.w = value break default: throw new Error('index is out of range: ' + index) } return this }, getComponent: function (index) { switch (index) { case 0: return this.x case 1: return this.y case 2: return this.z case 3: return this.w default: throw new Error('index is out of range: ' + index) } }, clone: function () { return new this.constructor(this.x, this.y, this.z, this.w) }, copy: function (v) { this.x = v.x this.y = v.y this.z = v.z this.w = v.w !== undefined ? v.w : 1 return this }, add: function (v, w) { if (w !== undefined) { console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' ) return this.addVectors(v, w) } this.x += v.x this.y += v.y this.z += v.z this.w += v.w return this }, addScalar: function (s) { this.x += s this.y += s this.z += s this.w += s return this }, addVectors: function (a, b) { this.x = a.x + b.x this.y = a.y + b.y this.z = a.z + b.z this.w = a.w + b.w return this }, addScaledVector: function (v, s) { this.x += v.x * s this.y += v.y * s this.z += v.z * s this.w += v.w * s return this }, sub: function (v, w) { if (w !== undefined) { console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' ) return this.subVectors(v, w) } this.x -= v.x this.y -= v.y this.z -= v.z this.w -= v.w return this }, subScalar: function (s) { this.x -= s this.y -= s this.z -= s this.w -= s return this }, subVectors: function (a, b) { this.x = a.x - b.x this.y = a.y - b.y this.z = a.z - b.z this.w = a.w - b.w return this }, multiplyScalar: function (scalar) { this.x *= scalar this.y *= scalar this.z *= scalar this.w *= scalar return this }, applyMatrix4: function (m) { var x = this.x, y = this.y, z = this.z, w = this.w var e = m.elements this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w return this }, divideScalar: function (scalar) { return this.multiplyScalar(1 / scalar) }, setAxisAngleFromQuaternion: function (q) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos(q.w) var s = Math.sqrt(1 - q.w * q.w) if (s < 0.0001) { this.x = 1 this.y = 0 this.z = 0 } else { this.x = q.x / s this.y = q.y / s this.z = q.z / s } return this }, setAxisAngleFromRotationMatrix: function (m) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var angle, x, y, z, // variables for result epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[0], m12 = te[4], m13 = te[8], m21 = te[1], m22 = te[5], m23 = te[9], m31 = te[2], m32 = te[6], m33 = te[10] if ( Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2 ) { // this singularity is identity matrix so angle = 0 this.set(1, 0, 0, 0) return this // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI var xx = (m11 + 1) / 2 var yy = (m22 + 1) / 2 var zz = (m33 + 1) / 2 var xy = (m12 + m21) / 4 var xz = (m13 + m31) / 4 var yz = (m23 + m32) / 4 if (xx > yy && xx > zz) { // m11 is the largest diagonal term if (xx < epsilon) { x = 0 y = 0.707106781 z = 0.707106781 } else { x = Math.sqrt(xx) y = xy / x z = xz / x } } else if (yy > zz) { // m22 is the largest diagonal term if (yy < epsilon) { x = 0.707106781 y = 0 z = 0.707106781 } else { y = Math.sqrt(yy) x = xy / y z = yz / y } } else { // m33 is the largest diagonal term so base result on this if (zz < epsilon) { x = 0.707106781 y = 0.707106781 z = 0 } else { z = Math.sqrt(zz) x = xz / z y = yz / z } } this.set(x, y, z, angle) return this // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally var s = Math.sqrt( (m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12) ) // used to normalize if (Math.abs(s) < 0.001) s = 1 // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = (m32 - m23) / s this.y = (m13 - m31) / s this.z = (m21 - m12) / s this.w = Math.acos((m11 + m22 + m33 - 1) / 2) return this }, min: function (v) { this.x = Math.min(this.x, v.x) this.y = Math.min(this.y, v.y) this.z = Math.min(this.z, v.z) this.w = Math.min(this.w, v.w) return this }, max: function (v) { this.x = Math.max(this.x, v.x) this.y = Math.max(this.y, v.y) this.z = Math.max(this.z, v.z) this.w = Math.max(this.w, v.w) return this }, clamp: function (min, max) { // assumes min < max, componentwise this.x = Math.max(min.x, Math.min(max.x, this.x)) this.y = Math.max(min.y, Math.min(max.y, this.y)) this.z = Math.max(min.z, Math.min(max.z, this.z)) this.w = Math.max(min.w, Math.min(max.w, this.w)) return this }, clampScalar: (function () { var min, max return function clampScalar(minVal, maxVal) { if (min === undefined) { min = new Vector4() max = new Vector4() } min.set(minVal, minVal, minVal, minVal) max.set(maxVal, maxVal, maxVal, maxVal) return this.clamp(min, max) } })(), clampLength: function (min, max) { var length = this.length() return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length))) }, floor: function () { this.x = Math.floor(this.x) this.y = Math.floor(this.y) this.z = Math.floor(this.z) this.w = Math.floor(this.w) return this }, ceil: function () { this.x = Math.ceil(this.x) this.y = Math.ceil(this.y) this.z = Math.ceil(this.z) this.w = Math.ceil(this.w) return this }, round: function () { this.x = Math.round(this.x) this.y = Math.round(this.y) this.z = Math.round(this.z) this.w = Math.round(this.w) return this }, roundToZero: function () { this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x) this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y) this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z) this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w) return this }, negate: function () { this.x = -this.x this.y = -this.y this.z = -this.z this.w = -this.w return this }, dot: function (v) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w }, lengthSq: function () { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w }, length: function () { return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w) }, manhattanLength: function () { return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w) }, normalize: function () { return this.divideScalar(this.length() || 1) }, setLength: function (length) { return this.normalize().multiplyScalar(length) }, lerp: function (v, alpha) { this.x += (v.x - this.x) * alpha this.y += (v.y - this.y) * alpha this.z += (v.z - this.z) * alpha this.w += (v.w - this.w) * alpha return this }, lerpVectors: function (v1, v2, alpha) { return this.subVectors(v2, v1).multiplyScalar(alpha).add(v1) }, equals: function (v) { return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w }, fromArray: function (array, offset) { if (offset === undefined) offset = 0 this.x = array[offset] this.y = array[offset + 1] this.z = array[offset + 2] this.w = array[offset + 3] return this }, toArray: function (array, offset) { if (array === undefined) array = [] if (offset === undefined) offset = 0 array[offset] = this.x array[offset + 1] = this.y array[offset + 2] = this.z array[offset + 3] = this.w return array }, fromBufferAttribute: function (attribute, index, offset) { if (offset !== undefined) { console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().') } this.x = attribute.getX(index) this.y = attribute.getY(index) this.z = attribute.getZ(index) this.w = attribute.getW(index) return this } }) /** * @author szimek / https://github.com/szimek/ * @author alteredq / http://alteredqualia.com/ * @author Marius Kintel / https://github.com/kintel */ /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ function WebGLRenderTarget(width, height, options) { this.uuid = _Math.generateUUID() this.width = width this.height = height this.scissor = new Vector4(0, 0, width, height) this.scissorTest = false this.viewport = new Vector4(0, 0, width, height) options = options || {} if (options.minFilter === undefined) options.minFilter = LinearFilter this.texture = new Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding ) this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null } WebGLRenderTarget.prototype = Object.assign(Object.create(EventDispatcher.prototype), { constructor: WebGLRenderTarget, isWebGLRenderTarget: true, setSize: function (width, height) { if (this.width !== width || this.height !== height) { this.width = width this.height = height this.dispose() } this.viewport.set(0, 0, width, height) this.scissor.set(0, 0, width, height) }, clone: function () { return new this.constructor().copy(this) }, copy: function (source) { this.width = source.width this.height = source.height this.viewport.copy(source.viewport) this.texture = source.texture.clone() this.depthBuffer = source.depthBuffer this.stencilBuffer = source.stencilBuffer this.depthTexture = source.depthTexture return this }, dispose: function () { this.dispatchEvent({ type: 'dispose' }) } }) /** * @author alteredq / http://alteredqualia.com */ function WebGLRenderTargetCube(width, height, options) { WebGLRenderTarget.call(this, width, height, options) this.activeCubeFace = 0 // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5 this.activeMipMapLevel = 0 } WebGLRenderTargetCube.prototype = Object.create(WebGLRenderTarget.prototype) WebGLRenderTargetCube.prototype.constructor = WebGLRenderTargetCube WebGLRenderTargetCube.prototype.isWebGLRenderTargetCube = true /** * @author alteredq / http://alteredqualia.com/ */ function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) this.image = { data: data, width: width, height: height } this.magFilter = magFilter !== undefined ? magFilter : NearestFilter this.minFilter = minFilter !== undefined ? minFilter : NearestFilter this.generateMipmaps = false this.flipY = false this.unpackAlignment = 1 } DataTexture.prototype = Object.create(Texture.prototype) DataTexture.prototype.constructor = DataTexture DataTexture.prototype.isDataTexture = true /** * @author mrdoob / http://mrdoob.com/ */ function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) { images = images !== undefined ? images : [] mapping = mapping !== undefined ? mapping : CubeReflectionMapping Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) this.flipY = false } CubeTexture.prototype = Object.create(Texture.prototype) CubeTexture.prototype.constructor = CubeTexture CubeTexture.prototype.isCubeTexture = true Object.defineProperty(CubeTexture.prototype, 'images', { get: function () { return this.image }, set: function (value) { this.image = value } }) /** * @author tschw * * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program, renderer )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [renderer] ) * * uploads a uniform value(s) * the 'renderer' parameter is needed for sampler uniforms * * * Static methods of the top-level container (renderer factorizations): * * .upload( gl, seq, values, renderer ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (renderer factorizations): * * .setValue( gl, name, value ) * * sets uniform with name 'name' to 'value' * * .set( gl, obj, prop ) * * sets uniform from object and property with same name than uniform * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */ var emptyTexture = new Texture() var emptyCubeTexture = new CubeTexture() // --- Base for inner nodes (including the root) --- function UniformContainer() { this.seq = [] this.map = {} } // --- Utilities --- // Array Caches (provide typed arrays for temporary by size) var arrayCacheF32 = [] var arrayCacheI32 = [] // Float32Array caches used for uploading Matrix uniforms var mat4array = new Float32Array(16) var mat3array = new Float32Array(9) // Flattening for arrays of vectors and matrices function flatten(array, nBlocks, blockSize) { var firstElem = array[0] if (firstElem <= 0 || firstElem > 0) return array // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983 var n = nBlocks * blockSize, r = arrayCacheF32[n] if (r === undefined) { r = new Float32Array(n) arrayCacheF32[n] = r } if (nBlocks !== 0) { firstElem.toArray(r, 0) for (var i = 1, offset = 0; i !== nBlocks; ++i) { offset += blockSize array[i].toArray(r, offset) } } return r } // Texture unit allocation function allocTexUnits(renderer, n) { var r = arrayCacheI32[n] if (r === undefined) { r = new Int32Array(n) arrayCacheI32[n] = r } for (var i = 0; i !== n; ++i) r[i] = renderer.allocTextureUnit() return r } // --- Setters --- // Note: Defining these methods externally, because they come in a bunch // and this way their names minify. // Single scalar function setValue1f(gl, v) { gl.uniform1f(this.addr, v) } function setValue1i(gl, v) { gl.uniform1i(this.addr, v) } // Single float vector (from flat array or THREE.VectorN) function setValue2fv(gl, v) { if (v.x === undefined) { gl.uniform2fv(this.addr, v) } else { gl.uniform2f(this.addr, v.x, v.y) } } function setValue3fv(gl, v) { if (v.x !== undefined) { gl.uniform3f(this.addr, v.x, v.y, v.z) } else if (v.r !== undefined) { gl.uniform3f(this.addr, v.r, v.g, v.b) } else { gl.uniform3fv(this.addr, v) } } function setValue4fv(gl, v) { if (v.x === undefined) { gl.uniform4fv(this.addr, v) } else { gl.uniform4f(this.addr, v.x, v.y, v.z, v.w) } } // Single matrix (from flat array or MatrixN) function setValue2fm(gl, v) { gl.uniformMatrix2fv(this.addr, false, v.elements || v) } function setValue3fm(gl, v) { if (v.elements === undefined) { gl.uniformMatrix3fv(this.addr, false, v) } else { mat3array.set(v.elements) gl.uniformMatrix3fv(this.addr, false, mat3array) } } function setValue4fm(gl, v) { if (v.elements === undefined) { gl.uniformMatrix4fv(this.addr, false, v) } else { mat4array.set(v.elements) gl.uniformMatrix4fv(this.addr, false, mat4array) } } // Single texture (2D / Cube) function setValueT1(gl, v, renderer) { var unit = renderer.allocTextureUnit() gl.uniform1i(this.addr, unit) renderer.setTexture2D(v || emptyTexture, unit) } function setValueT6(gl, v, renderer) { var unit = renderer.allocTextureUnit() gl.uniform1i(this.addr, unit) renderer.setTextureCube(v || emptyCubeTexture, unit) } // Integer / Boolean vectors or arrays thereof (always flat arrays) function setValue2iv(gl, v) { gl.uniform2iv(this.addr, v) } function setValue3iv(gl, v) { gl.uniform3iv(this.addr, v) } function setValue4iv(gl, v) { gl.uniform4iv(this.addr, v) } // Helper to pick the right setter for the singular case function getSingularSetter(type) { switch (type) { case 0x1406: return setValue1f // FLOAT case 0x8b50: return setValue2fv // _VEC2 case 0x8b51: return setValue3fv // _VEC3 case 0x8b52: return setValue4fv // _VEC4 case 0x8b5a: return setValue2fm // _MAT2 case 0x8b5b: return setValue3fm // _MAT3 case 0x8b5c: return setValue4fm // _MAT4 case 0x8b5e: case 0x8d66: return setValueT1 // SAMPLER_2D, SAMPLER_EXTERNAL_OES case 0x8b60: return setValueT6 // SAMPLER_CUBE case 0x1404: case 0x8b56: return setValue1i // INT, BOOL case 0x8b53: case 0x8b57: return setValue2iv // _VEC2 case 0x8b54: case 0x8b58: return setValue3iv // _VEC3 case 0x8b55: case 0x8b59: return setValue4iv // _VEC4 } } // Array of scalars function setValue1fv(gl, v) { gl.uniform1fv(this.addr, v) } function setValue1iv(gl, v) { gl.uniform1iv(this.addr, v) } // Array of vectors (flat or from THREE classes) function setValueV2a(gl, v) { gl.uniform2fv(this.addr, flatten(v, this.size, 2)) } function setValueV3a(gl, v) { gl.uniform3fv(this.addr, flatten(v, this.size, 3)) } function setValueV4a(gl, v) { gl.uniform4fv(this.addr, flatten(v, this.size, 4)) } // Array of matrices (flat or from THREE clases) function setValueM2a(gl, v) { gl.uniformMatrix2fv(this.addr, false, flatten(v, this.size, 4)) } function setValueM3a(gl, v) { gl.uniformMatrix3fv(this.addr, false, flatten(v, this.size, 9)) } function setValueM4a(gl, v) { gl.uniformMatrix4fv(this.addr, false, flatten(v, this.size, 16)) } // Array of textures (2D / Cube) function setValueT1a(gl, v, renderer) { var n = v.length, units = allocTexUnits(renderer, n) gl.uniform1iv(this.addr, units) for (var i = 0; i !== n; ++i) { renderer.setTexture2D(v[i] || emptyTexture, units[i]) } } function setValueT6a(gl, v, renderer) { var n = v.length, units = allocTexUnits(renderer, n) gl.uniform1iv(this.addr, units) for (var i = 0; i !== n; ++i) { renderer.setTextureCube(v[i] || emptyCubeTexture, units[i]) } } // Helper to pick the right setter for a pure (bottom-level) array function getPureArraySetter(type) { switch (type) { case 0x1406: return setValue1fv // FLOAT case 0x8b50: return setValueV2a // _VEC2 case 0x8b51: return setValueV3a // _VEC3 case 0x8b52: return setValueV4a // _VEC4 case 0x8b5a: return setValueM2a // _MAT2 case 0x8b5b: return setValueM3a // _MAT3 case 0x8b5c: return setValueM4a // _MAT4 case 0x8b5e: return setValueT1a // SAMPLER_2D case 0x8b60: return setValueT6a // SAMPLER_CUBE case 0x1404: case 0x8b56: return setValue1iv // INT, BOOL case 0x8b53: case 0x8b57: return setValue2iv // _VEC2 case 0x8b54: case 0x8b58: return setValue3iv // _VEC3 case 0x8b55: case 0x8b59: return setValue4iv // _VEC4 } } // --- Uniform Classes --- function SingleUniform(id, activeInfo, addr) { this.id = id this.addr = addr this.setValue = getSingularSetter(activeInfo.type) // this.path = activeInfo.name; // DEBUG } function PureArrayUniform(id, activeInfo, addr) { this.id = id this.addr = addr this.size = activeInfo.size this.setValue = getPureArraySetter(activeInfo.type) // this.path = activeInfo.name; // DEBUG } function StructuredUniform(id) { this.id = id UniformContainer.call(this) // mix-in } StructuredUniform.prototype.setValue = function (gl, value) { // Note: Don't need an extra 'renderer' parameter, since samplers // are not allowed in structured uniforms. var seq = this.seq for (var i = 0, n = seq.length; i !== n; ++i) { var u = seq[i] u.setValue(gl, value[u.id]) } } // --- Top-level --- // Parser - builds up the property tree from the path strings var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g // extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names. function addUniform(container, uniformObject) { container.seq.push(uniformObject) container.map[uniformObject.id] = uniformObject } function parseUniform(activeInfo, addr, container) { var path = activeInfo.name, pathLength = path.length // reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0 for (;;) { var match = RePathPart.exec(path), matchEnd = RePathPart.lastIndex, id = match[1], idIsIndex = match[2] === ']', subscript = match[3] if (idIsIndex) id = id | 0 // convert to integer if (subscript === undefined || (subscript === '[' && matchEnd + 2 === pathLength)) { // bare name or "pure" bottom-level array "[0]" suffix addUniform( container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr) ) break } else { // step into inner node / create it in case it doesn't exist var map = container.map, next = map[id] if (next === undefined) { next = new StructuredUniform(id) addUniform(container, next) } container = next } } } // Root Container function WebGLUniforms(gl, program, renderer) { UniformContainer.call(this) this.renderer = renderer var n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS) for (var i = 0; i < n; ++i) { var info = gl.getActiveUniform(program, i), path = info.name, addr = gl.getUniformLocation(program, path) parseUniform(info, addr, this) } } WebGLUniforms.prototype.setValue = function (gl, name, value) { var u = this.map[name] if (u !== undefined) u.setValue(gl, value, this.renderer) } WebGLUniforms.prototype.setOptional = function (gl, object, name) { var v = object[name] if (v !== undefined) this.setValue(gl, name, v) } // Static interface WebGLUniforms.upload = function (gl, seq, values, renderer) { for (var i = 0, n = seq.length; i !== n; ++i) { var u = seq[i], v = values[u.id] if (v.needsUpdate !== false) { // note: always updating when .needsUpdate is undefined u.setValue(gl, v.value, renderer) } } } WebGLUniforms.seqWithValue = function (seq, values) { var r = [] for (var i = 0, n = seq.length; i !== n; ++i) { var u = seq[i] if (u.id in values) r.push(u) } return r } /** * @author mrdoob / http://mrdoob.com/ */ var ColorKeywords = { aliceblue: 0xf0f8ff, antiquewhite: 0xfaebd7, aqua: 0x00ffff, aquamarine: 0x7fffd4, azure: 0xf0ffff, beige: 0xf5f5dc, bisque: 0xffe4c4, black: 0x000000, blanchedalmond: 0xffebcd, blue: 0x0000ff, blueviolet: 0x8a2be2, brown: 0xa52a2a, burlywood: 0xdeb887, cadetblue: 0x5f9ea0, chartreuse: 0x7fff00, chocolate: 0xd2691e, coral: 0xff7f50, cornflowerblue: 0x6495ed, cornsilk: 0xfff8dc, crimson: 0xdc143c, cyan: 0x00ffff, darkblue: 0x00008b, darkcyan: 0x008b8b, darkgoldenrod: 0xb8860b, darkgray: 0xa9a9a9, darkgreen: 0x006400, darkgrey: 0xa9a9a9, darkkhaki: 0xbdb76b, darkmagenta: 0x8b008b, darkolivegreen: 0x556b2f, darkorange: 0xff8c00, darkorchid: 0x9932cc, darkred: 0x8b0000, darksalmon: 0xe9967a, darkseagreen: 0x8fbc8f, darkslateblue: 0x483d8b, darkslategray: 0x2f4f4f, darkslategrey: 0x2f4f4f, darkturquoise: 0x00ced1, darkviolet: 0x9400d3, deeppink: 0xff1493, deepskyblue: 0x00bfff, dimgray: 0x696969, dimgrey: 0x696969, dodgerblue: 0x1e90ff, firebrick: 0xb22222, floralwhite: 0xfffaf0, forestgreen: 0x228b22, fuchsia: 0xff00ff, gainsboro: 0xdcdcdc, ghostwhite: 0xf8f8ff, gold: 0xffd700, goldenrod: 0xdaa520, gray: 0x808080, green: 0x008000, greenyellow: 0xadff2f, grey: 0x808080, honeydew: 0xf0fff0, hotpink: 0xff69b4, indianred: 0xcd5c5c, indigo: 0x4b0082, ivory: 0xfffff0, khaki: 0xf0e68c, lavender: 0xe6e6fa, lavenderblush: 0xfff0f5, lawngreen: 0x7cfc00, lemonchiffon: 0xfffacd, lightblue: 0xadd8e6, lightcoral: 0xf08080, lightcyan: 0xe0ffff, lightgoldenrodyellow: 0xfafad2, lightgray: 0xd3d3d3, lightgreen: 0x90ee90, lightgrey: 0xd3d3d3, lightpink: 0xffb6c1, lightsalmon: 0xffa07a, lightseagreen: 0x20b2aa, lightskyblue: 0x87cefa, lightslategray: 0x778899, lightslategrey: 0x778899, lightsteelblue: 0xb0c4de, lightyellow: 0xffffe0, lime: 0x00ff00, limegreen: 0x32cd32, linen: 0xfaf0e6, magenta: 0xff00ff, maroon: 0x800000, mediumaquamarine: 0x66cdaa, mediumblue: 0x0000cd, mediumorchid: 0xba55d3, mediumpurple: 0x9370db, mediumseagreen: 0x3cb371, mediumslateblue: 0x7b68ee, mediumspringgreen: 0x00fa9a, mediumturquoise: 0x48d1cc, mediumvioletred: 0xc71585, midnightblue: 0x191970, mintcream: 0xf5fffa, mistyrose: 0xffe4e1, moccasin: 0xffe4b5, navajowhite: 0xffdead, navy: 0x000080, oldlace: 0xfdf5e6, olive: 0x808000, olivedrab: 0x6b8e23, orange: 0xffa500, orangered: 0xff4500, orchid: 0xda70d6, palegoldenrod: 0xeee8aa, palegreen: 0x98fb98, paleturquoise: 0xafeeee, palevioletred: 0xdb7093, papayawhip: 0xffefd5, peachpuff: 0xffdab9, peru: 0xcd853f, pink: 0xffc0cb, plum: 0xdda0dd, powderblue: 0xb0e0e6, purple: 0x800080, rebeccapurple: 0x663399, red: 0xff0000, rosybrown: 0xbc8f8f, royalblue: 0x4169e1, saddlebrown: 0x8b4513, salmon: 0xfa8072, sandybrown: 0xf4a460, seagreen: 0x2e8b57, seashell: 0xfff5ee, sienna: 0xa0522d, silver: 0xc0c0c0, skyblue: 0x87ceeb, slateblue: 0x6a5acd, slategray: 0x708090, slategrey: 0x708090, snow: 0xfffafa, springgreen: 0x00ff7f, steelblue: 0x4682b4, tan: 0xd2b48c, teal: 0x008080, thistle: 0xd8bfd8, tomato: 0xff6347, turquoise: 0x40e0d0, violet: 0xee82ee, wheat: 0xf5deb3, white: 0xffffff, whitesmoke: 0xf5f5f5, yellow: 0xffff00, yellowgreen: 0x9acd32 } function Color(r, g, b) { if (g === undefined && b === undefined) { // r is THREE.Color, hex or string return this.set(r) } return this.setRGB(r, g, b) } Object.assign(Color.prototype, { isColor: true, r: 1, g: 1, b: 1, set: function (value) { if (value && value.isColor) { this.copy(value) } else if (typeof value === 'number') { this.setHex(value) } else if (typeof value === 'string') { this.setStyle(value) } return this }, setScalar: function (scalar) { this.r = scalar this.g = scalar this.b = scalar return this }, setHex: function (hex) { hex = Math.floor(hex) this.r = ((hex >> 16) & 255) / 255 this.g = ((hex >> 8) & 255) / 255 this.b = (hex & 255) / 255 return this }, setRGB: function (r, g, b) { this.r = r this.g = g this.b = b return this }, setHSL: (function () { function hue2rgb(p, q, t) { if (t < 0) t += 1 if (t > 1) t -= 1 if (t < 1 / 6) return p + (q - p) * 6 * t if (t < 1 / 2) return q if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t) return p } return function setHSL(h, s, l) { // h,s,l ranges are in 0.0 - 1.0 h = _Math.euclideanModulo(h, 1) s = _Math.clamp(s, 0, 1) l = _Math.clamp(l, 0, 1) if (s === 0) { this.r = this.g = this.b = l } else { var p = l <= 0.5 ? l * (1 + s) : l + s - l * s var q = 2 * l - p this.r = hue2rgb(q, p, h + 1 / 3) this.g = hue2rgb(q, p, h) this.b = hue2rgb(q, p, h - 1 / 3) } return this } })(), setStyle: function (style) { function handleAlpha(string) { if (string === undefined) return if (parseFloat(string) < 1) { console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.') } } var m if ((m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec(style))) { // rgb / hsl var color var name = m[1] var components = m[2] switch (name) { case 'rgb': case 'rgba': if ( (color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components )) ) { // rgb(255,0,0) rgba(255,0,0,0.5) this.r = Math.min(255, parseInt(color[1], 10)) / 255 this.g = Math.min(255, parseInt(color[2], 10)) / 255 this.b = Math.min(255, parseInt(color[3], 10)) / 255 handleAlpha(color[5]) return this } if ( (color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components )) ) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) this.r = Math.min(100, parseInt(color[1], 10)) / 100 this.g = Math.min(100, parseInt(color[2], 10)) / 100 this.b = Math.min(100, parseInt(color[3], 10)) / 100 handleAlpha(color[5]) return this } break case 'hsl': case 'hsla': if ( (color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components )) ) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) var h = parseFloat(color[1]) / 360 var s = parseInt(color[2], 10) / 100 var l = parseInt(color[3], 10) / 100 handleAlpha(color[5]) return this.setHSL(h, s, l) } break } } else if ((m = /^\#([A-Fa-f0-9]+)$/.exec(style))) { // hex color var hex = m[1] var size = hex.length if (size === 3) { // #ff0 this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255 this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255 this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255 return this } else if (size === 6) { // #ff0000 this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255 this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255 this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255 return this } } if (style && style.length > 0) { // color keywords var hex = ColorKeywords[style] if (hex !== undefined) { // red this.setHex(hex) } else { // unknown color console.warn('THREE.Color: Unknown color ' + style) } } return this }, clone: function () { return new this.constructor(this.r, this.g, this.b) }, copy: function (color) { this.r = color.r this.g = color.g this.b = color.b return this }, copyGammaToLinear: function (color, gammaFactor) { if (gammaFactor === undefined) gammaFactor = 2.0 this.r = Math.pow(color.r, gammaFactor) this.g = Math.pow(color.g, gammaFactor) this.b = Math.pow(color.b, gammaFactor) return this }, copyLinearToGamma: function (color, gammaFactor) { if (gammaFactor === undefined) gammaFactor = 2.0 var safeInverse = gammaFactor > 0 ? 1.0 / gammaFactor : 1.0 this.r = Math.pow(color.r, safeInverse) this.g = Math.pow(color.g, safeInverse) this.b = Math.pow(color.b, safeInverse) return this }, convertGammaToLinear: function () { var r = this.r, g = this.g, b = this.b this.r = r * r this.g = g * g this.b = b * b return this }, convertLinearToGamma: function () { this.r = Math.sqrt(this.r) this.g = Math.sqrt(this.g) this.b = Math.sqrt(this.b) return this }, getHex: function () { return ((this.r * 255) << 16) ^ ((this.g * 255) << 8) ^ ((this.b * 255) << 0) }, getHexString: function () { return ('000000' + this.getHex().toString(16)).slice(-6) }, getHSL: function (optionalTarget) { // h,s,l ranges are in 0.0 - 1.0 var hsl = optionalTarget || { h: 0, s: 0, l: 0 } var r = this.r, g = this.g, b = this.b var max = Math.max(r, g, b) var min = Math.min(r, g, b) var hue, saturation var lightness = (min + max) / 2.0 if (min === max) { hue = 0 saturation = 0 } else { var delta = max - min saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min) switch (max) { case r: hue = (g - b) / delta + (g < b ? 6 : 0) break case g: hue = (b - r) / delta + 2 break case b: hue = (r - g) / delta + 4 break } hue /= 6 } hsl.h = hue hsl.s = saturation hsl.l = lightness return hsl }, getStyle: function () { return ( 'rgb(' + ((this.r * 255) | 0) + ',' + ((this.g * 255) | 0) + ',' + ((this.b * 255) | 0) + ')' ) }, offsetHSL: function (h, s, l) { var hsl = this.getHSL() hsl.h += h hsl.s += s hsl.l += l this.setHSL(hsl.h, hsl.s, hsl.l) return this }, add: function (color) { this.r += color.r this.g += color.g this.b += color.b return this }, addColors: function (color1, color2) { this.r = color1.r + color2.r this.g = color1.g + color2.g this.b = color1.b + color2.b return this }, addScalar: function (s) { this.r += s this.g += s this.b += s return this }, sub: function (color) { this.r = Math.max(0, this.r - color.r) this.g = Math.max(0, this.g - color.g) this.b = Math.max(0, this.b - color.b) return this }, multiply: function (color) { this.r *= color.r this.g *= color.g this.b *= color.b return this }, multiplyScalar: function (s) { this.r *= s this.g *= s this.b *= s return this }, lerp: function (color, alpha) { this.r += (color.r - this.r) * alpha this.g += (color.g - this.g) * alpha this.b += (color.b - this.b) * alpha return this }, equals: function (c) { return c.r === this.r && c.g === this.g && c.b === this.b }, fromArray: function (array, offset) { if (offset === undefined) offset = 0 this.r = array[offset] this.g = array[offset + 1] this.b = array[offset + 2] return this }, toArray: function (array, offset) { if (array === undefined) array = [] if (offset === undefined) offset = 0 array[offset] = this.r array[offset + 1] = this.g array[offset + 2] = this.b return array }, toJSON: function () { return this.getHex() } }) /** * Uniforms library for shared webgl shaders */ var UniformsLib = { common: { diffuse: { value: new Color(0xeeeeee) }, opacity: { value: 1.0 }, map: { value: null }, uvTransform: { value: new Matrix3() }, alphaMap: { value: null } }, specularmap: { specularMap: { value: null } }, envmap: { envMap: { value: null }, flipEnvMap: { value: -1 }, reflectivity: { value: 1.0 }, refractionRatio: { value: 0.98 } }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 } }, emissivemap: { emissiveMap: { value: null } }, bumpmap: { bumpMap: { value: null }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalScale: { value: new Vector2(1, 1) } }, displacementmap: { displacementMap: { value: null }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, roughnessmap: { roughnessMap: { value: null } }, metalnessmap: { metalnessMap: { value: null } }, gradientmap: { gradientMap: { value: null } }, fog: { fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: new Color(0xffffff) } }, lights: { ambientLightColor: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {}, shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {}, shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotShadowMap: { value: [] }, spotShadowMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {}, shadow: {}, shadowBias: {}, shadowRadius: {}, shadowMapSize: {}, shadowCameraNear: {}, shadowCameraFar: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } }, // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } } }, points: { diffuse: { value: new Color(0xeeeeee) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, uvTransform: { value: new Matrix3() } } } /** * Uniform Utilities */ var UniformsUtils = { merge: function (uniforms) { var merged = {} for (var u = 0; u < uniforms.length; u++) { var tmp = this.clone(uniforms[u]) for (var p in tmp) { merged[p] = tmp[p] } } return merged }, clone: function (uniforms_src) { var uniforms_dst = {} for (var u in uniforms_src) { uniforms_dst[u] = {} for (var p in uniforms_src[u]) { var parameter_src = uniforms_src[u][p] if ( parameter_src && (parameter_src.isColor || parameter_src.isMatrix3 || parameter_src.isMatrix4 || parameter_src.isVector2 || parameter_src.isVector3 || parameter_src.isVector4 || parameter_src.isTexture) ) { uniforms_dst[u][p] = parameter_src.clone() } else if (Array.isArray(parameter_src)) { uniforms_dst[u][p] = parameter_src.slice() } else { uniforms_dst[u][p] = parameter_src } } } return uniforms_dst } } var alphamap_fragment = '#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif\n' var alphamap_pars_fragment = '#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif\n' var alphatest_fragment = '#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif\n' var aomap_fragment = '#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif\n' var aomap_pars_fragment = '#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif' var begin_vertex = '\nvec3 transformed = vec3( position );\n' var beginnormal_vertex = '\nvec3 objectNormal = vec3( normal );\n' var bsdfs = 'float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\tif( decayExponent > 0.0 ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tfloat maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\treturn distanceFalloff * maxDistanceCutoffFactor;\n#else\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n#endif\n\t}\n\treturn 1.0;\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\n\treturn specularColor * AB.x + AB.y;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n' var bumpmap_pars_fragment = '#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif\n' var clipping_planes_fragment = '#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\tif ( clipped ) discard;\n\t#endif\n#endif\n' var clipping_planes_pars_fragment = '#if NUM_CLIPPING_PLANES > 0\n\t#if ! defined( PHYSICAL ) && ! defined( PHONG )\n\t\tvarying vec3 vViewPosition;\n\t#endif\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif\n' var clipping_planes_pars_vertex = '#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n\tvarying vec3 vViewPosition;\n#endif\n' var clipping_planes_vertex = '#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n' var color_fragment = '#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif' var color_pars_fragment = '#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif\n' var color_pars_vertex = '#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif' var color_vertex = '#ifdef USE_COLOR\n\tvColor.xyz = color.xyz;\n#endif' var common = '#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI_HALF 1.5707963267949\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\n' var cube_uv_reflection_fragment = '#ifdef ENVMAP_TYPE_CUBE_UV\n#define cubeUV_textureSize (1024.0)\nint getFaceFromDirection(vec3 direction) {\n\tvec3 absDirection = abs(direction);\n\tint face = -1;\n\tif( absDirection.x > absDirection.z ) {\n\t\tif(absDirection.x > absDirection.y )\n\t\t\tface = direction.x > 0.0 ? 0 : 3;\n\t\telse\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\n\t}\n\telse {\n\t\tif(absDirection.z > absDirection.y )\n\t\t\tface = direction.z > 0.0 ? 2 : 5;\n\t\telse\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\n\t}\n\treturn face;\n}\n#define cubeUV_maxLods1 (log2(cubeUV_textureSize*0.25) - 1.0)\n#define cubeUV_rangeClamp (exp2((6.0 - 1.0) * 2.0))\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\n\tfloat scale = exp2(cubeUV_maxLods1 - roughnessLevel);\n\tfloat dxRoughness = dFdx(roughness);\n\tfloat dyRoughness = dFdy(roughness);\n\tvec3 dx = dFdx( vec * scale * dxRoughness );\n\tvec3 dy = dFdy( vec * scale * dyRoughness );\n\tfloat d = max( dot( dx, dx ), dot( dy, dy ) );\n\td = clamp(d, 1.0, cubeUV_rangeClamp);\n\tfloat mipLevel = 0.5 * log2(d);\n\treturn vec2(floor(mipLevel), fract(mipLevel));\n}\n#define cubeUV_maxLods2 (log2(cubeUV_textureSize*0.25) - 2.0)\n#define cubeUV_rcpTextureSize (1.0 / cubeUV_textureSize)\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\n\tmipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\n\tfloat a = 16.0 * cubeUV_rcpTextureSize;\n\tvec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\n\tvec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\n\tfloat powScale = exp2_packed.x * exp2_packed.y;\n\tfloat scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\n\tfloat mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\n\tbool bRes = mipLevel == 0.0;\n\tscale = bRes && (scale < a) ? a : scale;\n\tvec3 r;\n\tvec2 offset;\n\tint face = getFaceFromDirection(direction);\n\tfloat rcpPowScale = 1.0 / powScale;\n\tif( face == 0) {\n\t\tr = vec3(direction.x, -direction.z, direction.y);\n\t\toffset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 1) {\n\t\tr = vec3(direction.y, direction.x, direction.z);\n\t\toffset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 2) {\n\t\tr = vec3(direction.z, direction.x, direction.y);\n\t\toffset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 3) {\n\t\tr = vec3(direction.x, direction.z, direction.y);\n\t\toffset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\telse if( face == 4) {\n\t\tr = vec3(direction.y, direction.x, -direction.z);\n\t\toffset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\telse {\n\t\tr = vec3(direction.z, -direction.x, direction.y);\n\t\toffset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\tr = normalize(r);\n\tfloat texelOffset = 0.5 * cubeUV_rcpTextureSize;\n\tvec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\n\tvec2 base = offset + vec2( texelOffset );\n\treturn base + s * ( scale - 2.0 * texelOffset );\n}\n#define cubeUV_maxLods3 (log2(cubeUV_textureSize*0.25) - 3.0)\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\n\tfloat roughnessVal = roughness* cubeUV_maxLods3;\n\tfloat r1 = floor(roughnessVal);\n\tfloat r2 = r1 + 1.0;\n\tfloat t = fract(roughnessVal);\n\tvec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\n\tfloat s = mipInfo.y;\n\tfloat level0 = mipInfo.x;\n\tfloat level1 = level0 + 1.0;\n\tlevel1 = level1 > 5.0 ? 5.0 : level1;\n\tlevel0 += min( floor( s + 0.5 ), 5.0 );\n\tvec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\n\tvec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\n\tvec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\n\tvec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\n\tvec4 result = mix(color10, color20, t);\n\treturn vec4(result.rgb, 1.0);\n}\n#endif\n' var defaultnormal_vertex = 'vec3 transformedNormal = normalMatrix * objectNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n' var displacementmap_pars_vertex = '#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif\n' var displacementmap_vertex = '#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\n#endif\n' var emissivemap_fragment = '#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif\n' var emissivemap_pars_fragment = '#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif\n' var encodings_fragment = ' gl_FragColor = linearToOutputTexel( gl_FragColor );\n' var encodings_pars_fragment = '\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.xyz * value.w * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = min( floor( D ) / 255.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\n\tXp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract(Le);\n\tvResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\n\treturn vec4( max(vRGB, 0.0), 1.0 );\n}\n' var envmap_fragment = '#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\tvec2 sampleUV;\n\t\treflectVec = normalize( reflectVec );\n\t\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\n\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\treflectVec = normalize( reflectVec );\n\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\tenvColor = envMapTexelToLinear( envColor );\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif\n' var envmap_pars_fragment = '#if defined( USE_ENVMAP ) || defined( PHYSICAL )\n\tuniform float reflectivity;\n\tuniform float envMapIntensity;\n#endif\n#ifdef USE_ENVMAP\n\t#if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\n\t\tvarying vec3 vWorldPosition;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\tuniform float flipEnvMap;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif\n' var envmap_pars_vertex = '#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif\n' var envmap_vertex = '#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif\n' var fog_vertex = '\n#ifdef USE_FOG\nfogDepth = -mvPosition.z;\n#endif' var fog_pars_vertex = '#ifdef USE_FOG\n varying float fogDepth;\n#endif\n' var fog_fragment = '#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 ) );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif\n' var fog_pars_fragment = '#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif\n' var gradientmap_pars_fragment = '#ifdef TOON\n\tuniform sampler2D gradientMap;\n\tvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\t\tfloat dotNL = dot( normal, lightDirection );\n\t\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t\t#ifdef USE_GRADIENTMAP\n\t\t\treturn texture2D( gradientMap, coord ).rgb;\n\t\t#else\n\t\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t\t#endif\n\t}\n#endif\n' var lightmap_fragment = '#ifdef USE_LIGHTMAP\n\treflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n#endif\n' var lightmap_pars_fragment = '#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif' var lights_lambert_vertex = 'vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n#endif\n' var lights_pars = 'uniform vec3 ambientLightColor;\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t\tfloat shadowCameraNear;\n\t\tfloat shadowCameraFar;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif\n#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\tvec4 envMapColor = textureCubeUV( queryVec, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\tvec4 envMapColor = textureCubeUV(queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent));\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\t\tvec2 sampleUV;\n\t\t\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\t\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif\n' var lights_phong_fragment = 'BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;\n' var lights_phong_pars_fragment = 'varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\t#ifdef TOON\n\t\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#else\n\t\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\t\tvec3 irradiance = dotNL * directLight.color;\n\t#endif\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)\n' var lights_physical_fragment = 'PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\n#ifdef STANDARD\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.clearCoat = saturate( clearCoat );\tmaterial.clearCoatRoughness = clamp( clearCoatRoughness, 0.04, 1.0 );\n#endif\n' var lights_physical_pars_fragment = 'struct PhysicalMaterial {\n\tvec3\tdiffuseColor;\n\tfloat\tspecularRoughness;\n\tvec3\tspecularColor;\n\t#ifndef STANDARD\n\t\tfloat clearCoat;\n\t\tfloat clearCoatRoughness;\n\t#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearCoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos - halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos + halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos + halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos - halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifndef STANDARD\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\n\t#else\n\t\tfloat clearCoatDHR = 0.0;\n\t#endif\n\treflectedLight.directSpecular += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\n\treflectedLight.directDiffuse += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\t#ifndef STANDARD\n\t\treflectedLight.directSpecular += irradiance * material.clearCoat * BRDF_Specular_GGX( directLight, geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\n\t#endif\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 clearCoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t#ifndef STANDARD\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\tfloat dotNL = dotNV;\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\n\t#else\n\t\tfloat clearCoatDHR = 0.0;\n\t#endif\n\treflectedLight.indirectSpecular += ( 1.0 - clearCoatDHR ) * radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\n\t#ifndef STANDARD\n\t\treflectedLight.indirectSpecular += clearCoatRadiance * material.clearCoat * BRDF_Specular_GGX_Environment( geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\n\t#endif\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\n#define Material_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.specularRoughness )\n#define Material_ClearCoat_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.clearCoatRoughness )\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}\n' var lights_template = '\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = normalize( vViewPosition );\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\t#ifdef USE_LIGHTMAP\n\t\tvec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tirradiance += getLightProbeIndirectIrradiance( geometry, 8 );\n\t#endif\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tvec3 radiance = getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), 8 );\n\t#ifndef STANDARD\n\t\tvec3 clearCoatRadiance = getLightProbeIndirectRadiance( geometry, Material_ClearCoat_BlinnShininessExponent( material ), 8 );\n\t#else\n\t\tvec3 clearCoatRadiance = vec3( 0.0 );\n\t#endif\n\tRE_IndirectSpecular( radiance, clearCoatRadiance, geometry, material, reflectedLight );\n#endif\n' var logdepthbuf_fragment = '#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif' var logdepthbuf_pars_fragment = '#ifdef USE_LOGDEPTHBUF\n\tuniform float logDepthBufFC;\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t#endif\n#endif\n' var logdepthbuf_pars_vertex = '#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t#endif\n\tuniform float logDepthBufFC;\n#endif' var logdepthbuf_vertex = '#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t#else\n\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\tgl_Position.z *= gl_Position.w;\n\t#endif\n#endif\n' var map_fragment = '#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif\n' var map_pars_fragment = '#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n' var map_particle_fragment = '#ifdef USE_MAP\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n' var map_particle_pars_fragment = '#ifdef USE_MAP\n\tuniform mat3 uvTransform;\n\tuniform sampler2D map;\n#endif\n' var metalnessmap_fragment = 'float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif\n' var metalnessmap_pars_fragment = '#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif' var morphnormal_vertex = '#ifdef USE_MORPHNORMALS\n\tobjectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\n\tobjectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\n\tobjectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\n\tobjectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\n#endif\n' var morphtarget_pars_vertex = '#ifdef USE_MORPHTARGETS\n\t#ifndef USE_MORPHNORMALS\n\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif' var morphtarget_vertex = '#ifdef USE_MORPHTARGETS\n\ttransformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\n\ttransformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\n\ttransformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\n\ttransformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\ttransformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\n\ttransformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\n\ttransformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\n\ttransformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\n\t#endif\n#endif\n' var normal_fragment = '#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n#endif\n#ifdef USE_NORMALMAP\n\tnormal = perturbNormal2Arb( -vViewPosition, normal );\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif\n' var normalmap_pars_fragment = '#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 S = normalize( q0 * st1.t - q1 * st0.t );\n\t\tvec3 T = normalize( -q0 * st1.s + q1 * st0.s );\n\t\tvec3 N = normalize( surf_norm );\n\t\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t\tmapN.xy = normalScale * mapN.xy;\n\t\tmat3 tsn = mat3( S, T, N );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif\n' var packing = 'vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}\n' var premultiplied_alpha_fragment = '#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif\n' var project_vertex = 'vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\ngl_Position = projectionMatrix * mvPosition;\n' var dithering_fragment = '#if defined( DITHERING )\n gl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif\n' var dithering_pars_fragment = '#if defined( DITHERING )\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif\n' var roughnessmap_fragment = 'float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif\n' var roughnessmap_pars_fragment = '#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif' var shadowmap_pars_fragment = '#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tfloat texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\n\t\tconst vec2 offset = vec2( 0.0, 1.0 );\n\t\tvec2 texelSize = vec2( 1.0 ) / size;\n\t\tvec2 centroidUV = floor( uv * size + 0.5 ) / size;\n\t\tfloat lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\n\t\tfloat lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\n\t\tfloat rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\n\t\tfloat rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\n\t\tvec2 f = fract( uv * size + 0.5 );\n\t\tfloat a = mix( lb, lt, f.y );\n\t\tfloat b = mix( rb, rt, f.y );\n\t\tfloat c = mix( a, b, f.x );\n\t\treturn c;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tshadow = (\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif\n' var shadowmap_pars_vertex = '#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n\t#endif\n#endif\n' var shadowmap_vertex = '#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n#endif\n' var shadowmask_pars_fragment = 'float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\tDirectionalLight directionalLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tshadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\tSpotLight spotLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tshadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\tPointLight pointLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tshadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#endif\n\t#endif\n\treturn shadow;\n}\n' var skinbase_vertex = '#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif' var skinning_pars_vertex = '#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif\n' var skinning_vertex = '#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif\n' var skinnormal_vertex = '#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n#endif\n' var specularmap_fragment = 'float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif' var specularmap_pars_fragment = '#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif' var tonemapping_fragment = '#if defined( TONE_MAPPING )\n gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif\n' var tonemapping_pars_fragment = '#ifndef saturate\n\t#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nuniform float toneMappingWhitePoint;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\nvec3 Uncharted2ToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\n' var uv_pars_fragment = '#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvarying vec2 vUv;\n#endif' var uv_pars_vertex = '#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvarying vec2 vUv;\n\tuniform mat3 uvTransform;\n#endif\n' var uv_vertex = '#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif' var uv2_pars_fragment = '#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif' var uv2_pars_vertex = '#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n#endif' var uv2_vertex = '#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = uv2;\n#endif' var worldpos_vertex = '#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n\tvec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\n#endif\n' var cube_frag = 'uniform samplerCube tCube;\nuniform float tFlip;\nuniform float opacity;\nvarying vec3 vWorldPosition;\nvoid main() {\n\tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\n\tgl_FragColor.a *= opacity;\n}\n' var cube_vert = 'varying vec3 vWorldPosition;\n#include \nvoid main() {\n\tvWorldPosition = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}\n' var depth_frag = '#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( gl_FragCoord.z ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( gl_FragCoord.z );\n\t#endif\n}\n' var depth_vert = '#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var distanceRGBA_frag = '#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\t#include \n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}\n' var distanceRGBA_vert = '#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}\n' var equirect_frag = 'uniform sampler2D tEquirect;\nvarying vec3 vWorldPosition;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldPosition );\n\tvec2 sampleUV;\n\tsampleUV.y = asin( clamp( direction.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n}\n' var equirect_vert = 'varying vec3 vWorldPosition;\n#include \nvoid main() {\n\tvWorldPosition = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}\n' var linedashed_frag = 'uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var linedashed_vert = 'uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvLineDistance = scale * lineDistance;\n\tvec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}\n' var meshbasic_frag = 'uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\treflectedLight.indirectDiffuse += texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var meshbasic_vert = '#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_ENVMAP\n\t#include \n\t#include \n\t#include \n\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var meshlambert_frag = 'uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\treflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\n\t#include \n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var meshlambert_vert = '#define LAMBERT\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var meshphong_frag = '#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var meshphong_vert = '#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var meshphysical_frag = '#define PHYSICAL\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifndef STANDARD\n\tuniform float clearCoat;\n\tuniform float clearCoatRoughness;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var meshphysical_vert = '#define PHYSICAL\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}\n' var normal_frag = '#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}\n' var normal_vert = '#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}\n' var points_frag = 'uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var points_vert = 'uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#ifdef USE_SIZEATTENUATION\n\t\tgl_PointSize = size * ( scale / - mvPosition.z );\n\t#else\n\t\tgl_PointSize = size;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var shadow_frag = 'uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n}\n' var shadow_vert = '#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}\n' var ShaderChunk = { alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, encodings_fragment: encodings_fragment, encodings_pars_fragment: encodings_pars_fragment, envmap_fragment: envmap_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_vertex: envmap_vertex, fog_vertex: fog_vertex, fog_pars_vertex: fog_pars_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, gradientmap_pars_fragment: gradientmap_pars_fragment, lightmap_fragment: lightmap_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_vertex: lights_lambert_vertex, lights_pars: lights_pars, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_template: lights_template, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_fragment: normal_fragment, normalmap_pars_fragment: normalmap_pars_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, dithering_fragment: dithering_fragment, dithering_pars_fragment: dithering_pars_fragment, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, uv2_pars_fragment: uv2_pars_fragment, uv2_pars_vertex: uv2_pars_vertex, uv2_vertex: uv2_vertex, worldpos_vertex: worldpos_vertex, cube_frag: cube_frag, cube_vert: cube_vert, depth_frag: depth_frag, depth_vert: depth_vert, distanceRGBA_frag: distanceRGBA_frag, distanceRGBA_vert: distanceRGBA_vert, equirect_frag: equirect_frag, equirect_vert: equirect_vert, linedashed_frag: linedashed_frag, linedashed_vert: linedashed_vert, meshbasic_frag: meshbasic_frag, meshbasic_vert: meshbasic_vert, meshlambert_frag: meshlambert_frag, meshlambert_vert: meshlambert_vert, meshphong_frag: meshphong_frag, meshphong_vert: meshphong_vert, meshphysical_frag: meshphysical_frag, meshphysical_vert: meshphysical_vert, normal_frag: normal_frag, normal_vert: normal_vert, points_frag: points_frag, points_vert: points_vert, shadow_frag: shadow_frag, shadow_vert: shadow_vert } /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ */ var ShaderLib = { basic: { uniforms: UniformsUtils.merge([ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog ]), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: UniformsUtils.merge([ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) } } ]), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: UniformsUtils.merge([ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) }, specular: { value: new Color(0x111111) }, shininess: { value: 30 } } ]), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: UniformsUtils.merge([ UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: new Color(0x000000) }, roughness: { value: 0.5 }, metalness: { value: 0.5 }, envMapIntensity: { value: 1 } // temporary } ]), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, points: { uniforms: UniformsUtils.merge([UniformsLib.points, UniformsLib.fog]), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: UniformsUtils.merge([ UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } } ]), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: UniformsUtils.merge([UniformsLib.common, UniformsLib.displacementmap]), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: UniformsUtils.merge([ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1.0 } } ]), vertexShader: ShaderChunk.normal_vert, fragmentShader: ShaderChunk.normal_frag }, /* ------------------------------------------------------------------------- // Cube map shader ------------------------------------------------------------------------- */ cube: { uniforms: { tCube: { value: null }, tFlip: { value: -1 }, opacity: { value: 1.0 } }, vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, equirect: { uniforms: { tEquirect: { value: null } }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: UniformsUtils.merge([ UniformsLib.common, UniformsLib.displacementmap, { referencePosition: { value: new Vector3() }, nearDistance: { value: 1 }, farDistance: { value: 1000 } } ]), vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag }, shadow: { uniforms: UniformsUtils.merge([ UniformsLib.lights, UniformsLib.fog, { color: { value: new Color(0x00000) }, opacity: { value: 1.0 } } ]), vertexShader: ShaderChunk.shadow_vert, fragmentShader: ShaderChunk.shadow_frag } } ShaderLib.physical = { uniforms: UniformsUtils.merge([ ShaderLib.standard.uniforms, { clearCoat: { value: 0 }, clearCoatRoughness: { value: 0 } } ]), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag } /** * @author mrdoob / http://mrdoob.com/ */ function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) this.needsUpdate = true } CanvasTexture.prototype = Object.create(Texture.prototype) CanvasTexture.prototype.constructor = CanvasTexture /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ function WebGLSpriteRenderer(renderer, gl, state, textures, capabilities) { var vertexBuffer, elementBuffer var program, attributes, uniforms var texture // decompose matrixWorld var spritePosition = new Vector3() var spriteRotation = new Quaternion() var spriteScale = new Vector3() function init() { var vertices = new Float32Array([ -0.5, -0.5, 0, 0, 0.5, -0.5, 1, 0, 0.5, 0.5, 1, 1, -0.5, 0.5, 0, 1 ]) var faces = new Uint16Array([0, 1, 2, 0, 2, 3]) vertexBuffer = gl.createBuffer() elementBuffer = gl.createBuffer() gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer) gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW) gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, elementBuffer) gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW) program = createProgram() attributes = { position: gl.getAttribLocation(program, 'position'), uv: gl.getAttribLocation(program, 'uv') } uniforms = { uvOffset: gl.getUniformLocation(program, 'uvOffset'), uvScale: gl.getUniformLocation(program, 'uvScale'), rotation: gl.getUniformLocation(program, 'rotation'), center: gl.getUniformLocation(program, 'center'), scale: gl.getUniformLocation(program, 'scale'), color: gl.getUniformLocation(program, 'color'), map: gl.getUniformLocation(program, 'map'), opacity: gl.getUniformLocation(program, 'opacity'), modelViewMatrix: gl.getUniformLocation(program, 'modelViewMatrix'), projectionMatrix: gl.getUniformLocation(program, 'projectionMatrix'), fogType: gl.getUniformLocation(program, 'fogType'), fogDensity: gl.getUniformLocation(program, 'fogDensity'), fogNear: gl.getUniformLocation(program, 'fogNear'), fogFar: gl.getUniformLocation(program, 'fogFar'), fogColor: gl.getUniformLocation(program, 'fogColor'), fogDepth: gl.getUniformLocation(program, 'fogDepth'), alphaTest: gl.getUniformLocation(program, 'alphaTest') } var canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas') canvas.width = 8 canvas.height = 8 var context = canvas.getContext('2d') context.fillStyle = 'white' context.fillRect(0, 0, 8, 8) texture = new CanvasTexture(canvas) } this.render = function (sprites, scene, camera) { if (sprites.length === 0) return // setup gl if (program === undefined) { init() } state.useProgram(program) state.initAttributes() state.enableAttribute(attributes.position) state.enableAttribute(attributes.uv) state.disableUnusedAttributes() state.disable(gl.CULL_FACE) state.enable(gl.BLEND) gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer) gl.vertexAttribPointer(attributes.position, 2, gl.FLOAT, false, 2 * 8, 0) gl.vertexAttribPointer(attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8) gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, elementBuffer) gl.uniformMatrix4fv(uniforms.projectionMatrix, false, camera.projectionMatrix.elements) state.activeTexture(gl.TEXTURE0) gl.uniform1i(uniforms.map, 0) var oldFogType = 0 var sceneFogType = 0 var fog = scene.fog if (fog) { gl.uniform3f(uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b) if (fog.isFog) { gl.uniform1f(uniforms.fogNear, fog.near) gl.uniform1f(uniforms.fogFar, fog.far) gl.uniform1i(uniforms.fogType, 1) oldFogType = 1 sceneFogType = 1 } else if (fog.isFogExp2) { gl.uniform1f(uniforms.fogDensity, fog.density) gl.uniform1i(uniforms.fogType, 2) oldFogType = 2 sceneFogType = 2 } } else { gl.uniform1i(uniforms.fogType, 0) oldFogType = 0 sceneFogType = 0 } // update positions and sort for (var i = 0, l = sprites.length; i < l; i++) { var sprite = sprites[i] sprite.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, sprite.matrixWorld) sprite.z = -sprite.modelViewMatrix.elements[14] } sprites.sort(painterSortStable) // render all sprites var scale = [] var center = [] for (var i = 0, l = sprites.length; i < l; i++) { var sprite = sprites[i] var material = sprite.material if (material.visible === false) continue sprite.onBeforeRender(renderer, scene, camera, undefined, material, undefined) gl.uniform1f(uniforms.alphaTest, material.alphaTest) gl.uniformMatrix4fv(uniforms.modelViewMatrix, false, sprite.modelViewMatrix.elements) sprite.matrixWorld.decompose(spritePosition, spriteRotation, spriteScale) scale[0] = spriteScale.x scale[1] = spriteScale.y center[0] = sprite.center.x - 0.5 center[1] = sprite.center.y - 0.5 var fogType = 0 if (scene.fog && material.fog) { fogType = sceneFogType } if (oldFogType !== fogType) { gl.uniform1i(uniforms.fogType, fogType) oldFogType = fogType } if (material.map !== null) { gl.uniform2f(uniforms.uvOffset, material.map.offset.x, material.map.offset.y) gl.uniform2f(uniforms.uvScale, material.map.repeat.x, material.map.repeat.y) } else { gl.uniform2f(uniforms.uvOffset, 0, 0) gl.uniform2f(uniforms.uvScale, 1, 1) } gl.uniform1f(uniforms.opacity, material.opacity) gl.uniform3f(uniforms.color, material.color.r, material.color.g, material.color.b) gl.uniform1f(uniforms.rotation, material.rotation) gl.uniform2fv(uniforms.center, center) gl.uniform2fv(uniforms.scale, scale) state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ) state.buffers.depth.setTest(material.depthTest) state.buffers.depth.setMask(material.depthWrite) state.buffers.color.setMask(material.colorWrite) textures.setTexture2D(material.map || texture, 0) gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0) sprite.onAfterRender(renderer, scene, camera, undefined, material, undefined) } // restore gl state.enable(gl.CULL_FACE) state.reset() } function createProgram() { var program = gl.createProgram() var vertexShader = gl.createShader(gl.VERTEX_SHADER) var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER) gl.shaderSource( vertexShader, [ 'precision ' + capabilities.precision + ' float;', '#define SHADER_NAME ' + 'SpriteMaterial', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform float rotation;', 'uniform vec2 center;', 'uniform vec2 scale;', 'uniform vec2 uvOffset;', 'uniform vec2 uvScale;', 'attribute vec2 position;', 'attribute vec2 uv;', 'varying vec2 vUV;', 'varying float fogDepth;', 'void main() {', ' vUV = uvOffset + uv * uvScale;', ' vec2 alignedPosition = ( position - center ) * scale;', ' vec2 rotatedPosition;', ' rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;', ' rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;', ' vec4 mvPosition;', ' mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );', ' mvPosition.xy += rotatedPosition;', ' gl_Position = projectionMatrix * mvPosition;', ' fogDepth = - mvPosition.z;', '}' ].join('\n') ) gl.shaderSource( fragmentShader, [ 'precision ' + capabilities.precision + ' float;', '#define SHADER_NAME ' + 'SpriteMaterial', 'uniform vec3 color;', 'uniform sampler2D map;', 'uniform float opacity;', 'uniform int fogType;', 'uniform vec3 fogColor;', 'uniform float fogDensity;', 'uniform float fogNear;', 'uniform float fogFar;', 'uniform float alphaTest;', 'varying vec2 vUV;', 'varying float fogDepth;', 'void main() {', ' vec4 texture = texture2D( map, vUV );', ' gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );', ' if ( gl_FragColor.a < alphaTest ) discard;', ' if ( fogType > 0 ) {', ' float fogFactor = 0.0;', ' if ( fogType == 1 ) {', ' fogFactor = smoothstep( fogNear, fogFar, fogDepth );', ' } else {', ' const float LOG2 = 1.442695;', ' fogFactor = exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 );', ' fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );', ' }', ' gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );', ' }', '}' ].join('\n') ) gl.compileShader(vertexShader) gl.compileShader(fragmentShader) gl.attachShader(program, vertexShader) gl.attachShader(program, fragmentShader) gl.linkProgram(program) return program } function painterSortStable(a, b) { if (a.renderOrder !== b.renderOrder) { return a.renderOrder - b.renderOrder } else if (a.z !== b.z) { return b.z - a.z } else { return b.id - a.id } } } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ var materialId = 0 function Material() { Object.defineProperty(this, 'id', { value: materialId++ }) this.uuid = _Math.generateUUID() this.name = '' this.type = 'Material' this.fog = true this.lights = true this.blending = NormalBlending this.side = FrontSide this.flatShading = false this.vertexColors = NoColors // THREE.NoColors, THREE.VertexColors, THREE.FaceColors this.opacity = 1 this.transparent = false this.blendSrc = SrcAlphaFactor this.blendDst = OneMinusSrcAlphaFactor this.blendEquation = AddEquation this.blendSrcAlpha = null this.blendDstAlpha = null this.blendEquationAlpha = null this.depthFunc = LessEqualDepth this.depthTest = true this.depthWrite = true this.clippingPlanes = null this.clipIntersection = false this.clipShadows = false this.shadowSide = null this.colorWrite = true this.precision = null // override the renderer's default precision for this material this.polygonOffset = false this.polygonOffsetFactor = 0 this.polygonOffsetUnits = 0 this.dithering = false this.alphaTest = 0 this.premultipliedAlpha = false this.overdraw = 0 // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer this.visible = true this.userData = {} this.needsUpdate = true } Material.prototype = Object.assign(Object.create(EventDispatcher.prototype), { constructor: Material, isMaterial: true, onBeforeCompile: function () {}, setValues: function (values) { if (values === undefined) return for (var key in values) { var newValue = values[key] if (newValue === undefined) { console.warn("THREE.Material: '" + key + "' parameter is undefined.") continue } // for backward compatability if shading is set in the constructor if (key === 'shading') { console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ) this.flatShading = newValue === FlatShading ? true : false continue } var currentValue = this[key] if (currentValue === undefined) { console.warn('THREE.' + this.type + ": '" + key + "' is not a property of this material.") continue } if (currentValue && currentValue.isColor) { currentValue.set(newValue) } else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) { currentValue.copy(newValue) } else if (key === 'overdraw') { // ensure overdraw is backwards-compatible with legacy boolean type this[key] = Number(newValue) } else { this[key] = newValue } } }, toJSON: function (meta) { var isRoot = meta === undefined || typeof meta === 'string' if (isRoot) { meta = { textures: {}, images: {} } } var data = { metadata: { version: 4.5, type: 'Material', generator: 'Material.toJSON' } } // standard Material serialization data.uuid = this.uuid data.type = this.type if (this.name !== '') data.name = this.name if (this.color && this.color.isColor) data.color = this.color.getHex() if (this.roughness !== undefined) data.roughness = this.roughness if (this.metalness !== undefined) data.metalness = this.metalness if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex() if (this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity if (this.specular && this.specular.isColor) data.specular = this.specular.getHex() if (this.shininess !== undefined) data.shininess = this.shininess if (this.clearCoat !== undefined) data.clearCoat = this.clearCoat if (this.clearCoatRoughness !== undefined) data.clearCoatRoughness = this.clearCoatRoughness if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid if (this.lightMap && this.lightMap.isTexture) data.lightMap = this.lightMap.toJSON(meta).uuid if (this.bumpMap && this.bumpMap.isTexture) { data.bumpMap = this.bumpMap.toJSON(meta).uuid data.bumpScale = this.bumpScale } if (this.normalMap && this.normalMap.isTexture) { data.normalMap = this.normalMap.toJSON(meta).uuid data.normalScale = this.normalScale.toArray() } if (this.displacementMap && this.displacementMap.isTexture) { data.displacementMap = this.displacementMap.toJSON(meta).uuid data.displacementScale = this.displacementScale data.displacementBias = this.displacementBias } if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid if (this.envMap && this.envMap.isTexture) { data.envMap = this.envMap.toJSON(meta).uuid data.reflectivity = this.reflectivity // Scale behind envMap } if (this.gradientMap && this.gradientMap.isTexture) { data.gradientMap = this.gradientMap.toJSON(meta).uuid } if (this.size !== undefined) data.size = this.size if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation if (this.blending !== NormalBlending) data.blending = this.blending if (this.flatShading === true) data.flatShading = this.flatShading if (this.side !== FrontSide) data.side = this.side if (this.vertexColors !== NoColors) data.vertexColors = this.vertexColors if (this.opacity < 1) data.opacity = this.opacity if (this.transparent === true) data.transparent = this.transparent data.depthFunc = this.depthFunc data.depthTest = this.depthTest data.depthWrite = this.depthWrite // rotation (SpriteMaterial) if (this.rotation !== 0) data.rotation = this.rotation if (this.linewidth !== 1) data.linewidth = this.linewidth if (this.dashSize !== undefined) data.dashSize = this.dashSize if (this.gapSize !== undefined) data.gapSize = this.gapSize if (this.scale !== undefined) data.scale = this.scale if (this.dithering === true) data.dithering = true if (this.alphaTest > 0) data.alphaTest = this.alphaTest if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha if (this.wireframe === true) data.wireframe = this.wireframe if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin if (this.morphTargets === true) data.morphTargets = true if (this.skinning === true) data.skinning = true if (this.visible === false) data.visible = false if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData // TODO: Copied from Object3D.toJSON function extractFromCache(cache) { var values = [] for (var key in cache) { var data = cache[key] delete data.metadata values.push(data) } return values } if (isRoot) { var textures = extractFromCache(meta.textures) var images = extractFromCache(meta.images) if (textures.length > 0) data.textures = textures if (images.length > 0) data.images = images } return data }, clone: function () { return new this.constructor().copy(this) }, copy: function (source) { this.name = source.name this.fog = source.fog this.lights = source.lights this.blending = source.blending this.side = source.side this.flatShading = source.flatShading this.vertexColors = source.vertexColors this.opacity = source.opacity this.transparent = source.transparent this.blendSrc = source.blendSrc this.blendDst = source.blendDst this.blendEquation = source.blendEquation this.blendSrcAlpha = source.blendSrcAlpha this.blendDstAlpha = source.blendDstAlpha this.blendEquationAlpha = source.blendEquationAlpha this.depthFunc = source.depthFunc this.depthTest = source.depthTest this.depthWrite = source.depthWrite this.colorWrite = source.colorWrite this.precision = source.precision this.polygonOffset = source.polygonOffset this.polygonOffsetFactor = source.polygonOffsetFactor this.polygonOffsetUnits = source.polygonOffsetUnits this.dithering = source.dithering this.alphaTest = source.alphaTest this.premultipliedAlpha = source.premultipliedAlpha this.overdraw = source.overdraw this.visible = source.visible this.userData = JSON.parse(JSON.stringify(source.userData)) this.clipShadows = source.clipShadows this.clipIntersection = source.clipIntersection var srcPlanes = source.clippingPlanes, dstPlanes = null if (srcPlanes !== null) { var n = srcPlanes.length dstPlanes = new Array(n) for (var i = 0; i !== n; ++i) dstPlanes[i] = srcPlanes[i].clone() } this.clippingPlanes = dstPlanes this.shadowSide = source.shadowSide return this }, dispose: function () { this.dispatchEvent({ type: 'dispose' }) } }) /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / https://clara.io * @author WestLangley / http://github.com/WestLangley * * parameters = { * * opacity: , * * map: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * } */ function MeshDepthMaterial(parameters) { Material.call(this) this.type = 'MeshDepthMaterial' this.depthPacking = BasicDepthPacking this.skinning = false this.morphTargets = false this.map = null this.alphaMap = null this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.wireframe = false this.wireframeLinewidth = 1 this.fog = false this.lights = false this.setValues(parameters) } MeshDepthMaterial.prototype = Object.create(Material.prototype) MeshDepthMaterial.prototype.constructor = MeshDepthMaterial MeshDepthMaterial.prototype.isMeshDepthMaterial = true MeshDepthMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.depthPacking = source.depthPacking this.skinning = source.skinning this.morphTargets = source.morphTargets this.map = source.map this.alphaMap = source.alphaMap this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth return this } /** * @author WestLangley / http://github.com/WestLangley * * parameters = { * * referencePosition: , * nearDistance: , * farDistance: , * * skinning: , * morphTargets: , * * map: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: * * } */ function MeshDistanceMaterial(parameters) { Material.call(this) this.type = 'MeshDistanceMaterial' this.referencePosition = new Vector3() this.nearDistance = 1 this.farDistance = 1000 this.skinning = false this.morphTargets = false this.map = null this.alphaMap = null this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.fog = false this.lights = false this.setValues(parameters) } MeshDistanceMaterial.prototype = Object.create(Material.prototype) MeshDistanceMaterial.prototype.constructor = MeshDistanceMaterial MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true MeshDistanceMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.referencePosition.copy(source.referencePosition) this.nearDistance = source.nearDistance this.farDistance = source.farDistance this.skinning = source.skinning this.morphTargets = source.morphTargets this.map = source.map this.alphaMap = source.alphaMap this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias return this } /** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley */ function Box3(min, max) { this.min = min !== undefined ? min : new Vector3(+Infinity, +Infinity, +Infinity) this.max = max !== undefined ? max : new Vector3(-Infinity, -Infinity, -Infinity) } Object.assign(Box3.prototype, { isBox3: true, set: function (min, max) { this.min.copy(min) this.max.copy(max) return this }, setFromArray: function (array) { var minX = +Infinity var minY = +Infinity var minZ = +Infinity var maxX = -Infinity var maxY = -Infinity var maxZ = -Infinity for (var i = 0, l = array.length; i < l; i += 3) { var x = array[i] var y = array[i + 1] var z = array[i + 2] if (x < minX) minX = x if (y < minY) minY = y if (z < minZ) minZ = z if (x > maxX) maxX = x if (y > maxY) maxY = y if (z > maxZ) maxZ = z } this.min.set(minX, minY, minZ) this.max.set(maxX, maxY, maxZ) return this }, setFromBufferAttribute: function (attribute) { var minX = +Infinity var minY = +Infinity var minZ = +Infinity var maxX = -Infinity var maxY = -Infinity var maxZ = -Infinity for (var i = 0, l = attribute.count; i < l; i++) { var x = attribute.getX(i) var y = attribute.getY(i) var z = attribute.getZ(i) if (x < minX) minX = x if (y < minY) minY = y if (z < minZ) minZ = z if (x > maxX) maxX = x if (y > maxY) maxY = y if (z > maxZ) maxZ = z } this.min.set(minX, minY, minZ) this.max.set(maxX, maxY, maxZ) return this }, setFromPoints: function (points) { this.makeEmpty() for (var i = 0, il = points.length; i < il; i++) { this.expandByPoint(points[i]) } return this }, setFromCenterAndSize: (function () { var v1 = new Vector3() return function setFromCenterAndSize(center, size) { var halfSize = v1.copy(size).multiplyScalar(0.5) this.min.copy(center).sub(halfSize) this.max.copy(center).add(halfSize) return this } })(), setFromObject: function (object) { this.makeEmpty() return this.expandByObject(object) }, clone: function () { return new this.constructor().copy(this) }, copy: function (box) { this.min.copy(box.min) this.max.copy(box.max) return this }, makeEmpty: function () { this.min.x = this.min.y = this.min.z = +Infinity this.max.x = this.max.y = this.max.z = -Infinity return this }, isEmpty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z }, getCenter: function (optionalTarget) { var result = optionalTarget || new Vector3() return this.isEmpty() ? result.set(0, 0, 0) : result.addVectors(this.min, this.max).multiplyScalar(0.5) }, getSize: function (optionalTarget) { var result = optionalTarget || new Vector3() return this.isEmpty() ? result.set(0, 0, 0) : result.subVectors(this.max, this.min) }, expandByPoint: function (point) { this.min.min(point) this.max.max(point) return this }, expandByVector: function (vector) { this.min.sub(vector) this.max.add(vector) return this }, expandByScalar: function (scalar) { this.min.addScalar(-scalar) this.max.addScalar(scalar) return this }, expandByObject: (function () { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms var scope, i, l var v1 = new Vector3() function traverse(node) { var geometry = node.geometry if (geometry !== undefined) { if (geometry.isGeometry) { var vertices = geometry.vertices for (i = 0, l = vertices.length; i < l; i++) { v1.copy(vertices[i]) v1.applyMatrix4(node.matrixWorld) scope.expandByPoint(v1) } } else if (geometry.isBufferGeometry) { var attribute = geometry.attributes.position if (attribute !== undefined) { for (i = 0, l = attribute.count; i < l; i++) { v1.fromBufferAttribute(attribute, i).applyMatrix4(node.matrixWorld) scope.expandByPoint(v1) } } } } } return function expandByObject(object) { scope = this object.updateMatrixWorld(true) object.traverse(traverse) return this } })(), containsPoint: function (point) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true }, containsBox: function (box) { return ( this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z ) }, getParameter: function (point, optionalTarget) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new Vector3() return result.set( (point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z) ) }, intersectsBox: function (box) { // using 6 splitting planes to rule out intersections. return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true }, intersectsSphere: (function () { var closestPoint = new Vector3() return function intersectsSphere(sphere) { // Find the point on the AABB closest to the sphere center. this.clampPoint(sphere.center, closestPoint) // If that point is inside the sphere, the AABB and sphere intersect. return closestPoint.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius } })(), intersectsPlane: function (plane) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. var min, max if (plane.normal.x > 0) { min = plane.normal.x * this.min.x max = plane.normal.x * this.max.x } else { min = plane.normal.x * this.max.x max = plane.normal.x * this.min.x } if (plane.normal.y > 0) { min += plane.normal.y * this.min.y max += plane.normal.y * this.max.y } else { min += plane.normal.y * this.max.y max += plane.normal.y * this.min.y } if (plane.normal.z > 0) { min += plane.normal.z * this.min.z max += plane.normal.z * this.max.z } else { min += plane.normal.z * this.max.z max += plane.normal.z * this.min.z } return min <= plane.constant && max >= plane.constant }, intersectsTriangle: (function () { // triangle centered vertices var v0 = new Vector3() var v1 = new Vector3() var v2 = new Vector3() // triangle edge vectors var f0 = new Vector3() var f1 = new Vector3() var f2 = new Vector3() var testAxis = new Vector3() var center = new Vector3() var extents = new Vector3() var triangleNormal = new Vector3() function satForAxes(axes) { var i, j for (i = 0, j = axes.length - 3; i <= j; i += 3) { testAxis.fromArray(axes, i) // project the aabb onto the seperating axis var r = extents.x * Math.abs(testAxis.x) + extents.y * Math.abs(testAxis.y) + extents.z * Math.abs(testAxis.z) // project all 3 vertices of the triangle onto the seperating axis var p0 = v0.dot(testAxis) var p1 = v1.dot(testAxis) var p2 = v2.dot(testAxis) // actual test, basically see if either of the most extreme of the triangle points intersects r if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is seperating and we can exit return false } } return true } return function intersectsTriangle(triangle) { if (this.isEmpty()) { return false } // compute box center and extents this.getCenter(center) extents.subVectors(this.max, center) // translate triangle to aabb origin v0.subVectors(triangle.a, center) v1.subVectors(triangle.b, center) v2.subVectors(triangle.c, center) // compute edge vectors for triangle f0.subVectors(v1, v0) f1.subVectors(v2, v1) f2.subVectors(v0, v2) // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) var axes = [ 0, -f0.z, f0.y, 0, -f1.z, f1.y, 0, -f2.z, f2.y, f0.z, 0, -f0.x, f1.z, 0, -f1.x, f2.z, 0, -f2.x, -f0.y, f0.x, 0, -f1.y, f1.x, 0, -f2.y, f2.x, 0 ] if (!satForAxes(axes)) { return false } // test 3 face normals from the aabb axes = [1, 0, 0, 0, 1, 0, 0, 0, 1] if (!satForAxes(axes)) { return false } // finally testing the face normal of the triangle // use already existing triangle edge vectors here triangleNormal.crossVectors(f0, f1) axes = [triangleNormal.x, triangleNormal.y, triangleNormal.z] return satForAxes(axes) } })(), clampPoint: function (point, optionalTarget) { var result = optionalTarget || new Vector3() return result.copy(point).clamp(this.min, this.max) }, distanceToPoint: (function () { var v1 = new Vector3() return function distanceToPoint(point) { var clampedPoint = v1.copy(point).clamp(this.min, this.max) return clampedPoint.sub(point).length() } })(), getBoundingSphere: (function () { var v1 = new Vector3() return function getBoundingSphere(optionalTarget) { var result = optionalTarget || new Sphere() this.getCenter(result.center) result.radius = this.getSize(v1).length() * 0.5 return result } })(), intersect: function (box) { this.min.max(box.min) this.max.min(box.max) // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if (this.isEmpty()) this.makeEmpty() return this }, union: function (box) { this.min.min(box.min) this.max.max(box.max) return this }, applyMatrix4: (function () { var points = [ new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3(), new Vector3() ] return function applyMatrix4(matrix) { // transform of empty box is an empty box. if (this.isEmpty()) return this // NOTE: I am using a binary pattern to specify all 2^3 combinations below points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix) // 000 points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix) // 001 points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix) // 010 points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix) // 011 points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix) // 100 points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix) // 101 points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix) // 110 points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix) // 111 this.setFromPoints(points) return this } })(), translate: function (offset) { this.min.add(offset) this.max.add(offset) return this }, equals: function (box) { return box.min.equals(this.min) && box.max.equals(this.max) } }) /** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */ function Sphere(center, radius) { this.center = center !== undefined ? center : new Vector3() this.radius = radius !== undefined ? radius : 0 } Object.assign(Sphere.prototype, { set: function (center, radius) { this.center.copy(center) this.radius = radius return this }, setFromPoints: (function () { var box = new Box3() return function setFromPoints(points, optionalCenter) { var center = this.center if (optionalCenter !== undefined) { center.copy(optionalCenter) } else { box.setFromPoints(points).getCenter(center) } var maxRadiusSq = 0 for (var i = 0, il = points.length; i < il; i++) { maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i])) } this.radius = Math.sqrt(maxRadiusSq) return this } })(), clone: function () { return new this.constructor().copy(this) }, copy: function (sphere) { this.center.copy(sphere.center) this.radius = sphere.radius return this }, empty: function () { return this.radius <= 0 }, containsPoint: function (point) { return point.distanceToSquared(this.center) <= this.radius * this.radius }, distanceToPoint: function (point) { return point.distanceTo(this.center) - this.radius }, intersectsSphere: function (sphere) { var radiusSum = this.radius + sphere.radius return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum }, intersectsBox: function (box) { return box.intersectsSphere(this) }, intersectsPlane: function (plane) { return Math.abs(plane.distanceToPoint(this.center)) <= this.radius }, clampPoint: function (point, optionalTarget) { var deltaLengthSq = this.center.distanceToSquared(point) var result = optionalTarget || new Vector3() result.copy(point) if (deltaLengthSq > this.radius * this.radius) { result.sub(this.center).normalize() result.multiplyScalar(this.radius).add(this.center) } return result }, getBoundingBox: function (optionalTarget) { var box = optionalTarget || new Box3() box.set(this.center, this.center) box.expandByScalar(this.radius) return box }, applyMatrix4: function (matrix) { this.center.applyMatrix4(matrix) this.radius = this.radius * matrix.getMaxScaleOnAxis() return this }, translate: function (offset) { this.center.add(offset) return this }, equals: function (sphere) { return sphere.center.equals(this.center) && sphere.radius === this.radius } }) /** * @author bhouston / http://clara.io */ function Plane(normal, constant) { // normal is assumed to be normalized this.normal = normal !== undefined ? normal : new Vector3(1, 0, 0) this.constant = constant !== undefined ? constant : 0 } Object.assign(Plane.prototype, { set: function (normal, constant) { this.normal.copy(normal) this.constant = constant return this }, setComponents: function (x, y, z, w) { this.normal.set(x, y, z) this.constant = w return this }, setFromNormalAndCoplanarPoint: function (normal, point) { this.normal.copy(normal) this.constant = -point.dot(this.normal) return this }, setFromCoplanarPoints: (function () { var v1 = new Vector3() var v2 = new Vector3() return function setFromCoplanarPoints(a, b, c) { var normal = v1.subVectors(c, b).cross(v2.subVectors(a, b)).normalize() // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint(normal, a) return this } })(), clone: function () { return new this.constructor().copy(this) }, copy: function (plane) { this.normal.copy(plane.normal) this.constant = plane.constant return this }, normalize: function () { // Note: will lead to a divide by zero if the plane is invalid. var inverseNormalLength = 1.0 / this.normal.length() this.normal.multiplyScalar(inverseNormalLength) this.constant *= inverseNormalLength return this }, negate: function () { this.constant *= -1 this.normal.negate() return this }, distanceToPoint: function (point) { return this.normal.dot(point) + this.constant }, distanceToSphere: function (sphere) { return this.distanceToPoint(sphere.center) - sphere.radius }, projectPoint: function (point, optionalTarget) { var result = optionalTarget || new Vector3() return result.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point) }, intersectLine: (function () { var v1 = new Vector3() return function intersectLine(line, optionalTarget) { var result = optionalTarget || new Vector3() var direction = line.delta(v1) var denominator = this.normal.dot(direction) if (denominator === 0) { // line is coplanar, return origin if (this.distanceToPoint(line.start) === 0) { return result.copy(line.start) } // Unsure if this is the correct method to handle this case. return undefined } var t = -(line.start.dot(this.normal) + this.constant) / denominator if (t < 0 || t > 1) { return undefined } return result.copy(direction).multiplyScalar(t).add(line.start) } })(), intersectsLine: function (line) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. var startSign = this.distanceToPoint(line.start) var endSign = this.distanceToPoint(line.end) return (startSign < 0 && endSign > 0) || (endSign < 0 && startSign > 0) }, intersectsBox: function (box) { return box.intersectsPlane(this) }, intersectsSphere: function (sphere) { return sphere.intersectsPlane(this) }, coplanarPoint: function (optionalTarget) { var result = optionalTarget || new Vector3() return result.copy(this.normal).multiplyScalar(-this.constant) }, applyMatrix4: (function () { var v1 = new Vector3() var m1 = new Matrix3() return function applyMatrix4(matrix, optionalNormalMatrix) { var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix(matrix) var referencePoint = this.coplanarPoint(v1).applyMatrix4(matrix) var normal = this.normal.applyMatrix3(normalMatrix).normalize() this.constant = -referencePoint.dot(normal) return this } })(), translate: function (offset) { this.constant -= offset.dot(this.normal) return this }, equals: function (plane) { return plane.normal.equals(this.normal) && plane.constant === this.constant } }) /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author bhouston / http://clara.io */ function Frustum(p0, p1, p2, p3, p4, p5) { this.planes = [ p0 !== undefined ? p0 : new Plane(), p1 !== undefined ? p1 : new Plane(), p2 !== undefined ? p2 : new Plane(), p3 !== undefined ? p3 : new Plane(), p4 !== undefined ? p4 : new Plane(), p5 !== undefined ? p5 : new Plane() ] } Object.assign(Frustum.prototype, { set: function (p0, p1, p2, p3, p4, p5) { var planes = this.planes planes[0].copy(p0) planes[1].copy(p1) planes[2].copy(p2) planes[3].copy(p3) planes[4].copy(p4) planes[5].copy(p5) return this }, clone: function () { return new this.constructor().copy(this) }, copy: function (frustum) { var planes = this.planes for (var i = 0; i < 6; i++) { planes[i].copy(frustum.planes[i]) } return this }, setFromMatrix: function (m) { var planes = this.planes var me = m.elements var me0 = me[0], me1 = me[1], me2 = me[2], me3 = me[3] var me4 = me[4], me5 = me[5], me6 = me[6], me7 = me[7] var me8 = me[8], me9 = me[9], me10 = me[10], me11 = me[11] var me12 = me[12], me13 = me[13], me14 = me[14], me15 = me[15] planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize() planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize() planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize() planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize() planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize() planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize() return this }, intersectsObject: (function () { var sphere = new Sphere() return function intersectsObject(object) { var geometry = object.geometry if (geometry.boundingSphere === null) geometry.computeBoundingSphere() sphere.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld) return this.intersectsSphere(sphere) } })(), intersectsSprite: (function () { var sphere = new Sphere() return function intersectsSprite(sprite) { sphere.center.set(0, 0, 0) sphere.radius = 0.7071067811865476 sphere.applyMatrix4(sprite.matrixWorld) return this.intersectsSphere(sphere) } })(), intersectsSphere: function (sphere) { var planes = this.planes var center = sphere.center var negRadius = -sphere.radius for (var i = 0; i < 6; i++) { var distance = planes[i].distanceToPoint(center) if (distance < negRadius) { return false } } return true }, intersectsBox: (function () { var p1 = new Vector3(), p2 = new Vector3() return function intersectsBox(box) { var planes = this.planes for (var i = 0; i < 6; i++) { var plane = planes[i] p1.x = plane.normal.x > 0 ? box.min.x : box.max.x p2.x = plane.normal.x > 0 ? box.max.x : box.min.x p1.y = plane.normal.y > 0 ? box.min.y : box.max.y p2.y = plane.normal.y > 0 ? box.max.y : box.min.y p1.z = plane.normal.z > 0 ? box.min.z : box.max.z p2.z = plane.normal.z > 0 ? box.max.z : box.min.z var d1 = plane.distanceToPoint(p1) var d2 = plane.distanceToPoint(p2) // if both outside plane, no intersection if (d1 < 0 && d2 < 0) { return false } } return true } })(), containsPoint: function (point) { var planes = this.planes for (var i = 0; i < 6; i++) { if (planes[i].distanceToPoint(point) < 0) { return false } } return true } }) /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function WebGLShadowMap(_renderer, _objects, maxTextureSize) { var _frustum = new Frustum(), _projScreenMatrix = new Matrix4(), _shadowMapSize = new Vector2(), _maxShadowMapSize = new Vector2(maxTextureSize, maxTextureSize), _lookTarget = new Vector3(), _lightPositionWorld = new Vector3(), _MorphingFlag = 1, _SkinningFlag = 2, _NumberOfMaterialVariants = (_MorphingFlag | _SkinningFlag) + 1, _depthMaterials = new Array(_NumberOfMaterialVariants), _distanceMaterials = new Array(_NumberOfMaterialVariants), _materialCache = {} var shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide } var cubeDirections = [ new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0) ] var cubeUps = [ new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1) ] var cube2DViewPorts = [ new Vector4(), new Vector4(), new Vector4(), new Vector4(), new Vector4(), new Vector4() ] // init for (var i = 0; i !== _NumberOfMaterialVariants; ++i) { var useMorphing = (i & _MorphingFlag) !== 0 var useSkinning = (i & _SkinningFlag) !== 0 var depthMaterial = new MeshDepthMaterial({ depthPacking: RGBADepthPacking, morphTargets: useMorphing, skinning: useSkinning }) _depthMaterials[i] = depthMaterial // var distanceMaterial = new MeshDistanceMaterial({ morphTargets: useMorphing, skinning: useSkinning }) _distanceMaterials[i] = distanceMaterial } // var scope = this this.enabled = false this.autoUpdate = true this.needsUpdate = false this.type = PCFShadowMap this.render = function (lights, scene, camera) { if (scope.enabled === false) return if (scope.autoUpdate === false && scope.needsUpdate === false) return if (lights.length === 0) return // TODO Clean up (needed in case of contextlost) var _gl = _renderer.context var _state = _renderer.state // Set GL state for depth map. _state.disable(_gl.BLEND) _state.buffers.color.setClear(1, 1, 1, 1) _state.buffers.depth.setTest(true) _state.setScissorTest(false) // render depth map var faceCount for (var i = 0, il = lights.length; i < il; i++) { var light = lights[i] var shadow = light.shadow var isPointLight = light && light.isPointLight if (shadow === undefined) { console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.') continue } var shadowCamera = shadow.camera _shadowMapSize.copy(shadow.mapSize) _shadowMapSize.min(_maxShadowMapSize) if (isPointLight) { var vpWidth = _shadowMapSize.x var vpHeight = _shadowMapSize.y // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X cube2DViewPorts[0].set(vpWidth * 2, vpHeight, vpWidth, vpHeight) // negative X cube2DViewPorts[1].set(0, vpHeight, vpWidth, vpHeight) // positive Z cube2DViewPorts[2].set(vpWidth * 3, vpHeight, vpWidth, vpHeight) // negative Z cube2DViewPorts[3].set(vpWidth, vpHeight, vpWidth, vpHeight) // positive Y cube2DViewPorts[4].set(vpWidth * 3, 0, vpWidth, vpHeight) // negative Y cube2DViewPorts[5].set(vpWidth, 0, vpWidth, vpHeight) _shadowMapSize.x *= 4.0 _shadowMapSize.y *= 2.0 } if (shadow.map === null) { var pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat } shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars) shadow.map.texture.name = light.name + '.shadowMap' shadowCamera.updateProjectionMatrix() } if (shadow.isSpotLightShadow) { shadow.update(light) } var shadowMap = shadow.map var shadowMatrix = shadow.matrix _lightPositionWorld.setFromMatrixPosition(light.matrixWorld) shadowCamera.position.copy(_lightPositionWorld) if (isPointLight) { faceCount = 6 // for point lights we set the shadow matrix to be a translation-only matrix // equal to inverse of the light's position shadowMatrix.makeTranslation( -_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z ) } else { faceCount = 1 _lookTarget.setFromMatrixPosition(light.target.matrixWorld) shadowCamera.lookAt(_lookTarget) shadowCamera.updateMatrixWorld() // compute shadow matrix shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ) shadowMatrix.multiply(shadowCamera.projectionMatrix) shadowMatrix.multiply(shadowCamera.matrixWorldInverse) } _renderer.setRenderTarget(shadowMap) _renderer.clear() // render shadow map for each cube face (if omni-directional) or // run a single pass if not for (var face = 0; face < faceCount; face++) { if (isPointLight) { _lookTarget.copy(shadowCamera.position) _lookTarget.add(cubeDirections[face]) shadowCamera.up.copy(cubeUps[face]) shadowCamera.lookAt(_lookTarget) shadowCamera.updateMatrixWorld() var vpDimensions = cube2DViewPorts[face] _state.viewport(vpDimensions) } // update camera matrices and frustum _projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ) _frustum.setFromMatrix(_projScreenMatrix) // set object matrices & frustum culling renderObject(scene, camera, shadowCamera, isPointLight) } } scope.needsUpdate = false } function getDepthMaterial( object, material, isPointLight, lightPositionWorld, shadowCameraNear, shadowCameraFar ) { var geometry = object.geometry var result = null var materialVariants = _depthMaterials var customMaterial = object.customDepthMaterial if (isPointLight) { materialVariants = _distanceMaterials customMaterial = object.customDistanceMaterial } if (!customMaterial) { var useMorphing = false if (material.morphTargets) { if (geometry && geometry.isBufferGeometry) { useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0 } else if (geometry && geometry.isGeometry) { useMorphing = geometry.morphTargets && geometry.morphTargets.length > 0 } } if (object.isSkinnedMesh && material.skinning === false) { console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object ) } var useSkinning = object.isSkinnedMesh && material.skinning var variantIndex = 0 if (useMorphing) variantIndex |= _MorphingFlag if (useSkinning) variantIndex |= _SkinningFlag result = materialVariants[variantIndex] } else { result = customMaterial } if ( _renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 ) { // in this case we need a unique material instance reflecting the // appropriate state var keyA = result.uuid, keyB = material.uuid var materialsForVariant = _materialCache[keyA] if (materialsForVariant === undefined) { materialsForVariant = {} _materialCache[keyA] = materialsForVariant } var cachedMaterial = materialsForVariant[keyB] if (cachedMaterial === undefined) { cachedMaterial = result.clone() materialsForVariant[keyB] = cachedMaterial } result = cachedMaterial } result.visible = material.visible result.wireframe = material.wireframe result.side = material.shadowSide != null ? material.shadowSide : shadowSide[material.side] result.clipShadows = material.clipShadows result.clippingPlanes = material.clippingPlanes result.clipIntersection = material.clipIntersection result.wireframeLinewidth = material.wireframeLinewidth result.linewidth = material.linewidth if (isPointLight && result.isMeshDistanceMaterial) { result.referencePosition.copy(lightPositionWorld) result.nearDistance = shadowCameraNear result.farDistance = shadowCameraFar } return result } function renderObject(object, camera, shadowCamera, isPointLight) { if (object.visible === false) return var visible = object.layers.test(camera.layers) if (visible && (object.isMesh || object.isLine || object.isPoints)) { if (object.castShadow && (!object.frustumCulled || _frustum.intersectsObject(object))) { object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ) var geometry = _objects.update(object) var material = object.material if (Array.isArray(material)) { var groups = geometry.groups for (var k = 0, kl = groups.length; k < kl; k++) { var group = groups[k] var groupMaterial = material[group.materialIndex] if (groupMaterial && groupMaterial.visible) { var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld, shadowCamera.near, shadowCamera.far ) _renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ) } } } else if (material.visible) { var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld, shadowCamera.near, shadowCamera.far ) _renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null) } } } var children = object.children for (var i = 0, l = children.length; i < l; i++) { renderObject(children[i], camera, shadowCamera, isPointLight) } } } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLAttributes(gl) { var buffers = {} function createBuffer(attribute, bufferType) { var array = attribute.array var usage = attribute.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW var buffer = gl.createBuffer() gl.bindBuffer(bufferType, buffer) gl.bufferData(bufferType, array, usage) attribute.onUploadCallback() var type = gl.FLOAT if (array instanceof Float32Array) { type = gl.FLOAT } else if (array instanceof Float64Array) { console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.') } else if (array instanceof Uint16Array) { type = gl.UNSIGNED_SHORT } else if (array instanceof Int16Array) { type = gl.SHORT } else if (array instanceof Uint32Array) { type = gl.UNSIGNED_INT } else if (array instanceof Int32Array) { type = gl.INT } else if (array instanceof Int8Array) { type = gl.BYTE } else if (array instanceof Uint8Array) { type = gl.UNSIGNED_BYTE } return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version } } function updateBuffer(buffer, attribute, bufferType) { var array = attribute.array var updateRange = attribute.updateRange gl.bindBuffer(bufferType, buffer) if (attribute.dynamic === false) { gl.bufferData(bufferType, array, gl.STATIC_DRAW) } else if (updateRange.count === -1) { // Not using update ranges gl.bufferSubData(bufferType, 0, array) } else if (updateRange.count === 0) { console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' ) } else { gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count) ) updateRange.count = -1 // reset range } } // function get(attribute) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data return buffers[attribute.uuid] } function remove(attribute) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data var data = buffers[attribute.uuid] if (data) { gl.deleteBuffer(data.buffer) delete buffers[attribute.uuid] } } function update(attribute, bufferType) { if (attribute.isInterleavedBufferAttribute) attribute = attribute.data var data = buffers[attribute.uuid] if (data === undefined) { buffers[attribute.uuid] = createBuffer(attribute, bufferType) } else if (data.version < attribute.version) { updateBuffer(data.buffer, attribute, bufferType) data.version = attribute.version } } return { get: get, remove: remove, update: update } } /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * @author bhouston / http://clara.io */ function Euler(x, y, z, order) { this._x = x || 0 this._y = y || 0 this._z = z || 0 this._order = order || Euler.DefaultOrder } Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX'] Euler.DefaultOrder = 'XYZ' Object.defineProperties(Euler.prototype, { x: { get: function () { return this._x }, set: function (value) { this._x = value this.onChangeCallback() } }, y: { get: function () { return this._y }, set: function (value) { this._y = value this.onChangeCallback() } }, z: { get: function () { return this._z }, set: function (value) { this._z = value this.onChangeCallback() } }, order: { get: function () { return this._order }, set: function (value) { this._order = value this.onChangeCallback() } } }) Object.assign(Euler.prototype, { isEuler: true, set: function (x, y, z, order) { this._x = x this._y = y this._z = z this._order = order || this._order this.onChangeCallback() return this }, clone: function () { return new this.constructor(this._x, this._y, this._z, this._order) }, copy: function (euler) { this._x = euler._x this._y = euler._y this._z = euler._z this._order = euler._order this.onChangeCallback() return this }, setFromRotationMatrix: function (m, order, update) { var clamp = _Math.clamp // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) var te = m.elements var m11 = te[0], m12 = te[4], m13 = te[8] var m21 = te[1], m22 = te[5], m23 = te[9] var m31 = te[2], m32 = te[6], m33 = te[10] order = order || this._order if (order === 'XYZ') { this._y = Math.asin(clamp(m13, -1, 1)) if (Math.abs(m13) < 0.99999) { this._x = Math.atan2(-m23, m33) this._z = Math.atan2(-m12, m11) } else { this._x = Math.atan2(m32, m22) this._z = 0 } } else if (order === 'YXZ') { this._x = Math.asin(-clamp(m23, -1, 1)) if (Math.abs(m23) < 0.99999) { this._y = Math.atan2(m13, m33) this._z = Math.atan2(m21, m22) } else { this._y = Math.atan2(-m31, m11) this._z = 0 } } else if (order === 'ZXY') { this._x = Math.asin(clamp(m32, -1, 1)) if (Math.abs(m32) < 0.99999) { this._y = Math.atan2(-m31, m33) this._z = Math.atan2(-m12, m22) } else { this._y = 0 this._z = Math.atan2(m21, m11) } } else if (order === 'ZYX') { this._y = Math.asin(-clamp(m31, -1, 1)) if (Math.abs(m31) < 0.99999) { this._x = Math.atan2(m32, m33) this._z = Math.atan2(m21, m11) } else { this._x = 0 this._z = Math.atan2(-m12, m22) } } else if (order === 'YZX') { this._z = Math.asin(clamp(m21, -1, 1)) if (Math.abs(m21) < 0.99999) { this._x = Math.atan2(-m23, m22) this._y = Math.atan2(-m31, m11) } else { this._x = 0 this._y = Math.atan2(m13, m33) } } else if (order === 'XZY') { this._z = Math.asin(-clamp(m12, -1, 1)) if (Math.abs(m12) < 0.99999) { this._x = Math.atan2(m32, m22) this._y = Math.atan2(m13, m11) } else { this._x = Math.atan2(-m23, m33) this._y = 0 } } else { console.warn('THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order) } this._order = order if (update !== false) this.onChangeCallback() return this }, setFromQuaternion: (function () { var matrix = new Matrix4() return function setFromQuaternion(q, order, update) { matrix.makeRotationFromQuaternion(q) return this.setFromRotationMatrix(matrix, order, update) } })(), setFromVector3: function (v, order) { return this.set(v.x, v.y, v.z, order || this._order) }, reorder: (function () { // WARNING: this discards revolution information -bhouston var q = new Quaternion() return function reorder(newOrder) { q.setFromEuler(this) return this.setFromQuaternion(q, newOrder) } })(), equals: function (euler) { return ( euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order ) }, fromArray: function (array) { this._x = array[0] this._y = array[1] this._z = array[2] if (array[3] !== undefined) this._order = array[3] this.onChangeCallback() return this }, toArray: function (array, offset) { if (array === undefined) array = [] if (offset === undefined) offset = 0 array[offset] = this._x array[offset + 1] = this._y array[offset + 2] = this._z array[offset + 3] = this._order return array }, toVector3: function (optionalResult) { if (optionalResult) { return optionalResult.set(this._x, this._y, this._z) } else { return new Vector3(this._x, this._y, this._z) } }, onChange: function (callback) { this.onChangeCallback = callback return this }, onChangeCallback: function () {} }) /** * @author mrdoob / http://mrdoob.com/ */ function Layers() { this.mask = 1 | 0 } Object.assign(Layers.prototype, { set: function (channel) { this.mask = (1 << channel) | 0 }, enable: function (channel) { this.mask |= (1 << channel) | 0 }, toggle: function (channel) { this.mask ^= (1 << channel) | 0 }, disable: function (channel) { this.mask &= ~((1 << channel) | 0) }, test: function (layers) { return (this.mask & layers.mask) !== 0 } }) /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author WestLangley / http://github.com/WestLangley * @author elephantatwork / www.elephantatwork.ch */ var object3DId = 0 function Object3D() { Object.defineProperty(this, 'id', { value: object3DId++ }) this.uuid = _Math.generateUUID() this.name = '' this.type = 'Object3D' this.parent = null this.children = [] this.up = Object3D.DefaultUp.clone() var position = new Vector3() var rotation = new Euler() var quaternion = new Quaternion() var scale = new Vector3(1, 1, 1) function onRotationChange() { quaternion.setFromEuler(rotation, false) } function onQuaternionChange() { rotation.setFromQuaternion(quaternion, undefined, false) } rotation.onChange(onRotationChange) quaternion.onChange(onQuaternionChange) Object.defineProperties(this, { position: { enumerable: true, value: position }, rotation: { enumerable: true, value: rotation }, quaternion: { enumerable: true, value: quaternion }, scale: { enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } }) this.matrix = new Matrix4() this.matrixWorld = new Matrix4() this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate this.matrixWorldNeedsUpdate = false this.layers = new Layers() this.visible = true this.castShadow = false this.receiveShadow = false this.frustumCulled = true this.renderOrder = 0 this.userData = {} } Object3D.DefaultUp = new Vector3(0, 1, 0) Object3D.DefaultMatrixAutoUpdate = true Object3D.prototype = Object.assign(Object.create(EventDispatcher.prototype), { constructor: Object3D, isObject3D: true, onBeforeRender: function () {}, onAfterRender: function () {}, applyMatrix: function (matrix) { this.matrix.multiplyMatrices(matrix, this.matrix) this.matrix.decompose(this.position, this.quaternion, this.scale) }, applyQuaternion: function (q) { this.quaternion.premultiply(q) return this }, setRotationFromAxisAngle: function (axis, angle) { // assumes axis is normalized this.quaternion.setFromAxisAngle(axis, angle) }, setRotationFromEuler: function (euler) { this.quaternion.setFromEuler(euler, true) }, setRotationFromMatrix: function (m) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix(m) }, setRotationFromQuaternion: function (q) { // assumes q is normalized this.quaternion.copy(q) }, rotateOnAxis: (function () { // rotate object on axis in object space // axis is assumed to be normalized var q1 = new Quaternion() return function rotateOnAxis(axis, angle) { q1.setFromAxisAngle(axis, angle) this.quaternion.multiply(q1) return this } })(), rotateOnWorldAxis: (function () { // rotate object on axis in world space // axis is assumed to be normalized // method assumes no rotated parent var q1 = new Quaternion() return function rotateOnWorldAxis(axis, angle) { q1.setFromAxisAngle(axis, angle) this.quaternion.premultiply(q1) return this } })(), rotateX: (function () { var v1 = new Vector3(1, 0, 0) return function rotateX(angle) { return this.rotateOnAxis(v1, angle) } })(), rotateY: (function () { var v1 = new Vector3(0, 1, 0) return function rotateY(angle) { return this.rotateOnAxis(v1, angle) } })(), rotateZ: (function () { var v1 = new Vector3(0, 0, 1) return function rotateZ(angle) { return this.rotateOnAxis(v1, angle) } })(), translateOnAxis: (function () { // translate object by distance along axis in object space // axis is assumed to be normalized var v1 = new Vector3() return function translateOnAxis(axis, distance) { v1.copy(axis).applyQuaternion(this.quaternion) this.position.add(v1.multiplyScalar(distance)) return this } })(), translateX: (function () { var v1 = new Vector3(1, 0, 0) return function translateX(distance) { return this.translateOnAxis(v1, distance) } })(), translateY: (function () { var v1 = new Vector3(0, 1, 0) return function translateY(distance) { return this.translateOnAxis(v1, distance) } })(), translateZ: (function () { var v1 = new Vector3(0, 0, 1) return function translateZ(distance) { return this.translateOnAxis(v1, distance) } })(), localToWorld: function (vector) { return vector.applyMatrix4(this.matrixWorld) }, worldToLocal: (function () { var m1 = new Matrix4() return function worldToLocal(vector) { return vector.applyMatrix4(m1.getInverse(this.matrixWorld)) } })(), lookAt: (function () { // This method does not support objects with rotated and/or translated parent(s) var m1 = new Matrix4() var vector = new Vector3() return function lookAt(x, y, z) { if (x.isVector3) { vector.copy(x) } else { vector.set(x, y, z) } if (this.isCamera) { m1.lookAt(this.position, vector, this.up) } else { m1.lookAt(vector, this.position, this.up) } this.quaternion.setFromRotationMatrix(m1) } })(), add: function (object) { if (arguments.length > 1) { for (var i = 0; i < arguments.length; i++) { this.add(arguments[i]) } return this } if (object === this) { console.error("THREE.Object3D.add: object can't be added as a child of itself.", object) return this } if (object && object.isObject3D) { if (object.parent !== null) { object.parent.remove(object) } object.parent = this object.dispatchEvent({ type: 'added' }) this.children.push(object) } else { console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object) } return this }, remove: function (object) { if (arguments.length > 1) { for (var i = 0; i < arguments.length; i++) { this.remove(arguments[i]) } return this } var index = this.children.indexOf(object) if (index !== -1) { object.parent = null object.dispatchEvent({ type: 'removed' }) this.children.splice(index, 1) } return this }, getObjectById: function (id) { return this.getObjectByProperty('id', id) }, getObjectByName: function (name) { return this.getObjectByProperty('name', name) }, getObjectByProperty: function (name, value) { if (this[name] === value) return this for (var i = 0, l = this.children.length; i < l; i++) { var child = this.children[i] var object = child.getObjectByProperty(name, value) if (object !== undefined) { return object } } return undefined }, getWorldPosition: function (optionalTarget) { var result = optionalTarget || new Vector3() this.updateMatrixWorld(true) return result.setFromMatrixPosition(this.matrixWorld) }, getWorldQuaternion: (function () { var position = new Vector3() var scale = new Vector3() return function getWorldQuaternion(optionalTarget) { var result = optionalTarget || new Quaternion() this.updateMatrixWorld(true) this.matrixWorld.decompose(position, result, scale) return result } })(), getWorldRotation: (function () { var quaternion = new Quaternion() return function getWorldRotation(optionalTarget) { var result = optionalTarget || new Euler() this.getWorldQuaternion(quaternion) return result.setFromQuaternion(quaternion, this.rotation.order, false) } })(), getWorldScale: (function () { var position = new Vector3() var quaternion = new Quaternion() return function getWorldScale(optionalTarget) { var result = optionalTarget || new Vector3() this.updateMatrixWorld(true) this.matrixWorld.decompose(position, quaternion, result) return result } })(), getWorldDirection: (function () { var quaternion = new Quaternion() return function getWorldDirection(optionalTarget) { var result = optionalTarget || new Vector3() this.getWorldQuaternion(quaternion) return result.set(0, 0, 1).applyQuaternion(quaternion) } })(), raycast: function () {}, traverse: function (callback) { callback(this) var children = this.children for (var i = 0, l = children.length; i < l; i++) { children[i].traverse(callback) } }, traverseVisible: function (callback) { if (this.visible === false) return callback(this) var children = this.children for (var i = 0, l = children.length; i < l; i++) { children[i].traverseVisible(callback) } }, traverseAncestors: function (callback) { var parent = this.parent if (parent !== null) { callback(parent) parent.traverseAncestors(callback) } }, updateMatrix: function () { this.matrix.compose(this.position, this.quaternion, this.scale) this.matrixWorldNeedsUpdate = true }, updateMatrixWorld: function (force) { if (this.matrixAutoUpdate) this.updateMatrix() if (this.matrixWorldNeedsUpdate || force) { if (this.parent === null) { this.matrixWorld.copy(this.matrix) } else { this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix) } this.matrixWorldNeedsUpdate = false force = true } // update children var children = this.children for (var i = 0, l = children.length; i < l; i++) { children[i].updateMatrixWorld(force) } }, toJSON: function (meta) { // meta is a string when called from JSON.stringify var isRootObject = meta === undefined || typeof meta === 'string' var output = {} // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if (isRootObject) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {} } output.metadata = { version: 4.5, type: 'Object', generator: 'Object3D.toJSON' } } // standard Object3D serialization var object = {} object.uuid = this.uuid object.type = this.type if (this.name !== '') object.name = this.name if (this.castShadow === true) object.castShadow = true if (this.receiveShadow === true) object.receiveShadow = true if (this.visible === false) object.visible = false if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData object.matrix = this.matrix.toArray() // function serialize(library, element) { if (library[element.uuid] === undefined) { library[element.uuid] = element.toJSON(meta) } return element.uuid } if (this.geometry !== undefined) { object.geometry = serialize(meta.geometries, this.geometry) var parameters = this.geometry.parameters if (parameters !== undefined && parameters.shapes !== undefined) { var shapes = parameters.shapes if (Array.isArray(shapes)) { for (var i = 0, l = shapes.length; i < l; i++) { var shape = shapes[i] serialize(meta.shapes, shape) } } else { serialize(meta.shapes, shapes) } } } if (this.material !== undefined) { if (Array.isArray(this.material)) { var uuids = [] for (var i = 0, l = this.material.length; i < l; i++) { uuids.push(serialize(meta.materials, this.material[i])) } object.material = uuids } else { object.material = serialize(meta.materials, this.material) } } // if (this.children.length > 0) { object.children = [] for (var i = 0; i < this.children.length; i++) { object.children.push(this.children[i].toJSON(meta).object) } } if (isRootObject) { var geometries = extractFromCache(meta.geometries) var materials = extractFromCache(meta.materials) var textures = extractFromCache(meta.textures) var images = extractFromCache(meta.images) var shapes = extractFromCache(meta.shapes) if (geometries.length > 0) output.geometries = geometries if (materials.length > 0) output.materials = materials if (textures.length > 0) output.textures = textures if (images.length > 0) output.images = images if (shapes.length > 0) output.shapes = shapes } output.object = object return output // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache(cache) { var values = [] for (var key in cache) { var data = cache[key] delete data.metadata values.push(data) } return values } }, clone: function (recursive) { return new this.constructor().copy(this, recursive) }, copy: function (source, recursive) { if (recursive === undefined) recursive = true this.name = source.name this.up.copy(source.up) this.position.copy(source.position) this.quaternion.copy(source.quaternion) this.scale.copy(source.scale) this.matrix.copy(source.matrix) this.matrixWorld.copy(source.matrixWorld) this.matrixAutoUpdate = source.matrixAutoUpdate this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate this.layers.mask = source.layers.mask this.visible = source.visible this.castShadow = source.castShadow this.receiveShadow = source.receiveShadow this.frustumCulled = source.frustumCulled this.renderOrder = source.renderOrder this.userData = JSON.parse(JSON.stringify(source.userData)) if (recursive === true) { for (var i = 0; i < source.children.length; i++) { var child = source.children[i] this.add(child.clone()) } } return this } }) /** * @author mrdoob / http://mrdoob.com/ * @author mikael emtinger / http://gomo.se/ * @author WestLangley / http://github.com/WestLangley */ function Camera() { Object3D.call(this) this.type = 'Camera' this.matrixWorldInverse = new Matrix4() this.projectionMatrix = new Matrix4() } Camera.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: Camera, isCamera: true, copy: function (source, recursive) { Object3D.prototype.copy.call(this, source, recursive) this.matrixWorldInverse.copy(source.matrixWorldInverse) this.projectionMatrix.copy(source.projectionMatrix) return this }, getWorldDirection: (function () { var quaternion = new Quaternion() return function getWorldDirection(optionalTarget) { var result = optionalTarget || new Vector3() this.getWorldQuaternion(quaternion) return result.set(0, 0, -1).applyQuaternion(quaternion) } })(), updateMatrixWorld: function (force) { Object3D.prototype.updateMatrixWorld.call(this, force) this.matrixWorldInverse.getInverse(this.matrixWorld) }, clone: function () { return new this.constructor().copy(this) } }) /** * @author alteredq / http://alteredqualia.com/ * @author arose / http://github.com/arose */ function OrthographicCamera(left, right, top, bottom, near, far) { Camera.call(this) this.type = 'OrthographicCamera' this.zoom = 1 this.view = null this.left = left this.right = right this.top = top this.bottom = bottom this.near = near !== undefined ? near : 0.1 this.far = far !== undefined ? far : 2000 this.updateProjectionMatrix() } OrthographicCamera.prototype = Object.assign(Object.create(Camera.prototype), { constructor: OrthographicCamera, isOrthographicCamera: true, copy: function (source, recursive) { Camera.prototype.copy.call(this, source, recursive) this.left = source.left this.right = source.right this.top = source.top this.bottom = source.bottom this.near = source.near this.far = source.far this.zoom = source.zoom this.view = source.view === null ? null : Object.assign({}, source.view) return this }, setViewOffset: function (fullWidth, fullHeight, x, y, width, height) { if (this.view === null) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 } } this.view.enabled = true this.view.fullWidth = fullWidth this.view.fullHeight = fullHeight this.view.offsetX = x this.view.offsetY = y this.view.width = width this.view.height = height this.updateProjectionMatrix() }, clearViewOffset: function () { if (this.view !== null) { this.view.enabled = false } this.updateProjectionMatrix() }, updateProjectionMatrix: function () { var dx = (this.right - this.left) / (2 * this.zoom) var dy = (this.top - this.bottom) / (2 * this.zoom) var cx = (this.right + this.left) / 2 var cy = (this.top + this.bottom) / 2 var left = cx - dx var right = cx + dx var top = cy + dy var bottom = cy - dy if (this.view !== null && this.view.enabled) { var zoomW = this.zoom / (this.view.width / this.view.fullWidth) var zoomH = this.zoom / (this.view.height / this.view.fullHeight) var scaleW = (this.right - this.left) / this.view.width var scaleH = (this.top - this.bottom) / this.view.height left += scaleW * (this.view.offsetX / zoomW) right = left + scaleW * (this.view.width / zoomW) top -= scaleH * (this.view.offsetY / zoomH) bottom = top - scaleH * (this.view.height / zoomH) } this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far) }, toJSON: function (meta) { var data = Object3D.prototype.toJSON.call(this, meta) data.object.zoom = this.zoom data.object.left = this.left data.object.right = this.right data.object.top = this.top data.object.bottom = this.bottom data.object.near = this.near data.object.far = this.far if (this.view !== null) data.object.view = Object.assign({}, this.view) return data } }) /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Face3(a, b, c, normal, color, materialIndex) { this.a = a this.b = b this.c = c this.normal = normal && normal.isVector3 ? normal : new Vector3() this.vertexNormals = Array.isArray(normal) ? normal : [] this.color = color && color.isColor ? color : new Color() this.vertexColors = Array.isArray(color) ? color : [] this.materialIndex = materialIndex !== undefined ? materialIndex : 0 } Object.assign(Face3.prototype, { clone: function () { return new this.constructor().copy(this) }, copy: function (source) { this.a = source.a this.b = source.b this.c = source.c this.normal.copy(source.normal) this.color.copy(source.color) this.materialIndex = source.materialIndex for (var i = 0, il = source.vertexNormals.length; i < il; i++) { this.vertexNormals[i] = source.vertexNormals[i].clone() } for (var i = 0, il = source.vertexColors.length; i < il; i++) { this.vertexColors[i] = source.vertexColors[i].clone() } return this } }) /** * @author mrdoob / http://mrdoob.com/ * @author kile / http://kile.stravaganza.org/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author bhouston / http://clara.io */ var geometryId = 0 // Geometry uses even numbers as Id function Geometry() { Object.defineProperty(this, 'id', { value: (geometryId += 2) }) this.uuid = _Math.generateUUID() this.name = '' this.type = 'Geometry' this.vertices = [] this.colors = [] this.faces = [] this.faceVertexUvs = [[]] this.morphTargets = [] this.morphNormals = [] this.skinWeights = [] this.skinIndices = [] this.lineDistances = [] this.boundingBox = null this.boundingSphere = null // update flags this.elementsNeedUpdate = false this.verticesNeedUpdate = false this.uvsNeedUpdate = false this.normalsNeedUpdate = false this.colorsNeedUpdate = false this.lineDistancesNeedUpdate = false this.groupsNeedUpdate = false } Geometry.prototype = Object.assign(Object.create(EventDispatcher.prototype), { constructor: Geometry, isGeometry: true, applyMatrix: function (matrix) { var normalMatrix = new Matrix3().getNormalMatrix(matrix) for (var i = 0, il = this.vertices.length; i < il; i++) { var vertex = this.vertices[i] vertex.applyMatrix4(matrix) } for (var i = 0, il = this.faces.length; i < il; i++) { var face = this.faces[i] face.normal.applyMatrix3(normalMatrix).normalize() for (var j = 0, jl = face.vertexNormals.length; j < jl; j++) { face.vertexNormals[j].applyMatrix3(normalMatrix).normalize() } } if (this.boundingBox !== null) { this.computeBoundingBox() } if (this.boundingSphere !== null) { this.computeBoundingSphere() } this.verticesNeedUpdate = true this.normalsNeedUpdate = true return this }, rotateX: (function () { // rotate geometry around world x-axis var m1 = new Matrix4() return function rotateX(angle) { m1.makeRotationX(angle) this.applyMatrix(m1) return this } })(), rotateY: (function () { // rotate geometry around world y-axis var m1 = new Matrix4() return function rotateY(angle) { m1.makeRotationY(angle) this.applyMatrix(m1) return this } })(), rotateZ: (function () { // rotate geometry around world z-axis var m1 = new Matrix4() return function rotateZ(angle) { m1.makeRotationZ(angle) this.applyMatrix(m1) return this } })(), translate: (function () { // translate geometry var m1 = new Matrix4() return function translate(x, y, z) { m1.makeTranslation(x, y, z) this.applyMatrix(m1) return this } })(), scale: (function () { // scale geometry var m1 = new Matrix4() return function scale(x, y, z) { m1.makeScale(x, y, z) this.applyMatrix(m1) return this } })(), lookAt: (function () { var obj = new Object3D() return function lookAt(vector) { obj.lookAt(vector) obj.updateMatrix() this.applyMatrix(obj.matrix) } })(), fromBufferGeometry: function (geometry) { var scope = this var indices = geometry.index !== null ? geometry.index.array : undefined var attributes = geometry.attributes var positions = attributes.position.array var normals = attributes.normal !== undefined ? attributes.normal.array : undefined var colors = attributes.color !== undefined ? attributes.color.array : undefined var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined if (uvs2 !== undefined) this.faceVertexUvs[1] = [] var tempNormals = [] var tempUVs = [] var tempUVs2 = [] for (var i = 0, j = 0; i < positions.length; i += 3, j += 2) { scope.vertices.push(new Vector3(positions[i], positions[i + 1], positions[i + 2])) if (normals !== undefined) { tempNormals.push(new Vector3(normals[i], normals[i + 1], normals[i + 2])) } if (colors !== undefined) { scope.colors.push(new Color(colors[i], colors[i + 1], colors[i + 2])) } if (uvs !== undefined) { tempUVs.push(new Vector2(uvs[j], uvs[j + 1])) } if (uvs2 !== undefined) { tempUVs2.push(new Vector2(uvs2[j], uvs2[j + 1])) } } function addFace(a, b, c, materialIndex) { var vertexNormals = normals !== undefined ? [tempNormals[a].clone(), tempNormals[b].clone(), tempNormals[c].clone()] : [] var vertexColors = colors !== undefined ? [scope.colors[a].clone(), scope.colors[b].clone(), scope.colors[c].clone()] : [] var face = new Face3(a, b, c, vertexNormals, vertexColors, materialIndex) scope.faces.push(face) if (uvs !== undefined) { scope.faceVertexUvs[0].push([tempUVs[a].clone(), tempUVs[b].clone(), tempUVs[c].clone()]) } if (uvs2 !== undefined) { scope.faceVertexUvs[1].push([ tempUVs2[a].clone(), tempUVs2[b].clone(), tempUVs2[c].clone() ]) } } var groups = geometry.groups if (groups.length > 0) { for (var i = 0; i < groups.length; i++) { var group = groups[i] var start = group.start var count = group.count for (var j = start, jl = start + count; j < jl; j += 3) { if (indices !== undefined) { addFace(indices[j], indices[j + 1], indices[j + 2], group.materialIndex) } else { addFace(j, j + 1, j + 2, group.materialIndex) } } } } else { if (indices !== undefined) { for (var i = 0; i < indices.length; i += 3) { addFace(indices[i], indices[i + 1], indices[i + 2]) } } else { for (var i = 0; i < positions.length / 3; i += 3) { addFace(i, i + 1, i + 2) } } } this.computeFaceNormals() if (geometry.boundingBox !== null) { this.boundingBox = geometry.boundingBox.clone() } if (geometry.boundingSphere !== null) { this.boundingSphere = geometry.boundingSphere.clone() } return this }, center: function () { this.computeBoundingBox() var offset = this.boundingBox.getCenter().negate() this.translate(offset.x, offset.y, offset.z) return offset }, normalize: function () { this.computeBoundingSphere() var center = this.boundingSphere.center var radius = this.boundingSphere.radius var s = radius === 0 ? 1 : 1.0 / radius var matrix = new Matrix4() matrix.set(s, 0, 0, -s * center.x, 0, s, 0, -s * center.y, 0, 0, s, -s * center.z, 0, 0, 0, 1) this.applyMatrix(matrix) return this }, computeFaceNormals: function () { var cb = new Vector3(), ab = new Vector3() for (var f = 0, fl = this.faces.length; f < fl; f++) { var face = this.faces[f] var vA = this.vertices[face.a] var vB = this.vertices[face.b] var vC = this.vertices[face.c] cb.subVectors(vC, vB) ab.subVectors(vA, vB) cb.cross(ab) cb.normalize() face.normal.copy(cb) } }, computeVertexNormals: function (areaWeighted) { if (areaWeighted === undefined) areaWeighted = true var v, vl, f, fl, face, vertices vertices = new Array(this.vertices.length) for (v = 0, vl = this.vertices.length; v < vl; v++) { vertices[v] = new Vector3() } if (areaWeighted) { // vertex normals weighted by triangle areas // http://www.iquilezles.org/www/articles/normals/normals.htm var vA, vB, vC var cb = new Vector3(), ab = new Vector3() for (f = 0, fl = this.faces.length; f < fl; f++) { face = this.faces[f] vA = this.vertices[face.a] vB = this.vertices[face.b] vC = this.vertices[face.c] cb.subVectors(vC, vB) ab.subVectors(vA, vB) cb.cross(ab) vertices[face.a].add(cb) vertices[face.b].add(cb) vertices[face.c].add(cb) } } else { this.computeFaceNormals() for (f = 0, fl = this.faces.length; f < fl; f++) { face = this.faces[f] vertices[face.a].add(face.normal) vertices[face.b].add(face.normal) vertices[face.c].add(face.normal) } } for (v = 0, vl = this.vertices.length; v < vl; v++) { vertices[v].normalize() } for (f = 0, fl = this.faces.length; f < fl; f++) { face = this.faces[f] var vertexNormals = face.vertexNormals if (vertexNormals.length === 3) { vertexNormals[0].copy(vertices[face.a]) vertexNormals[1].copy(vertices[face.b]) vertexNormals[2].copy(vertices[face.c]) } else { vertexNormals[0] = vertices[face.a].clone() vertexNormals[1] = vertices[face.b].clone() vertexNormals[2] = vertices[face.c].clone() } } if (this.faces.length > 0) { this.normalsNeedUpdate = true } }, computeFlatVertexNormals: function () { var f, fl, face this.computeFaceNormals() for (f = 0, fl = this.faces.length; f < fl; f++) { face = this.faces[f] var vertexNormals = face.vertexNormals if (vertexNormals.length === 3) { vertexNormals[0].copy(face.normal) vertexNormals[1].copy(face.normal) vertexNormals[2].copy(face.normal) } else { vertexNormals[0] = face.normal.clone() vertexNormals[1] = face.normal.clone() vertexNormals[2] = face.normal.clone() } } if (this.faces.length > 0) { this.normalsNeedUpdate = true } }, computeMorphNormals: function () { var i, il, f, fl, face // save original normals // - create temp variables on first access // otherwise just copy (for faster repeated calls) for (f = 0, fl = this.faces.length; f < fl; f++) { face = this.faces[f] if (!face.__originalFaceNormal) { face.__originalFaceNormal = face.normal.clone() } else { face.__originalFaceNormal.copy(face.normal) } if (!face.__originalVertexNormals) face.__originalVertexNormals = [] for (i = 0, il = face.vertexNormals.length; i < il; i++) { if (!face.__originalVertexNormals[i]) { face.__originalVertexNormals[i] = face.vertexNormals[i].clone() } else { face.__originalVertexNormals[i].copy(face.vertexNormals[i]) } } } // use temp geometry to compute face and vertex normals for each morph var tmpGeo = new Geometry() tmpGeo.faces = this.faces for (i = 0, il = this.morphTargets.length; i < il; i++) { // create on first access if (!this.morphNormals[i]) { this.morphNormals[i] = {} this.morphNormals[i].faceNormals = [] this.morphNormals[i].vertexNormals = [] var dstNormalsFace = this.morphNormals[i].faceNormals var dstNormalsVertex = this.morphNormals[i].vertexNormals var faceNormal, vertexNormals for (f = 0, fl = this.faces.length; f < fl; f++) { faceNormal = new Vector3() vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() } dstNormalsFace.push(faceNormal) dstNormalsVertex.push(vertexNormals) } } var morphNormals = this.morphNormals[i] // set vertices to morph target tmpGeo.vertices = this.morphTargets[i].vertices // compute morph normals tmpGeo.computeFaceNormals() tmpGeo.computeVertexNormals() // store morph normals var faceNormal, vertexNormals for (f = 0, fl = this.faces.length; f < fl; f++) { face = this.faces[f] faceNormal = morphNormals.faceNormals[f] vertexNormals = morphNormals.vertexNormals[f] faceNormal.copy(face.normal) vertexNormals.a.copy(face.vertexNormals[0]) vertexNormals.b.copy(face.vertexNormals[1]) vertexNormals.c.copy(face.vertexNormals[2]) } } // restore original normals for (f = 0, fl = this.faces.length; f < fl; f++) { face = this.faces[f] face.normal = face.__originalFaceNormal face.vertexNormals = face.__originalVertexNormals } }, computeBoundingBox: function () { if (this.boundingBox === null) { this.boundingBox = new Box3() } this.boundingBox.setFromPoints(this.vertices) }, computeBoundingSphere: function () { if (this.boundingSphere === null) { this.boundingSphere = new Sphere() } this.boundingSphere.setFromPoints(this.vertices) }, merge: function (geometry, matrix, materialIndexOffset) { if (!(geometry && geometry.isGeometry)) { console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry ) return } var normalMatrix, vertexOffset = this.vertices.length, vertices1 = this.vertices, vertices2 = geometry.vertices, faces1 = this.faces, faces2 = geometry.faces, uvs1 = this.faceVertexUvs[0], uvs2 = geometry.faceVertexUvs[0], colors1 = this.colors, colors2 = geometry.colors if (materialIndexOffset === undefined) materialIndexOffset = 0 if (matrix !== undefined) { normalMatrix = new Matrix3().getNormalMatrix(matrix) } // vertices for (var i = 0, il = vertices2.length; i < il; i++) { var vertex = vertices2[i] var vertexCopy = vertex.clone() if (matrix !== undefined) vertexCopy.applyMatrix4(matrix) vertices1.push(vertexCopy) } // colors for (var i = 0, il = colors2.length; i < il; i++) { colors1.push(colors2[i].clone()) } // faces for (i = 0, il = faces2.length; i < il; i++) { var face = faces2[i], faceCopy, normal, color, faceVertexNormals = face.vertexNormals, faceVertexColors = face.vertexColors faceCopy = new Face3(face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset) faceCopy.normal.copy(face.normal) if (normalMatrix !== undefined) { faceCopy.normal.applyMatrix3(normalMatrix).normalize() } for (var j = 0, jl = faceVertexNormals.length; j < jl; j++) { normal = faceVertexNormals[j].clone() if (normalMatrix !== undefined) { normal.applyMatrix3(normalMatrix).normalize() } faceCopy.vertexNormals.push(normal) } faceCopy.color.copy(face.color) for (var j = 0, jl = faceVertexColors.length; j < jl; j++) { color = faceVertexColors[j] faceCopy.vertexColors.push(color.clone()) } faceCopy.materialIndex = face.materialIndex + materialIndexOffset faces1.push(faceCopy) } // uvs for (i = 0, il = uvs2.length; i < il; i++) { var uv = uvs2[i], uvCopy = [] if (uv === undefined) { continue } for (var j = 0, jl = uv.length; j < jl; j++) { uvCopy.push(uv[j].clone()) } uvs1.push(uvCopy) } }, mergeMesh: function (mesh) { if (!(mesh && mesh.isMesh)) { console.error('THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh) return } mesh.matrixAutoUpdate && mesh.updateMatrix() this.merge(mesh.geometry, mesh.matrix) }, /* * Checks for duplicate vertices with hashmap. * Duplicated vertices are removed * and faces' vertices are updated. */ mergeVertices: function () { var verticesMap = {} // Hashmap for looking up vertices by position coordinates (and making sure they are unique) var unique = [], changes = [] var v, key var precisionPoints = 4 // number of decimal points, e.g. 4 for epsilon of 0.0001 var precision = Math.pow(10, precisionPoints) var i, il, face var indices, j, jl for (i = 0, il = this.vertices.length; i < il; i++) { v = this.vertices[i] key = Math.round(v.x * precision) + '_' + Math.round(v.y * precision) + '_' + Math.round(v.z * precision) if (verticesMap[key] === undefined) { verticesMap[key] = i unique.push(this.vertices[i]) changes[i] = unique.length - 1 } else { //console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]); changes[i] = changes[verticesMap[key]] } } // if faces are completely degenerate after merging vertices, we // have to remove them from the geometry. var faceIndicesToRemove = [] for (i = 0, il = this.faces.length; i < il; i++) { face = this.faces[i] face.a = changes[face.a] face.b = changes[face.b] face.c = changes[face.c] indices = [face.a, face.b, face.c] // if any duplicate vertices are found in a Face3 // we have to remove the face as nothing can be saved for (var n = 0; n < 3; n++) { if (indices[n] === indices[(n + 1) % 3]) { faceIndicesToRemove.push(i) break } } } for (i = faceIndicesToRemove.length - 1; i >= 0; i--) { var idx = faceIndicesToRemove[i] this.faces.splice(idx, 1) for (j = 0, jl = this.faceVertexUvs.length; j < jl; j++) { this.faceVertexUvs[j].splice(idx, 1) } } // Use unique set of vertices var diff = this.vertices.length - unique.length this.vertices = unique return diff }, setFromPoints: function (points) { this.vertices = [] for (var i = 0, l = points.length; i < l; i++) { var point = points[i] this.vertices.push(new Vector3(point.x, point.y, point.z || 0)) } return this }, sortFacesByMaterialIndex: function () { var faces = this.faces var length = faces.length // tag faces for (var i = 0; i < length; i++) { faces[i]._id = i } // sort faces function materialIndexSort(a, b) { return a.materialIndex - b.materialIndex } faces.sort(materialIndexSort) // sort uvs var uvs1 = this.faceVertexUvs[0] var uvs2 = this.faceVertexUvs[1] var newUvs1, newUvs2 if (uvs1 && uvs1.length === length) newUvs1 = [] if (uvs2 && uvs2.length === length) newUvs2 = [] for (var i = 0; i < length; i++) { var id = faces[i]._id if (newUvs1) newUvs1.push(uvs1[id]) if (newUvs2) newUvs2.push(uvs2[id]) } if (newUvs1) this.faceVertexUvs[0] = newUvs1 if (newUvs2) this.faceVertexUvs[1] = newUvs2 }, toJSON: function () { var data = { metadata: { version: 4.5, type: 'Geometry', generator: 'Geometry.toJSON' } } // standard Geometry serialization data.uuid = this.uuid data.type = this.type if (this.name !== '') data.name = this.name if (this.parameters !== undefined) { var parameters = this.parameters for (var key in parameters) { if (parameters[key] !== undefined) data[key] = parameters[key] } return data } var vertices = [] for (var i = 0; i < this.vertices.length; i++) { var vertex = this.vertices[i] vertices.push(vertex.x, vertex.y, vertex.z) } var faces = [] var normals = [] var normalsHash = {} var colors = [] var colorsHash = {} var uvs = [] var uvsHash = {} for (var i = 0; i < this.faces.length; i++) { var face = this.faces[i] var hasMaterial = true var hasFaceUv = false // deprecated var hasFaceVertexUv = this.faceVertexUvs[0][i] !== undefined var hasFaceNormal = face.normal.length() > 0 var hasFaceVertexNormal = face.vertexNormals.length > 0 var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1 var hasFaceVertexColor = face.vertexColors.length > 0 var faceType = 0 faceType = setBit(faceType, 0, 0) // isQuad faceType = setBit(faceType, 1, hasMaterial) faceType = setBit(faceType, 2, hasFaceUv) faceType = setBit(faceType, 3, hasFaceVertexUv) faceType = setBit(faceType, 4, hasFaceNormal) faceType = setBit(faceType, 5, hasFaceVertexNormal) faceType = setBit(faceType, 6, hasFaceColor) faceType = setBit(faceType, 7, hasFaceVertexColor) faces.push(faceType) faces.push(face.a, face.b, face.c) faces.push(face.materialIndex) if (hasFaceVertexUv) { var faceVertexUvs = this.faceVertexUvs[0][i] faces.push( getUvIndex(faceVertexUvs[0]), getUvIndex(faceVertexUvs[1]), getUvIndex(faceVertexUvs[2]) ) } if (hasFaceNormal) { faces.push(getNormalIndex(face.normal)) } if (hasFaceVertexNormal) { var vertexNormals = face.vertexNormals faces.push( getNormalIndex(vertexNormals[0]), getNormalIndex(vertexNormals[1]), getNormalIndex(vertexNormals[2]) ) } if (hasFaceColor) { faces.push(getColorIndex(face.color)) } if (hasFaceVertexColor) { var vertexColors = face.vertexColors faces.push( getColorIndex(vertexColors[0]), getColorIndex(vertexColors[1]), getColorIndex(vertexColors[2]) ) } } function setBit(value, position, enabled) { return enabled ? value | (1 << position) : value & ~(1 << position) } function getNormalIndex(normal) { var hash = normal.x.toString() + normal.y.toString() + normal.z.toString() if (normalsHash[hash] !== undefined) { return normalsHash[hash] } normalsHash[hash] = normals.length / 3 normals.push(normal.x, normal.y, normal.z) return normalsHash[hash] } function getColorIndex(color) { var hash = color.r.toString() + color.g.toString() + color.b.toString() if (colorsHash[hash] !== undefined) { return colorsHash[hash] } colorsHash[hash] = colors.length colors.push(color.getHex()) return colorsHash[hash] } function getUvIndex(uv) { var hash = uv.x.toString() + uv.y.toString() if (uvsHash[hash] !== undefined) { return uvsHash[hash] } uvsHash[hash] = uvs.length / 2 uvs.push(uv.x, uv.y) return uvsHash[hash] } data.data = {} data.data.vertices = vertices data.data.normals = normals if (colors.length > 0) data.data.colors = colors if (uvs.length > 0) data.data.uvs = [uvs] // temporal backward compatibility data.data.faces = faces return data }, clone: function () { /* // Handle primitives var parameters = this.parameters; if ( parameters !== undefined ) { var values = []; for ( var key in parameters ) { values.push( parameters[ key ] ); } var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new Geometry().copy(this) }, copy: function (source) { var i, il, j, jl, k, kl // reset this.vertices = [] this.colors = [] this.faces = [] this.faceVertexUvs = [[]] this.morphTargets = [] this.morphNormals = [] this.skinWeights = [] this.skinIndices = [] this.lineDistances = [] this.boundingBox = null this.boundingSphere = null // name this.name = source.name // vertices var vertices = source.vertices for (i = 0, il = vertices.length; i < il; i++) { this.vertices.push(vertices[i].clone()) } // colors var colors = source.colors for (i = 0, il = colors.length; i < il; i++) { this.colors.push(colors[i].clone()) } // faces var faces = source.faces for (i = 0, il = faces.length; i < il; i++) { this.faces.push(faces[i].clone()) } // face vertex uvs for (i = 0, il = source.faceVertexUvs.length; i < il; i++) { var faceVertexUvs = source.faceVertexUvs[i] if (this.faceVertexUvs[i] === undefined) { this.faceVertexUvs[i] = [] } for (j = 0, jl = faceVertexUvs.length; j < jl; j++) { var uvs = faceVertexUvs[j], uvsCopy = [] for (k = 0, kl = uvs.length; k < kl; k++) { var uv = uvs[k] uvsCopy.push(uv.clone()) } this.faceVertexUvs[i].push(uvsCopy) } } // morph targets var morphTargets = source.morphTargets for (i = 0, il = morphTargets.length; i < il; i++) { var morphTarget = {} morphTarget.name = morphTargets[i].name // vertices if (morphTargets[i].vertices !== undefined) { morphTarget.vertices = [] for (j = 0, jl = morphTargets[i].vertices.length; j < jl; j++) { morphTarget.vertices.push(morphTargets[i].vertices[j].clone()) } } // normals if (morphTargets[i].normals !== undefined) { morphTarget.normals = [] for (j = 0, jl = morphTargets[i].normals.length; j < jl; j++) { morphTarget.normals.push(morphTargets[i].normals[j].clone()) } } this.morphTargets.push(morphTarget) } // morph normals var morphNormals = source.morphNormals for (i = 0, il = morphNormals.length; i < il; i++) { var morphNormal = {} // vertex normals if (morphNormals[i].vertexNormals !== undefined) { morphNormal.vertexNormals = [] for (j = 0, jl = morphNormals[i].vertexNormals.length; j < jl; j++) { var srcVertexNormal = morphNormals[i].vertexNormals[j] var destVertexNormal = {} destVertexNormal.a = srcVertexNormal.a.clone() destVertexNormal.b = srcVertexNormal.b.clone() destVertexNormal.c = srcVertexNormal.c.clone() morphNormal.vertexNormals.push(destVertexNormal) } } // face normals if (morphNormals[i].faceNormals !== undefined) { morphNormal.faceNormals = [] for (j = 0, jl = morphNormals[i].faceNormals.length; j < jl; j++) { morphNormal.faceNormals.push(morphNormals[i].faceNormals[j].clone()) } } this.morphNormals.push(morphNormal) } // skin weights var skinWeights = source.skinWeights for (i = 0, il = skinWeights.length; i < il; i++) { this.skinWeights.push(skinWeights[i].clone()) } // skin indices var skinIndices = source.skinIndices for (i = 0, il = skinIndices.length; i < il; i++) { this.skinIndices.push(skinIndices[i].clone()) } // line distances var lineDistances = source.lineDistances for (i = 0, il = lineDistances.length; i < il; i++) { this.lineDistances.push(lineDistances[i]) } // bounding box var boundingBox = source.boundingBox if (boundingBox !== null) { this.boundingBox = boundingBox.clone() } // bounding sphere var boundingSphere = source.boundingSphere if (boundingSphere !== null) { this.boundingSphere = boundingSphere.clone() } // update flags this.elementsNeedUpdate = source.elementsNeedUpdate this.verticesNeedUpdate = source.verticesNeedUpdate this.uvsNeedUpdate = source.uvsNeedUpdate this.normalsNeedUpdate = source.normalsNeedUpdate this.colorsNeedUpdate = source.colorsNeedUpdate this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate this.groupsNeedUpdate = source.groupsNeedUpdate return this }, dispose: function () { this.dispatchEvent({ type: 'dispose' }) } }) /** * @author mrdoob / http://mrdoob.com/ */ function BufferAttribute(array, itemSize, normalized) { if (Array.isArray(array)) { throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.') } this.uuid = _Math.generateUUID() this.name = '' this.array = array this.itemSize = itemSize this.count = array !== undefined ? array.length / itemSize : 0 this.normalized = normalized === true this.dynamic = false this.updateRange = { offset: 0, count: -1 } this.onUploadCallback = function () {} this.version = 0 } Object.defineProperty(BufferAttribute.prototype, 'needsUpdate', { set: function (value) { if (value === true) this.version++ } }) Object.assign(BufferAttribute.prototype, { isBufferAttribute: true, setArray: function (array) { if (Array.isArray(array)) { throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.') } this.count = array !== undefined ? array.length / this.itemSize : 0 this.array = array }, setDynamic: function (value) { this.dynamic = value return this }, copy: function (source) { this.array = new source.array.constructor(source.array) this.itemSize = source.itemSize this.count = source.count this.normalized = source.normalized this.dynamic = source.dynamic return this }, copyAt: function (index1, attribute, index2) { index1 *= this.itemSize index2 *= attribute.itemSize for (var i = 0, l = this.itemSize; i < l; i++) { this.array[index1 + i] = attribute.array[index2 + i] } return this }, copyArray: function (array) { this.array.set(array) return this }, copyColorsArray: function (colors) { var array = this.array, offset = 0 for (var i = 0, l = colors.length; i < l; i++) { var color = colors[i] if (color === undefined) { console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i) color = new Color() } array[offset++] = color.r array[offset++] = color.g array[offset++] = color.b } return this }, copyIndicesArray: function (indices) { var array = this.array, offset = 0 for (var i = 0, l = indices.length; i < l; i++) { var index = indices[i] array[offset++] = index.a array[offset++] = index.b array[offset++] = index.c } return this }, copyVector2sArray: function (vectors) { var array = this.array, offset = 0 for (var i = 0, l = vectors.length; i < l; i++) { var vector = vectors[i] if (vector === undefined) { console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i) vector = new Vector2() } array[offset++] = vector.x array[offset++] = vector.y } return this }, copyVector3sArray: function (vectors) { var array = this.array, offset = 0 for (var i = 0, l = vectors.length; i < l; i++) { var vector = vectors[i] if (vector === undefined) { console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i) vector = new Vector3() } array[offset++] = vector.x array[offset++] = vector.y array[offset++] = vector.z } return this }, copyVector4sArray: function (vectors) { var array = this.array, offset = 0 for (var i = 0, l = vectors.length; i < l; i++) { var vector = vectors[i] if (vector === undefined) { console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i) vector = new Vector4() } array[offset++] = vector.x array[offset++] = vector.y array[offset++] = vector.z array[offset++] = vector.w } return this }, set: function (value, offset) { if (offset === undefined) offset = 0 this.array.set(value, offset) return this }, getX: function (index) { return this.array[index * this.itemSize] }, setX: function (index, x) { this.array[index * this.itemSize] = x return this }, getY: function (index) { return this.array[index * this.itemSize + 1] }, setY: function (index, y) { this.array[index * this.itemSize + 1] = y return this }, getZ: function (index) { return this.array[index * this.itemSize + 2] }, setZ: function (index, z) { this.array[index * this.itemSize + 2] = z return this }, getW: function (index) { return this.array[index * this.itemSize + 3] }, setW: function (index, w) { this.array[index * this.itemSize + 3] = w return this }, setXY: function (index, x, y) { index *= this.itemSize this.array[index + 0] = x this.array[index + 1] = y return this }, setXYZ: function (index, x, y, z) { index *= this.itemSize this.array[index + 0] = x this.array[index + 1] = y this.array[index + 2] = z return this }, setXYZW: function (index, x, y, z, w) { index *= this.itemSize this.array[index + 0] = x this.array[index + 1] = y this.array[index + 2] = z this.array[index + 3] = w return this }, onUpload: function (callback) { this.onUploadCallback = callback return this }, clone: function () { return new this.constructor(this.array, this.itemSize).copy(this) } }) // function Int8BufferAttribute(array, itemSize, normalized) { BufferAttribute.call(this, new Int8Array(array), itemSize, normalized) } Int8BufferAttribute.prototype = Object.create(BufferAttribute.prototype) Int8BufferAttribute.prototype.constructor = Int8BufferAttribute function Uint8BufferAttribute(array, itemSize, normalized) { BufferAttribute.call(this, new Uint8Array(array), itemSize, normalized) } Uint8BufferAttribute.prototype = Object.create(BufferAttribute.prototype) Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute function Uint8ClampedBufferAttribute(array, itemSize, normalized) { BufferAttribute.call(this, new Uint8ClampedArray(array), itemSize, normalized) } Uint8ClampedBufferAttribute.prototype = Object.create(BufferAttribute.prototype) Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute function Int16BufferAttribute(array, itemSize, normalized) { BufferAttribute.call(this, new Int16Array(array), itemSize, normalized) } Int16BufferAttribute.prototype = Object.create(BufferAttribute.prototype) Int16BufferAttribute.prototype.constructor = Int16BufferAttribute function Uint16BufferAttribute(array, itemSize, normalized) { BufferAttribute.call(this, new Uint16Array(array), itemSize, normalized) } Uint16BufferAttribute.prototype = Object.create(BufferAttribute.prototype) Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute function Int32BufferAttribute(array, itemSize, normalized) { BufferAttribute.call(this, new Int32Array(array), itemSize, normalized) } Int32BufferAttribute.prototype = Object.create(BufferAttribute.prototype) Int32BufferAttribute.prototype.constructor = Int32BufferAttribute function Uint32BufferAttribute(array, itemSize, normalized) { BufferAttribute.call(this, new Uint32Array(array), itemSize, normalized) } Uint32BufferAttribute.prototype = Object.create(BufferAttribute.prototype) Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute function Float32BufferAttribute(array, itemSize, normalized) { BufferAttribute.call(this, new Float32Array(array), itemSize, normalized) } Float32BufferAttribute.prototype = Object.create(BufferAttribute.prototype) Float32BufferAttribute.prototype.constructor = Float32BufferAttribute function Float64BufferAttribute(array, itemSize, normalized) { BufferAttribute.call(this, new Float64Array(array), itemSize, normalized) } Float64BufferAttribute.prototype = Object.create(BufferAttribute.prototype) Float64BufferAttribute.prototype.constructor = Float64BufferAttribute /** * @author mrdoob / http://mrdoob.com/ */ function DirectGeometry() { this.indices = [] this.vertices = [] this.normals = [] this.colors = [] this.uvs = [] this.uvs2 = [] this.groups = [] this.morphTargets = {} this.skinWeights = [] this.skinIndices = [] // this.lineDistances = []; this.boundingBox = null this.boundingSphere = null // update flags this.verticesNeedUpdate = false this.normalsNeedUpdate = false this.colorsNeedUpdate = false this.uvsNeedUpdate = false this.groupsNeedUpdate = false } Object.assign(DirectGeometry.prototype, { computeGroups: function (geometry) { var group var groups = [] var materialIndex = undefined var faces = geometry.faces for (var i = 0; i < faces.length; i++) { var face = faces[i] // materials if (face.materialIndex !== materialIndex) { materialIndex = face.materialIndex if (group !== undefined) { group.count = i * 3 - group.start groups.push(group) } group = { start: i * 3, materialIndex: materialIndex } } } if (group !== undefined) { group.count = i * 3 - group.start groups.push(group) } this.groups = groups }, fromGeometry: function (geometry) { var faces = geometry.faces var vertices = geometry.vertices var faceVertexUvs = geometry.faceVertexUvs var hasFaceVertexUv = faceVertexUvs[0] && faceVertexUvs[0].length > 0 var hasFaceVertexUv2 = faceVertexUvs[1] && faceVertexUvs[1].length > 0 // morphs var morphTargets = geometry.morphTargets var morphTargetsLength = morphTargets.length var morphTargetsPosition if (morphTargetsLength > 0) { morphTargetsPosition = [] for (var i = 0; i < morphTargetsLength; i++) { morphTargetsPosition[i] = [] } this.morphTargets.position = morphTargetsPosition } var morphNormals = geometry.morphNormals var morphNormalsLength = morphNormals.length var morphTargetsNormal if (morphNormalsLength > 0) { morphTargetsNormal = [] for (var i = 0; i < morphNormalsLength; i++) { morphTargetsNormal[i] = [] } this.morphTargets.normal = morphTargetsNormal } // skins var skinIndices = geometry.skinIndices var skinWeights = geometry.skinWeights var hasSkinIndices = skinIndices.length === vertices.length var hasSkinWeights = skinWeights.length === vertices.length // for (var i = 0; i < faces.length; i++) { var face = faces[i] this.vertices.push(vertices[face.a], vertices[face.b], vertices[face.c]) var vertexNormals = face.vertexNormals if (vertexNormals.length === 3) { this.normals.push(vertexNormals[0], vertexNormals[1], vertexNormals[2]) } else { var normal = face.normal this.normals.push(normal, normal, normal) } var vertexColors = face.vertexColors if (vertexColors.length === 3) { this.colors.push(vertexColors[0], vertexColors[1], vertexColors[2]) } else { var color = face.color this.colors.push(color, color, color) } if (hasFaceVertexUv === true) { var vertexUvs = faceVertexUvs[0][i] if (vertexUvs !== undefined) { this.uvs.push(vertexUvs[0], vertexUvs[1], vertexUvs[2]) } else { console.warn('THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i) this.uvs.push(new Vector2(), new Vector2(), new Vector2()) } } if (hasFaceVertexUv2 === true) { var vertexUvs = faceVertexUvs[1][i] if (vertexUvs !== undefined) { this.uvs2.push(vertexUvs[0], vertexUvs[1], vertexUvs[2]) } else { console.warn('THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i) this.uvs2.push(new Vector2(), new Vector2(), new Vector2()) } } // morphs for (var j = 0; j < morphTargetsLength; j++) { var morphTarget = morphTargets[j].vertices morphTargetsPosition[j].push( morphTarget[face.a], morphTarget[face.b], morphTarget[face.c] ) } for (var j = 0; j < morphNormalsLength; j++) { var morphNormal = morphNormals[j].vertexNormals[i] morphTargetsNormal[j].push(morphNormal.a, morphNormal.b, morphNormal.c) } // skins if (hasSkinIndices) { this.skinIndices.push(skinIndices[face.a], skinIndices[face.b], skinIndices[face.c]) } if (hasSkinWeights) { this.skinWeights.push(skinWeights[face.a], skinWeights[face.b], skinWeights[face.c]) } } this.computeGroups(geometry) this.verticesNeedUpdate = geometry.verticesNeedUpdate this.normalsNeedUpdate = geometry.normalsNeedUpdate this.colorsNeedUpdate = geometry.colorsNeedUpdate this.uvsNeedUpdate = geometry.uvsNeedUpdate this.groupsNeedUpdate = geometry.groupsNeedUpdate return this } }) /** * @author mrdoob / http://mrdoob.com/ */ function arrayMax(array) { if (array.length === 0) return -Infinity var max = array[0] for (var i = 1, l = array.length; i < l; ++i) { if (array[i] > max) max = array[i] } return max } /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ var bufferGeometryId = 1 // BufferGeometry uses odd numbers as Id function BufferGeometry() { Object.defineProperty(this, 'id', { value: (bufferGeometryId += 2) }) this.uuid = _Math.generateUUID() this.name = '' this.type = 'BufferGeometry' this.index = null this.attributes = {} this.morphAttributes = {} this.groups = [] this.boundingBox = null this.boundingSphere = null this.drawRange = { start: 0, count: Infinity } } BufferGeometry.prototype = Object.assign(Object.create(EventDispatcher.prototype), { constructor: BufferGeometry, isBufferGeometry: true, getIndex: function () { return this.index }, setIndex: function (index) { if (Array.isArray(index)) { this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)( index, 1 ) } else { this.index = index } }, addAttribute: function (name, attribute) { if ( !(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute) ) { console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).') this.addAttribute(name, new BufferAttribute(arguments[1], arguments[2])) return } if (name === 'index') { console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.') this.setIndex(attribute) return } this.attributes[name] = attribute return this }, getAttribute: function (name) { return this.attributes[name] }, removeAttribute: function (name) { delete this.attributes[name] return this }, addGroup: function (start, count, materialIndex) { this.groups.push({ start: start, count: count, materialIndex: materialIndex !== undefined ? materialIndex : 0 }) }, clearGroups: function () { this.groups = [] }, setDrawRange: function (start, count) { this.drawRange.start = start this.drawRange.count = count }, applyMatrix: function (matrix) { var position = this.attributes.position if (position !== undefined) { matrix.applyToBufferAttribute(position) position.needsUpdate = true } var normal = this.attributes.normal if (normal !== undefined) { var normalMatrix = new Matrix3().getNormalMatrix(matrix) normalMatrix.applyToBufferAttribute(normal) normal.needsUpdate = true } if (this.boundingBox !== null) { this.computeBoundingBox() } if (this.boundingSphere !== null) { this.computeBoundingSphere() } return this }, rotateX: (function () { // rotate geometry around world x-axis var m1 = new Matrix4() return function rotateX(angle) { m1.makeRotationX(angle) this.applyMatrix(m1) return this } })(), rotateY: (function () { // rotate geometry around world y-axis var m1 = new Matrix4() return function rotateY(angle) { m1.makeRotationY(angle) this.applyMatrix(m1) return this } })(), rotateZ: (function () { // rotate geometry around world z-axis var m1 = new Matrix4() return function rotateZ(angle) { m1.makeRotationZ(angle) this.applyMatrix(m1) return this } })(), translate: (function () { // translate geometry var m1 = new Matrix4() return function translate(x, y, z) { m1.makeTranslation(x, y, z) this.applyMatrix(m1) return this } })(), scale: (function () { // scale geometry var m1 = new Matrix4() return function scale(x, y, z) { m1.makeScale(x, y, z) this.applyMatrix(m1) return this } })(), lookAt: (function () { var obj = new Object3D() return function lookAt(vector) { obj.lookAt(vector) obj.updateMatrix() this.applyMatrix(obj.matrix) } })(), center: function () { this.computeBoundingBox() var offset = this.boundingBox.getCenter().negate() this.translate(offset.x, offset.y, offset.z) return offset }, setFromObject: function (object) { // console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this ); var geometry = object.geometry if (object.isPoints || object.isLine) { var positions = new Float32BufferAttribute(geometry.vertices.length * 3, 3) var colors = new Float32BufferAttribute(geometry.colors.length * 3, 3) this.addAttribute('position', positions.copyVector3sArray(geometry.vertices)) this.addAttribute('color', colors.copyColorsArray(geometry.colors)) if (geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length) { var lineDistances = new Float32BufferAttribute(geometry.lineDistances.length, 1) this.addAttribute('lineDistance', lineDistances.copyArray(geometry.lineDistances)) } if (geometry.boundingSphere !== null) { this.boundingSphere = geometry.boundingSphere.clone() } if (geometry.boundingBox !== null) { this.boundingBox = geometry.boundingBox.clone() } } else if (object.isMesh) { if (geometry && geometry.isGeometry) { this.fromGeometry(geometry) } } return this }, setFromPoints: function (points) { var position = [] for (var i = 0, l = points.length; i < l; i++) { var point = points[i] position.push(point.x, point.y, point.z || 0) } this.addAttribute('position', new Float32BufferAttribute(position, 3)) return this }, updateFromObject: function (object) { var geometry = object.geometry if (object.isMesh) { var direct = geometry.__directGeometry if (geometry.elementsNeedUpdate === true) { direct = undefined geometry.elementsNeedUpdate = false } if (direct === undefined) { return this.fromGeometry(geometry) } direct.verticesNeedUpdate = geometry.verticesNeedUpdate direct.normalsNeedUpdate = geometry.normalsNeedUpdate direct.colorsNeedUpdate = geometry.colorsNeedUpdate direct.uvsNeedUpdate = geometry.uvsNeedUpdate direct.groupsNeedUpdate = geometry.groupsNeedUpdate geometry.verticesNeedUpdate = false geometry.normalsNeedUpdate = false geometry.colorsNeedUpdate = false geometry.uvsNeedUpdate = false geometry.groupsNeedUpdate = false geometry = direct } var attribute if (geometry.verticesNeedUpdate === true) { attribute = this.attributes.position if (attribute !== undefined) { attribute.copyVector3sArray(geometry.vertices) attribute.needsUpdate = true } geometry.verticesNeedUpdate = false } if (geometry.normalsNeedUpdate === true) { attribute = this.attributes.normal if (attribute !== undefined) { attribute.copyVector3sArray(geometry.normals) attribute.needsUpdate = true } geometry.normalsNeedUpdate = false } if (geometry.colorsNeedUpdate === true) { attribute = this.attributes.color if (attribute !== undefined) { attribute.copyColorsArray(geometry.colors) attribute.needsUpdate = true } geometry.colorsNeedUpdate = false } if (geometry.uvsNeedUpdate) { attribute = this.attributes.uv if (attribute !== undefined) { attribute.copyVector2sArray(geometry.uvs) attribute.needsUpdate = true } geometry.uvsNeedUpdate = false } if (geometry.lineDistancesNeedUpdate) { attribute = this.attributes.lineDistance if (attribute !== undefined) { attribute.copyArray(geometry.lineDistances) attribute.needsUpdate = true } geometry.lineDistancesNeedUpdate = false } if (geometry.groupsNeedUpdate) { geometry.computeGroups(object.geometry) this.groups = geometry.groups geometry.groupsNeedUpdate = false } return this }, fromGeometry: function (geometry) { geometry.__directGeometry = new DirectGeometry().fromGeometry(geometry) return this.fromDirectGeometry(geometry.__directGeometry) }, fromDirectGeometry: function (geometry) { var positions = new Float32Array(geometry.vertices.length * 3) this.addAttribute( 'position', new BufferAttribute(positions, 3).copyVector3sArray(geometry.vertices) ) if (geometry.normals.length > 0) { var normals = new Float32Array(geometry.normals.length * 3) this.addAttribute( 'normal', new BufferAttribute(normals, 3).copyVector3sArray(geometry.normals) ) } if (geometry.colors.length > 0) { var colors = new Float32Array(geometry.colors.length * 3) this.addAttribute('color', new BufferAttribute(colors, 3).copyColorsArray(geometry.colors)) } if (geometry.uvs.length > 0) { var uvs = new Float32Array(geometry.uvs.length * 2) this.addAttribute('uv', new BufferAttribute(uvs, 2).copyVector2sArray(geometry.uvs)) } if (geometry.uvs2.length > 0) { var uvs2 = new Float32Array(geometry.uvs2.length * 2) this.addAttribute('uv2', new BufferAttribute(uvs2, 2).copyVector2sArray(geometry.uvs2)) } if (geometry.indices.length > 0) { var TypeArray = arrayMax(geometry.indices) > 65535 ? Uint32Array : Uint16Array var indices = new TypeArray(geometry.indices.length * 3) this.setIndex(new BufferAttribute(indices, 1).copyIndicesArray(geometry.indices)) } // groups this.groups = geometry.groups // morphs for (var name in geometry.morphTargets) { var array = [] var morphTargets = geometry.morphTargets[name] for (var i = 0, l = morphTargets.length; i < l; i++) { var morphTarget = morphTargets[i] var attribute = new Float32BufferAttribute(morphTarget.length * 3, 3) array.push(attribute.copyVector3sArray(morphTarget)) } this.morphAttributes[name] = array } // skinning if (geometry.skinIndices.length > 0) { var skinIndices = new Float32BufferAttribute(geometry.skinIndices.length * 4, 4) this.addAttribute('skinIndex', skinIndices.copyVector4sArray(geometry.skinIndices)) } if (geometry.skinWeights.length > 0) { var skinWeights = new Float32BufferAttribute(geometry.skinWeights.length * 4, 4) this.addAttribute('skinWeight', skinWeights.copyVector4sArray(geometry.skinWeights)) } // if (geometry.boundingSphere !== null) { this.boundingSphere = geometry.boundingSphere.clone() } if (geometry.boundingBox !== null) { this.boundingBox = geometry.boundingBox.clone() } return this }, computeBoundingBox: function () { if (this.boundingBox === null) { this.boundingBox = new Box3() } var position = this.attributes.position if (position !== undefined) { this.boundingBox.setFromBufferAttribute(position) } else { this.boundingBox.makeEmpty() } if ( isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ) } }, computeBoundingSphere: (function () { var box = new Box3() var vector = new Vector3() return function computeBoundingSphere() { if (this.boundingSphere === null) { this.boundingSphere = new Sphere() } var position = this.attributes.position if (position) { var center = this.boundingSphere.center box.setFromBufferAttribute(position) box.getCenter(center) // hoping to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case var maxRadiusSq = 0 for (var i = 0, il = position.count; i < il; i++) { vector.x = position.getX(i) vector.y = position.getY(i) vector.z = position.getZ(i) maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(vector)) } this.boundingSphere.radius = Math.sqrt(maxRadiusSq) if (isNaN(this.boundingSphere.radius)) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ) } } } })(), computeFaceNormals: function () { // backwards compatibility }, computeVertexNormals: function () { var index = this.index var attributes = this.attributes var groups = this.groups if (attributes.position) { var positions = attributes.position.array if (attributes.normal === undefined) { this.addAttribute('normal', new BufferAttribute(new Float32Array(positions.length), 3)) } else { // reset existing normals to zero var array = attributes.normal.array for (var i = 0, il = array.length; i < il; i++) { array[i] = 0 } } var normals = attributes.normal.array var vA, vB, vC var pA = new Vector3(), pB = new Vector3(), pC = new Vector3() var cb = new Vector3(), ab = new Vector3() // indexed elements if (index) { var indices = index.array if (groups.length === 0) { this.addGroup(0, indices.length) } for (var j = 0, jl = groups.length; j < jl; ++j) { var group = groups[j] var start = group.start var count = group.count for (var i = start, il = start + count; i < il; i += 3) { vA = indices[i + 0] * 3 vB = indices[i + 1] * 3 vC = indices[i + 2] * 3 pA.fromArray(positions, vA) pB.fromArray(positions, vB) pC.fromArray(positions, vC) cb.subVectors(pC, pB) ab.subVectors(pA, pB) cb.cross(ab) normals[vA] += cb.x normals[vA + 1] += cb.y normals[vA + 2] += cb.z normals[vB] += cb.x normals[vB + 1] += cb.y normals[vB + 2] += cb.z normals[vC] += cb.x normals[vC + 1] += cb.y normals[vC + 2] += cb.z } } } else { // non-indexed elements (unconnected triangle soup) for (var i = 0, il = positions.length; i < il; i += 9) { pA.fromArray(positions, i) pB.fromArray(positions, i + 3) pC.fromArray(positions, i + 6) cb.subVectors(pC, pB) ab.subVectors(pA, pB) cb.cross(ab) normals[i] = cb.x normals[i + 1] = cb.y normals[i + 2] = cb.z normals[i + 3] = cb.x normals[i + 4] = cb.y normals[i + 5] = cb.z normals[i + 6] = cb.x normals[i + 7] = cb.y normals[i + 8] = cb.z } } this.normalizeNormals() attributes.normal.needsUpdate = true } }, merge: function (geometry, offset) { if (!(geometry && geometry.isBufferGeometry)) { console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry ) return } if (offset === undefined) offset = 0 var attributes = this.attributes for (var key in attributes) { if (geometry.attributes[key] === undefined) continue var attribute1 = attributes[key] var attributeArray1 = attribute1.array var attribute2 = geometry.attributes[key] var attributeArray2 = attribute2.array var attributeSize = attribute2.itemSize for (var i = 0, j = attributeSize * offset; i < attributeArray2.length; i++, j++) { attributeArray1[j] = attributeArray2[i] } } return this }, normalizeNormals: (function () { var vector = new Vector3() return function normalizeNormals() { var normals = this.attributes.normal for (var i = 0, il = normals.count; i < il; i++) { vector.x = normals.getX(i) vector.y = normals.getY(i) vector.z = normals.getZ(i) vector.normalize() normals.setXYZ(i, vector.x, vector.y, vector.z) } } })(), toNonIndexed: function () { if (this.index === null) { console.warn('THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.') return this } var geometry2 = new BufferGeometry() var indices = this.index.array var attributes = this.attributes for (var name in attributes) { var attribute = attributes[name] var array = attribute.array var itemSize = attribute.itemSize var array2 = new array.constructor(indices.length * itemSize) var index = 0, index2 = 0 for (var i = 0, l = indices.length; i < l; i++) { index = indices[i] * itemSize for (var j = 0; j < itemSize; j++) { array2[index2++] = array[index++] } } geometry2.addAttribute(name, new BufferAttribute(array2, itemSize)) } return geometry2 }, toJSON: function () { var data = { metadata: { version: 4.5, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } } // standard BufferGeometry serialization data.uuid = this.uuid data.type = this.type if (this.name !== '') data.name = this.name if (this.parameters !== undefined) { var parameters = this.parameters for (var key in parameters) { if (parameters[key] !== undefined) data[key] = parameters[key] } return data } data.data = { attributes: {} } var index = this.index if (index !== null) { var array = Array.prototype.slice.call(index.array) data.data.index = { type: index.array.constructor.name, array: array } } var attributes = this.attributes for (var key in attributes) { var attribute = attributes[key] var array = Array.prototype.slice.call(attribute.array) data.data.attributes[key] = { itemSize: attribute.itemSize, type: attribute.array.constructor.name, array: array, normalized: attribute.normalized } } var groups = this.groups if (groups.length > 0) { data.data.groups = JSON.parse(JSON.stringify(groups)) } var boundingSphere = this.boundingSphere if (boundingSphere !== null) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius } } return data }, clone: function () { /* // Handle primitives var parameters = this.parameters; if ( parameters !== undefined ) { var values = []; for ( var key in parameters ) { values.push( parameters[ key ] ); } var geometry = Object.create( this.constructor.prototype ); this.constructor.apply( geometry, values ); return geometry; } return new this.constructor().copy( this ); */ return new BufferGeometry().copy(this) }, copy: function (source) { var name, i, l // reset this.index = null this.attributes = {} this.morphAttributes = {} this.groups = [] this.boundingBox = null this.boundingSphere = null // name this.name = source.name // index var index = source.index if (index !== null) { this.setIndex(index.clone()) } // attributes var attributes = source.attributes for (name in attributes) { var attribute = attributes[name] this.addAttribute(name, attribute.clone()) } // morph attributes var morphAttributes = source.morphAttributes for (name in morphAttributes) { var array = [] var morphAttribute = morphAttributes[name] // morphAttribute: array of Float32BufferAttributes for (i = 0, l = morphAttribute.length; i < l; i++) { array.push(morphAttribute[i].clone()) } this.morphAttributes[name] = array } // groups var groups = source.groups for (i = 0, l = groups.length; i < l; i++) { var group = groups[i] this.addGroup(group.start, group.count, group.materialIndex) } // bounding box var boundingBox = source.boundingBox if (boundingBox !== null) { this.boundingBox = boundingBox.clone() } // bounding sphere var boundingSphere = source.boundingSphere if (boundingSphere !== null) { this.boundingSphere = boundingSphere.clone() } // draw range this.drawRange.start = source.drawRange.start this.drawRange.count = source.drawRange.count return this }, dispose: function () { this.dispatchEvent({ type: 'dispose' }) } }) /** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ // BoxGeometry function BoxGeometry(width, height, depth, widthSegments, heightSegments, depthSegments) { Geometry.call(this) this.type = 'BoxGeometry' this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments } this.fromBufferGeometry( new BoxBufferGeometry(width, height, depth, widthSegments, heightSegments, depthSegments) ) this.mergeVertices() } BoxGeometry.prototype = Object.create(Geometry.prototype) BoxGeometry.prototype.constructor = BoxGeometry // BoxBufferGeometry function BoxBufferGeometry(width, height, depth, widthSegments, heightSegments, depthSegments) { BufferGeometry.call(this) this.type = 'BoxBufferGeometry' this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments } var scope = this width = width || 1 height = height || 1 depth = depth || 1 // segments widthSegments = Math.floor(widthSegments) || 1 heightSegments = Math.floor(heightSegments) || 1 depthSegments = Math.floor(depthSegments) || 1 // buffers var indices = [] var vertices = [] var normals = [] var uvs = [] // helper variables var numberOfVertices = 0 var groupStart = 0 // build each side of the box geometry buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0) // px buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1) // nx buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2) // py buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3) // ny buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4) // pz buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5) // nz // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) { var segmentWidth = width / gridX var segmentHeight = height / gridY var widthHalf = width / 2 var heightHalf = height / 2 var depthHalf = depth / 2 var gridX1 = gridX + 1 var gridY1 = gridY + 1 var vertexCounter = 0 var groupCount = 0 var ix, iy var vector = new Vector3() // generate vertices, normals and uvs for (iy = 0; iy < gridY1; iy++) { var y = iy * segmentHeight - heightHalf for (ix = 0; ix < gridX1; ix++) { var x = ix * segmentWidth - widthHalf // set values to correct vector component vector[u] = x * udir vector[v] = y * vdir vector[w] = depthHalf // now apply vector to vertex buffer vertices.push(vector.x, vector.y, vector.z) // set values to correct vector component vector[u] = 0 vector[v] = 0 vector[w] = depth > 0 ? 1 : -1 // now apply vector to normal buffer normals.push(vector.x, vector.y, vector.z) // uvs uvs.push(ix / gridX) uvs.push(1 - iy / gridY) // counters vertexCounter += 1 } } // indices // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for (iy = 0; iy < gridY; iy++) { for (ix = 0; ix < gridX; ix++) { var a = numberOfVertices + ix + gridX1 * iy var b = numberOfVertices + ix + gridX1 * (iy + 1) var c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1) var d = numberOfVertices + (ix + 1) + gridX1 * iy // faces indices.push(a, b, d) indices.push(b, c, d) // increase counter groupCount += 6 } } // add a group to the geometry. this will ensure multi material support scope.addGroup(groupStart, groupCount, materialIndex) // calculate new start value for groups groupStart += groupCount // update total number of vertices numberOfVertices += vertexCounter } } BoxBufferGeometry.prototype = Object.create(BufferGeometry.prototype) BoxBufferGeometry.prototype.constructor = BoxBufferGeometry /** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ // PlaneGeometry function PlaneGeometry(width, height, widthSegments, heightSegments) { Geometry.call(this) this.type = 'PlaneGeometry' this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments } this.fromBufferGeometry(new PlaneBufferGeometry(width, height, widthSegments, heightSegments)) this.mergeVertices() } PlaneGeometry.prototype = Object.create(Geometry.prototype) PlaneGeometry.prototype.constructor = PlaneGeometry // PlaneBufferGeometry function PlaneBufferGeometry(width, height, widthSegments, heightSegments) { BufferGeometry.call(this) this.type = 'PlaneBufferGeometry' this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments } width = width || 1 height = height || 1 var width_half = width / 2 var height_half = height / 2 var gridX = Math.floor(widthSegments) || 1 var gridY = Math.floor(heightSegments) || 1 var gridX1 = gridX + 1 var gridY1 = gridY + 1 var segment_width = width / gridX var segment_height = height / gridY var ix, iy // buffers var indices = [] var vertices = [] var normals = [] var uvs = [] // generate vertices, normals and uvs for (iy = 0; iy < gridY1; iy++) { var y = iy * segment_height - height_half for (ix = 0; ix < gridX1; ix++) { var x = ix * segment_width - width_half vertices.push(x, -y, 0) normals.push(0, 0, 1) uvs.push(ix / gridX) uvs.push(1 - iy / gridY) } } // indices for (iy = 0; iy < gridY; iy++) { for (ix = 0; ix < gridX; ix++) { var a = ix + gridX1 * iy var b = ix + gridX1 * (iy + 1) var c = ix + 1 + gridX1 * (iy + 1) var d = ix + 1 + gridX1 * iy // faces indices.push(a, b, d) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) } PlaneBufferGeometry.prototype = Object.create(BufferGeometry.prototype) PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * depthTest: , * depthWrite: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: * } */ function MeshBasicMaterial(parameters) { Material.call(this) this.type = 'MeshBasicMaterial' this.color = new Color(0xffffff) // emissive this.map = null this.lightMap = null this.lightMapIntensity = 1.0 this.aoMap = null this.aoMapIntensity = 1.0 this.specularMap = null this.alphaMap = null this.envMap = null this.combine = MultiplyOperation this.reflectivity = 1 this.refractionRatio = 0.98 this.wireframe = false this.wireframeLinewidth = 1 this.wireframeLinecap = 'round' this.wireframeLinejoin = 'round' this.skinning = false this.morphTargets = false this.lights = false this.setValues(parameters) } MeshBasicMaterial.prototype = Object.create(Material.prototype) MeshBasicMaterial.prototype.constructor = MeshBasicMaterial MeshBasicMaterial.prototype.isMeshBasicMaterial = true MeshBasicMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.color.copy(source.color) this.map = source.map this.lightMap = source.lightMap this.lightMapIntensity = source.lightMapIntensity this.aoMap = source.aoMap this.aoMapIntensity = source.aoMapIntensity this.specularMap = source.specularMap this.alphaMap = source.alphaMap this.envMap = source.envMap this.combine = source.combine this.reflectivity = source.reflectivity this.refractionRatio = source.refractionRatio this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.wireframeLinecap = source.wireframeLinecap this.wireframeLinejoin = source.wireframeLinejoin this.skinning = source.skinning this.morphTargets = source.morphTargets return this } /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * defines: { "label" : "value" }, * uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } }, * * fragmentShader: , * vertexShader: , * * wireframe: , * wireframeLinewidth: , * * lights: , * * skinning: , * morphTargets: , * morphNormals: * } */ function ShaderMaterial(parameters) { Material.call(this) this.type = 'ShaderMaterial' this.defines = {} this.uniforms = {} this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}' this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}' this.linewidth = 1 this.wireframe = false this.wireframeLinewidth = 1 this.fog = false // set to use scene fog this.lights = false // set to use scene lights this.clipping = false // set to use user-defined clipping planes this.skinning = false // set to use skinning attribute streams this.morphTargets = false // set to use morph targets this.morphNormals = false // set to use morph normals this.extensions = { derivatives: false, // set to use derivatives fragDepth: false, // set to use fragment depth values drawBuffers: false, // set to use draw buffers shaderTextureLOD: false // set to use shader texture LOD } // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { color: [1, 1, 1], uv: [0, 0], uv2: [0, 0] } this.index0AttributeName = undefined this.uniformsNeedUpdate = false if (parameters !== undefined) { if (parameters.attributes !== undefined) { console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' ) } this.setValues(parameters) } } ShaderMaterial.prototype = Object.create(Material.prototype) ShaderMaterial.prototype.constructor = ShaderMaterial ShaderMaterial.prototype.isShaderMaterial = true ShaderMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.fragmentShader = source.fragmentShader this.vertexShader = source.vertexShader this.uniforms = UniformsUtils.clone(source.uniforms) this.defines = source.defines this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.lights = source.lights this.clipping = source.clipping this.skinning = source.skinning this.morphTargets = source.morphTargets this.morphNormals = source.morphNormals this.extensions = source.extensions return this } ShaderMaterial.prototype.toJSON = function (meta) { var data = Material.prototype.toJSON.call(this, meta) data.uniforms = this.uniforms data.vertexShader = this.vertexShader data.fragmentShader = this.fragmentShader return data } /** * @author bhouston / http://clara.io */ function Ray(origin, direction) { this.origin = origin !== undefined ? origin : new Vector3() this.direction = direction !== undefined ? direction : new Vector3() } Object.assign(Ray.prototype, { set: function (origin, direction) { this.origin.copy(origin) this.direction.copy(direction) return this }, clone: function () { return new this.constructor().copy(this) }, copy: function (ray) { this.origin.copy(ray.origin) this.direction.copy(ray.direction) return this }, at: function (t, optionalTarget) { var result = optionalTarget || new Vector3() return result.copy(this.direction).multiplyScalar(t).add(this.origin) }, lookAt: function (v) { this.direction.copy(v).sub(this.origin).normalize() return this }, recast: (function () { var v1 = new Vector3() return function recast(t) { this.origin.copy(this.at(t, v1)) return this } })(), closestPointToPoint: function (point, optionalTarget) { var result = optionalTarget || new Vector3() result.subVectors(point, this.origin) var directionDistance = result.dot(this.direction) if (directionDistance < 0) { return result.copy(this.origin) } return result.copy(this.direction).multiplyScalar(directionDistance).add(this.origin) }, distanceToPoint: function (point) { return Math.sqrt(this.distanceSqToPoint(point)) }, distanceSqToPoint: (function () { var v1 = new Vector3() return function distanceSqToPoint(point) { var directionDistance = v1.subVectors(point, this.origin).dot(this.direction) // point behind the ray if (directionDistance < 0) { return this.origin.distanceToSquared(point) } v1.copy(this.direction).multiplyScalar(directionDistance).add(this.origin) return v1.distanceToSquared(point) } })(), distanceSqToSegment: (function () { var segCenter = new Vector3() var segDir = new Vector3() var diff = new Vector3() return function distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) { // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment segCenter.copy(v0).add(v1).multiplyScalar(0.5) segDir.copy(v1).sub(v0).normalize() diff.copy(this.origin).sub(segCenter) var segExtent = v0.distanceTo(v1) * 0.5 var a01 = -this.direction.dot(segDir) var b0 = diff.dot(this.direction) var b1 = -diff.dot(segDir) var c = diff.lengthSq() var det = Math.abs(1 - a01 * a01) var s0, s1, sqrDist, extDet if (det > 0) { // The ray and segment are not parallel. s0 = a01 * b1 - b0 s1 = a01 * b0 - b1 extDet = segExtent * det if (s0 >= 0) { if (s1 >= -extDet) { if (s1 <= extDet) { // region 0 // Minimum at interior points of ray and segment. var invDet = 1 / det s0 *= invDet s1 *= invDet sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c } else { // region 1 s1 = segExtent s0 = Math.max(0, -(a01 * s1 + b0)) sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c } } else { // region 5 s1 = -segExtent s0 = Math.max(0, -(a01 * s1 + b0)) sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c } } else { if (s1 <= -extDet) { // region 4 s0 = Math.max(0, -(-a01 * segExtent + b0)) s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent) sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c } else if (s1 <= extDet) { // region 3 s0 = 0 s1 = Math.min(Math.max(-segExtent, -b1), segExtent) sqrDist = s1 * (s1 + 2 * b1) + c } else { // region 2 s0 = Math.max(0, -(a01 * segExtent + b0)) s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent) sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c } } } else { // Ray and segment are parallel. s1 = a01 > 0 ? -segExtent : segExtent s0 = Math.max(0, -(a01 * s1 + b0)) sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c } if (optionalPointOnRay) { optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin) } if (optionalPointOnSegment) { optionalPointOnSegment.copy(segDir).multiplyScalar(s1).add(segCenter) } return sqrDist } })(), intersectSphere: (function () { var v1 = new Vector3() return function intersectSphere(sphere, optionalTarget) { v1.subVectors(sphere.center, this.origin) var tca = v1.dot(this.direction) var d2 = v1.dot(v1) - tca * tca var radius2 = sphere.radius * sphere.radius if (d2 > radius2) return null var thc = Math.sqrt(radius2 - d2) // t0 = first intersect point - entrance on front of sphere var t0 = tca - thc // t1 = second intersect point - exit point on back of sphere var t1 = tca + thc // test to see if both t0 and t1 are behind the ray - if so, return null if (t0 < 0 && t1 < 0) return null // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if (t0 < 0) return this.at(t1, optionalTarget) // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at(t0, optionalTarget) } })(), intersectsSphere: function (sphere) { return this.distanceToPoint(sphere.center) <= sphere.radius }, distanceToPlane: function (plane) { var denominator = plane.normal.dot(this.direction) if (denominator === 0) { // line is coplanar, return origin if (plane.distanceToPoint(this.origin) === 0) { return 0 } // Null is preferable to undefined since undefined means.... it is undefined return null } var t = -(this.origin.dot(plane.normal) + plane.constant) / denominator // Return if the ray never intersects the plane return t >= 0 ? t : null }, intersectPlane: function (plane, optionalTarget) { var t = this.distanceToPlane(plane) if (t === null) { return null } return this.at(t, optionalTarget) }, intersectsPlane: function (plane) { // check if the ray lies on the plane first var distToPoint = plane.distanceToPoint(this.origin) if (distToPoint === 0) { return true } var denominator = plane.normal.dot(this.direction) if (denominator * distToPoint < 0) { return true } // ray origin is behind the plane (and is pointing behind it) return false }, intersectBox: function (box, optionalTarget) { var tmin, tmax, tymin, tymax, tzmin, tzmax var invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z var origin = this.origin if (invdirx >= 0) { tmin = (box.min.x - origin.x) * invdirx tmax = (box.max.x - origin.x) * invdirx } else { tmin = (box.max.x - origin.x) * invdirx tmax = (box.min.x - origin.x) * invdirx } if (invdiry >= 0) { tymin = (box.min.y - origin.y) * invdiry tymax = (box.max.y - origin.y) * invdiry } else { tymin = (box.max.y - origin.y) * invdiry tymax = (box.min.y - origin.y) * invdiry } if (tmin > tymax || tymin > tmax) return null // These lines also handle the case where tmin or tmax is NaN // (result of 0 * Infinity). x !== x returns true if x is NaN if (tymin > tmin || tmin !== tmin) tmin = tymin if (tymax < tmax || tmax !== tmax) tmax = tymax if (invdirz >= 0) { tzmin = (box.min.z - origin.z) * invdirz tzmax = (box.max.z - origin.z) * invdirz } else { tzmin = (box.max.z - origin.z) * invdirz tzmax = (box.min.z - origin.z) * invdirz } if (tmin > tzmax || tzmin > tmax) return null if (tzmin > tmin || tmin !== tmin) tmin = tzmin if (tzmax < tmax || tmax !== tmax) tmax = tzmax //return point closest to the ray (positive side) if (tmax < 0) return null return this.at(tmin >= 0 ? tmin : tmax, optionalTarget) }, intersectsBox: (function () { var v = new Vector3() return function intersectsBox(box) { return this.intersectBox(box, v) !== null } })(), intersectTriangle: (function () { // Compute the offset origin, edges, and normal. var diff = new Vector3() var edge1 = new Vector3() var edge2 = new Vector3() var normal = new Vector3() return function intersectTriangle(a, b, c, backfaceCulling, optionalTarget) { // from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h edge1.subVectors(b, a) edge2.subVectors(c, a) normal.crossVectors(edge1, edge2) // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) var DdN = this.direction.dot(normal) var sign if (DdN > 0) { if (backfaceCulling) return null sign = 1 } else if (DdN < 0) { sign = -1 DdN = -DdN } else { return null } diff.subVectors(this.origin, a) var DdQxE2 = sign * this.direction.dot(edge2.crossVectors(diff, edge2)) // b1 < 0, no intersection if (DdQxE2 < 0) { return null } var DdE1xQ = sign * this.direction.dot(edge1.cross(diff)) // b2 < 0, no intersection if (DdE1xQ < 0) { return null } // b1+b2 > 1, no intersection if (DdQxE2 + DdE1xQ > DdN) { return null } // Line intersects triangle, check if ray does. var QdN = -sign * diff.dot(normal) // t < 0, no intersection if (QdN < 0) { return null } // Ray intersects triangle. return this.at(QdN / DdN, optionalTarget) } })(), applyMatrix4: function (matrix4) { this.origin.applyMatrix4(matrix4) this.direction.transformDirection(matrix4) return this }, equals: function (ray) { return ray.origin.equals(this.origin) && ray.direction.equals(this.direction) } }) /** * @author bhouston / http://clara.io */ function Line3(start, end) { this.start = start !== undefined ? start : new Vector3() this.end = end !== undefined ? end : new Vector3() } Object.assign(Line3.prototype, { set: function (start, end) { this.start.copy(start) this.end.copy(end) return this }, clone: function () { return new this.constructor().copy(this) }, copy: function (line) { this.start.copy(line.start) this.end.copy(line.end) return this }, getCenter: function (optionalTarget) { var result = optionalTarget || new Vector3() return result.addVectors(this.start, this.end).multiplyScalar(0.5) }, delta: function (optionalTarget) { var result = optionalTarget || new Vector3() return result.subVectors(this.end, this.start) }, distanceSq: function () { return this.start.distanceToSquared(this.end) }, distance: function () { return this.start.distanceTo(this.end) }, at: function (t, optionalTarget) { var result = optionalTarget || new Vector3() return this.delta(result).multiplyScalar(t).add(this.start) }, closestPointToPointParameter: (function () { var startP = new Vector3() var startEnd = new Vector3() return function closestPointToPointParameter(point, clampToLine) { startP.subVectors(point, this.start) startEnd.subVectors(this.end, this.start) var startEnd2 = startEnd.dot(startEnd) var startEnd_startP = startEnd.dot(startP) var t = startEnd_startP / startEnd2 if (clampToLine) { t = _Math.clamp(t, 0, 1) } return t } })(), closestPointToPoint: function (point, clampToLine, optionalTarget) { var t = this.closestPointToPointParameter(point, clampToLine) var result = optionalTarget || new Vector3() return this.delta(result).multiplyScalar(t).add(this.start) }, applyMatrix4: function (matrix) { this.start.applyMatrix4(matrix) this.end.applyMatrix4(matrix) return this }, equals: function (line) { return line.start.equals(this.start) && line.end.equals(this.end) } }) /** * @author bhouston / http://clara.io * @author mrdoob / http://mrdoob.com/ */ function Triangle(a, b, c) { this.a = a !== undefined ? a : new Vector3() this.b = b !== undefined ? b : new Vector3() this.c = c !== undefined ? c : new Vector3() } Object.assign(Triangle, { normal: (function () { var v0 = new Vector3() return function normal(a, b, c, optionalTarget) { var result = optionalTarget || new Vector3() result.subVectors(c, b) v0.subVectors(a, b) result.cross(v0) var resultLengthSq = result.lengthSq() if (resultLengthSq > 0) { return result.multiplyScalar(1 / Math.sqrt(resultLengthSq)) } return result.set(0, 0, 0) } })(), // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html barycoordFromPoint: (function () { var v0 = new Vector3() var v1 = new Vector3() var v2 = new Vector3() return function barycoordFromPoint(point, a, b, c, optionalTarget) { v0.subVectors(c, a) v1.subVectors(b, a) v2.subVectors(point, a) var dot00 = v0.dot(v0) var dot01 = v0.dot(v1) var dot02 = v0.dot(v2) var dot11 = v1.dot(v1) var dot12 = v1.dot(v2) var denom = dot00 * dot11 - dot01 * dot01 var result = optionalTarget || new Vector3() // collinear or singular triangle if (denom === 0) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return result.set(-2, -1, -1) } var invDenom = 1 / denom var u = (dot11 * dot02 - dot01 * dot12) * invDenom var v = (dot00 * dot12 - dot01 * dot02) * invDenom // barycentric coordinates must always sum to 1 return result.set(1 - u - v, v, u) } })(), containsPoint: (function () { var v1 = new Vector3() return function containsPoint(point, a, b, c) { var result = Triangle.barycoordFromPoint(point, a, b, c, v1) return result.x >= 0 && result.y >= 0 && result.x + result.y <= 1 } })() }) Object.assign(Triangle.prototype, { set: function (a, b, c) { this.a.copy(a) this.b.copy(b) this.c.copy(c) return this }, setFromPointsAndIndices: function (points, i0, i1, i2) { this.a.copy(points[i0]) this.b.copy(points[i1]) this.c.copy(points[i2]) return this }, clone: function () { return new this.constructor().copy(this) }, copy: function (triangle) { this.a.copy(triangle.a) this.b.copy(triangle.b) this.c.copy(triangle.c) return this }, area: (function () { var v0 = new Vector3() var v1 = new Vector3() return function area() { v0.subVectors(this.c, this.b) v1.subVectors(this.a, this.b) return v0.cross(v1).length() * 0.5 } })(), midpoint: function (optionalTarget) { var result = optionalTarget || new Vector3() return result .addVectors(this.a, this.b) .add(this.c) .multiplyScalar(1 / 3) }, normal: function (optionalTarget) { return Triangle.normal(this.a, this.b, this.c, optionalTarget) }, plane: function (optionalTarget) { var result = optionalTarget || new Plane() return result.setFromCoplanarPoints(this.a, this.b, this.c) }, barycoordFromPoint: function (point, optionalTarget) { return Triangle.barycoordFromPoint(point, this.a, this.b, this.c, optionalTarget) }, containsPoint: function (point) { return Triangle.containsPoint(point, this.a, this.b, this.c) }, intersectsBox: function (box) { return box.intersectsTriangle(this) }, closestPointToPoint: (function () { var plane = new Plane() var edgeList = [new Line3(), new Line3(), new Line3()] var projectedPoint = new Vector3() var closestPoint = new Vector3() return function closestPointToPoint(point, optionalTarget) { var result = optionalTarget || new Vector3() var minDistance = Infinity // project the point onto the plane of the triangle plane.setFromCoplanarPoints(this.a, this.b, this.c) plane.projectPoint(point, projectedPoint) // check if the projection lies within the triangle if (this.containsPoint(projectedPoint) === true) { // if so, this is the closest point result.copy(projectedPoint) } else { // if not, the point falls outside the triangle. the result is the closest point to the triangle's edges or vertices edgeList[0].set(this.a, this.b) edgeList[1].set(this.b, this.c) edgeList[2].set(this.c, this.a) for (var i = 0; i < edgeList.length; i++) { edgeList[i].closestPointToPoint(projectedPoint, true, closestPoint) var distance = projectedPoint.distanceToSquared(closestPoint) if (distance < minDistance) { minDistance = distance result.copy(closestPoint) } } } return result } })(), equals: function (triangle) { return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c) } }) /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author mikael emtinger / http://gomo.se/ * @author jonobr1 / http://jonobr1.com/ */ function Mesh(geometry, material) { Object3D.call(this) this.type = 'Mesh' this.geometry = geometry !== undefined ? geometry : new BufferGeometry() this.material = material !== undefined ? material : new MeshBasicMaterial({ color: Math.random() * 0xffffff }) this.drawMode = TrianglesDrawMode this.updateMorphTargets() } Mesh.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: Mesh, isMesh: true, setDrawMode: function (value) { this.drawMode = value }, copy: function (source) { Object3D.prototype.copy.call(this, source) this.drawMode = source.drawMode if (source.morphTargetInfluences !== undefined) { this.morphTargetInfluences = source.morphTargetInfluences.slice() } if (source.morphTargetDictionary !== undefined) { this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary) } return this }, updateMorphTargets: function () { var geometry = this.geometry var m, ml, name if (geometry.isBufferGeometry) { var morphAttributes = geometry.morphAttributes var keys = Object.keys(morphAttributes) if (keys.length > 0) { var morphAttribute = morphAttributes[keys[0]] if (morphAttribute !== undefined) { this.morphTargetInfluences = [] this.morphTargetDictionary = {} for (m = 0, ml = morphAttribute.length; m < ml; m++) { name = morphAttribute[m].name || String(m) this.morphTargetInfluences.push(0) this.morphTargetDictionary[name] = m } } } } else { var morphTargets = geometry.morphTargets if (morphTargets !== undefined && morphTargets.length > 0) { this.morphTargetInfluences = [] this.morphTargetDictionary = {} for (m = 0, ml = morphTargets.length; m < ml; m++) { name = morphTargets[m].name || String(m) this.morphTargetInfluences.push(0) this.morphTargetDictionary[name] = m } } } }, raycast: (function () { var inverseMatrix = new Matrix4() var ray = new Ray() var sphere = new Sphere() var vA = new Vector3() var vB = new Vector3() var vC = new Vector3() var tempA = new Vector3() var tempB = new Vector3() var tempC = new Vector3() var uvA = new Vector2() var uvB = new Vector2() var uvC = new Vector2() var barycoord = new Vector3() var intersectionPoint = new Vector3() var intersectionPointWorld = new Vector3() function uvIntersection(point, p1, p2, p3, uv1, uv2, uv3) { Triangle.barycoordFromPoint(point, p1, p2, p3, barycoord) uv1.multiplyScalar(barycoord.x) uv2.multiplyScalar(barycoord.y) uv3.multiplyScalar(barycoord.z) uv1.add(uv2).add(uv3) return uv1.clone() } function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) { var intersect if (material.side === BackSide) { intersect = ray.intersectTriangle(pC, pB, pA, true, point) } else { intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point) } if (intersect === null) return null intersectionPointWorld.copy(point) intersectionPointWorld.applyMatrix4(object.matrixWorld) var distance = raycaster.ray.origin.distanceTo(intersectionPointWorld) if (distance < raycaster.near || distance > raycaster.far) return null return { distance: distance, point: intersectionPointWorld.clone(), object: object } } function checkBufferGeometryIntersection(object, raycaster, ray, position, uv, a, b, c) { vA.fromBufferAttribute(position, a) vB.fromBufferAttribute(position, b) vC.fromBufferAttribute(position, c) var intersection = checkIntersection( object, object.material, raycaster, ray, vA, vB, vC, intersectionPoint ) if (intersection) { if (uv) { uvA.fromBufferAttribute(uv, a) uvB.fromBufferAttribute(uv, b) uvC.fromBufferAttribute(uv, c) intersection.uv = uvIntersection(intersectionPoint, vA, vB, vC, uvA, uvB, uvC) } intersection.face = new Face3(a, b, c, Triangle.normal(vA, vB, vC)) intersection.faceIndex = a } return intersection } return function raycast(raycaster, intersects) { var geometry = this.geometry var material = this.material var matrixWorld = this.matrixWorld if (material === undefined) return // Checking boundingSphere distance to ray if (geometry.boundingSphere === null) geometry.computeBoundingSphere() sphere.copy(geometry.boundingSphere) sphere.applyMatrix4(matrixWorld) if (raycaster.ray.intersectsSphere(sphere) === false) return // inverseMatrix.getInverse(matrixWorld) ray.copy(raycaster.ray).applyMatrix4(inverseMatrix) // Check boundingBox before continuing if (geometry.boundingBox !== null) { if (ray.intersectsBox(geometry.boundingBox) === false) return } var intersection if (geometry.isBufferGeometry) { var a, b, c var index = geometry.index var position = geometry.attributes.position var uv = geometry.attributes.uv var i, l if (index !== null) { // indexed buffer geometry for (i = 0, l = index.count; i < l; i += 3) { a = index.getX(i) b = index.getX(i + 1) c = index.getX(i + 2) intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c ) if (intersection) { intersection.faceIndex = Math.floor(i / 3) // triangle number in indices buffer semantics intersects.push(intersection) } } } else if (position !== undefined) { // non-indexed buffer geometry for (i = 0, l = position.count; i < l; i += 3) { a = i b = i + 1 c = i + 2 intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c ) if (intersection) { intersection.index = a // triangle number in positions buffer semantics intersects.push(intersection) } } } } else if (geometry.isGeometry) { var fvA, fvB, fvC var isMultiMaterial = Array.isArray(material) var vertices = geometry.vertices var faces = geometry.faces var uvs var faceVertexUvs = geometry.faceVertexUvs[0] if (faceVertexUvs.length > 0) uvs = faceVertexUvs for (var f = 0, fl = faces.length; f < fl; f++) { var face = faces[f] var faceMaterial = isMultiMaterial ? material[face.materialIndex] : material if (faceMaterial === undefined) continue fvA = vertices[face.a] fvB = vertices[face.b] fvC = vertices[face.c] if (faceMaterial.morphTargets === true) { var morphTargets = geometry.morphTargets var morphInfluences = this.morphTargetInfluences vA.set(0, 0, 0) vB.set(0, 0, 0) vC.set(0, 0, 0) for (var t = 0, tl = morphTargets.length; t < tl; t++) { var influence = morphInfluences[t] if (influence === 0) continue var targets = morphTargets[t].vertices vA.addScaledVector(tempA.subVectors(targets[face.a], fvA), influence) vB.addScaledVector(tempB.subVectors(targets[face.b], fvB), influence) vC.addScaledVector(tempC.subVectors(targets[face.c], fvC), influence) } vA.add(fvA) vB.add(fvB) vC.add(fvC) fvA = vA fvB = vB fvC = vC } intersection = checkIntersection( this, faceMaterial, raycaster, ray, fvA, fvB, fvC, intersectionPoint ) if (intersection) { if (uvs && uvs[f]) { var uvs_f = uvs[f] uvA.copy(uvs_f[0]) uvB.copy(uvs_f[1]) uvC.copy(uvs_f[2]) intersection.uv = uvIntersection(intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC) } intersection.face = face intersection.faceIndex = f intersects.push(intersection) } } } } })(), clone: function () { return new this.constructor(this.geometry, this.material).copy(this) } }) /** * @author mrdoob / http://mrdoob.com/ */ function WebGLBackground(renderer, state, geometries, premultipliedAlpha) { var clearColor = new Color(0x000000) var clearAlpha = 0 var planeCamera, planeMesh var boxMesh function render(renderList, scene, camera, forceClear) { var background = scene.background if (background === null) { setClear(clearColor, clearAlpha) } else if (background && background.isColor) { setClear(background, 1) forceClear = true } if (renderer.autoClear || forceClear) { renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil) } if (background && background.isCubeTexture) { if (boxMesh === undefined) { boxMesh = new Mesh( new BoxBufferGeometry(1, 1, 1), new ShaderMaterial({ uniforms: ShaderLib.cube.uniforms, vertexShader: ShaderLib.cube.vertexShader, fragmentShader: ShaderLib.cube.fragmentShader, side: BackSide, depthTest: true, depthWrite: false, fog: false }) ) boxMesh.geometry.removeAttribute('normal') boxMesh.geometry.removeAttribute('uv') boxMesh.onBeforeRender = function (renderer, scene, camera) { this.matrixWorld.copyPosition(camera.matrixWorld) } geometries.update(boxMesh.geometry) } boxMesh.material.uniforms.tCube.value = background renderList.push(boxMesh, boxMesh.geometry, boxMesh.material, 0, null) } else if (background && background.isTexture) { if (planeCamera === undefined) { planeCamera = new OrthographicCamera(-1, 1, 1, -1, 0, 1) planeMesh = new Mesh( new PlaneBufferGeometry(2, 2), new MeshBasicMaterial({ depthTest: false, depthWrite: false, fog: false }) ) geometries.update(planeMesh.geometry) } planeMesh.material.map = background // TODO Push this to renderList renderer.renderBufferDirect( planeCamera, null, planeMesh.geometry, planeMesh.material, planeMesh, null ) } } function setClear(color, alpha) { state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha) } return { getClearColor: function () { return clearColor }, setClearColor: function (color, alpha) { clearColor.set(color) clearAlpha = alpha !== undefined ? alpha : 1 setClear(clearColor, clearAlpha) }, getClearAlpha: function () { return clearAlpha }, setClearAlpha: function (alpha) { clearAlpha = alpha setClear(clearColor, clearAlpha) }, render: render } } /** * @author mrdoob / http://mrdoob.com/ */ function painterSortStable(a, b) { if (a.renderOrder !== b.renderOrder) { return a.renderOrder - b.renderOrder } else if (a.program && b.program && a.program !== b.program) { return a.program.id - b.program.id } else if (a.material.id !== b.material.id) { return a.material.id - b.material.id } else if (a.z !== b.z) { return a.z - b.z } else { return a.id - b.id } } function reversePainterSortStable(a, b) { if (a.renderOrder !== b.renderOrder) { return a.renderOrder - b.renderOrder } if (a.z !== b.z) { return b.z - a.z } else { return a.id - b.id } } function WebGLRenderList() { var renderItems = [] var renderItemsIndex = 0 var opaque = [] var transparent = [] function init() { renderItemsIndex = 0 opaque.length = 0 transparent.length = 0 } function push(object, geometry, material, z, group) { var renderItem = renderItems[renderItemsIndex] if (renderItem === undefined) { renderItem = { id: object.id, object: object, geometry: geometry, material: material, program: material.program, renderOrder: object.renderOrder, z: z, group: group } renderItems[renderItemsIndex] = renderItem } else { renderItem.id = object.id renderItem.object = object renderItem.geometry = geometry renderItem.material = material renderItem.program = material.program renderItem.renderOrder = object.renderOrder renderItem.z = z renderItem.group = group } ;(material.transparent === true ? transparent : opaque).push(renderItem) renderItemsIndex++ } function sort() { if (opaque.length > 1) opaque.sort(painterSortStable) if (transparent.length > 1) transparent.sort(reversePainterSortStable) } return { opaque: opaque, transparent: transparent, init: init, push: push, sort: sort } } function WebGLRenderLists() { var lists = {} function get(scene, camera) { var hash = scene.id + ',' + camera.id var list = lists[hash] if (list === undefined) { // console.log( 'THREE.WebGLRenderLists:', hash ); list = new WebGLRenderList() lists[hash] = list } return list } function dispose() { lists = {} } return { get: get, dispose: dispose } } /** * @author mrdoob / http://mrdoob.com/ */ function absNumericalSort(a, b) { return Math.abs(b[1]) - Math.abs(a[1]) } function WebGLMorphtargets(gl) { var influencesList = {} var morphInfluences = new Float32Array(8) function update(object, geometry, material, program) { var objectInfluences = object.morphTargetInfluences var length = objectInfluences.length var influences = influencesList[geometry.id] if (influences === undefined) { // initialise list influences = [] for (var i = 0; i < length; i++) { influences[i] = [i, 0] } influencesList[geometry.id] = influences } var morphTargets = material.morphTargets && geometry.morphAttributes.position var morphNormals = material.morphNormals && geometry.morphAttributes.normal // Remove current morphAttributes for (var i = 0; i < length; i++) { var influence = influences[i] if (influence[1] !== 0) { if (morphTargets) geometry.removeAttribute('morphTarget' + i) if (morphNormals) geometry.removeAttribute('morphNormal' + i) } } // Collect influences for (var i = 0; i < length; i++) { var influence = influences[i] influence[0] = i influence[1] = objectInfluences[i] } influences.sort(absNumericalSort) // Add morphAttributes for (var i = 0; i < 8; i++) { var influence = influences[i] if (influence) { var index = influence[0] var value = influence[1] if (value) { if (morphTargets) geometry.addAttribute('morphTarget' + i, morphTargets[index]) if (morphNormals) geometry.addAttribute('morphNormal' + i, morphNormals[index]) morphInfluences[i] = value continue } } morphInfluences[i] = 0 } program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences) } return { update: update } } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLIndexedBufferRenderer(gl, extensions, infoRender) { var mode function setMode(value) { mode = value } var type, bytesPerElement function setIndex(value) { type = value.type bytesPerElement = value.bytesPerElement } function render(start, count) { gl.drawElements(mode, count, type, start * bytesPerElement) infoRender.calls++ infoRender.vertices += count if (mode === gl.TRIANGLES) infoRender.faces += count / 3 else if (mode === gl.POINTS) infoRender.points += count } function renderInstances(geometry, start, count) { var extension = extensions.get('ANGLE_instanced_arrays') if (extension === null) { console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ) return } extension.drawElementsInstancedANGLE( mode, count, type, start * bytesPerElement, geometry.maxInstancedCount ) infoRender.calls++ infoRender.vertices += count * geometry.maxInstancedCount if (mode === gl.TRIANGLES) infoRender.faces += (geometry.maxInstancedCount * count) / 3 else if (mode === gl.POINTS) infoRender.points += geometry.maxInstancedCount * count } // this.setMode = setMode this.setIndex = setIndex this.render = render this.renderInstances = renderInstances } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLBufferRenderer(gl, extensions, infoRender) { var mode function setMode(value) { mode = value } function render(start, count) { gl.drawArrays(mode, start, count) infoRender.calls++ infoRender.vertices += count if (mode === gl.TRIANGLES) infoRender.faces += count / 3 else if (mode === gl.POINTS) infoRender.points += count } function renderInstances(geometry, start, count) { var extension = extensions.get('ANGLE_instanced_arrays') if (extension === null) { console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ) return } var position = geometry.attributes.position if (position.isInterleavedBufferAttribute) { count = position.data.count extension.drawArraysInstancedANGLE(mode, 0, count, geometry.maxInstancedCount) } else { extension.drawArraysInstancedANGLE(mode, start, count, geometry.maxInstancedCount) } infoRender.calls++ infoRender.vertices += count * geometry.maxInstancedCount if (mode === gl.TRIANGLES) infoRender.faces += (geometry.maxInstancedCount * count) / 3 else if (mode === gl.POINTS) infoRender.points += geometry.maxInstancedCount * count } // this.setMode = setMode this.render = render this.renderInstances = renderInstances } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLGeometries(gl, attributes, infoMemory) { var geometries = {} var wireframeAttributes = {} function onGeometryDispose(event) { var geometry = event.target var buffergeometry = geometries[geometry.id] if (buffergeometry.index !== null) { attributes.remove(buffergeometry.index) } for (var name in buffergeometry.attributes) { attributes.remove(buffergeometry.attributes[name]) } geometry.removeEventListener('dispose', onGeometryDispose) delete geometries[geometry.id] // TODO Remove duplicate code var attribute = wireframeAttributes[geometry.id] if (attribute) { attributes.remove(attribute) delete wireframeAttributes[geometry.id] } attribute = wireframeAttributes[buffergeometry.id] if (attribute) { attributes.remove(attribute) delete wireframeAttributes[buffergeometry.id] } // infoMemory.geometries-- } function get(object, geometry) { var buffergeometry = geometries[geometry.id] if (buffergeometry) return buffergeometry geometry.addEventListener('dispose', onGeometryDispose) if (geometry.isBufferGeometry) { buffergeometry = geometry } else if (geometry.isGeometry) { if (geometry._bufferGeometry === undefined) { geometry._bufferGeometry = new BufferGeometry().setFromObject(object) } buffergeometry = geometry._bufferGeometry } geometries[geometry.id] = buffergeometry infoMemory.geometries++ return buffergeometry } function update(geometry) { var index = geometry.index var geometryAttributes = geometry.attributes if (index !== null) { attributes.update(index, gl.ELEMENT_ARRAY_BUFFER) } for (var name in geometryAttributes) { attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER) } // morph targets var morphAttributes = geometry.morphAttributes for (var name in morphAttributes) { var array = morphAttributes[name] for (var i = 0, l = array.length; i < l; i++) { attributes.update(array[i], gl.ARRAY_BUFFER) } } } function getWireframeAttribute(geometry) { var attribute = wireframeAttributes[geometry.id] if (attribute) return attribute var indices = [] var geometryIndex = geometry.index var geometryAttributes = geometry.attributes // console.time( 'wireframe' ); if (geometryIndex !== null) { var array = geometryIndex.array for (var i = 0, l = array.length; i < l; i += 3) { var a = array[i + 0] var b = array[i + 1] var c = array[i + 2] indices.push(a, b, b, c, c, a) } } else { var array = geometryAttributes.position.array for (var i = 0, l = array.length / 3 - 1; i < l; i += 3) { var a = i + 0 var b = i + 1 var c = i + 2 indices.push(a, b, b, c, c, a) } } // console.timeEnd( 'wireframe' ); attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)( indices, 1 ) attributes.update(attribute, gl.ELEMENT_ARRAY_BUFFER) wireframeAttributes[geometry.id] = attribute return attribute } return { get: get, update: update, getWireframeAttribute: getWireframeAttribute } } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLObjects(geometries, infoRender) { var updateList = {} function update(object) { var frame = infoRender.frame var geometry = object.geometry var buffergeometry = geometries.get(object, geometry) // Update once per frame if (updateList[buffergeometry.id] !== frame) { if (geometry.isGeometry) { buffergeometry.updateFromObject(object) } geometries.update(buffergeometry) updateList[buffergeometry.id] = frame } return buffergeometry } function dispose() { updateList = {} } return { update: update, dispose: dispose } } /** * @author mrdoob / http://mrdoob.com/ */ function addLineNumbers(string) { var lines = string.split('\n') for (var i = 0; i < lines.length; i++) { lines[i] = i + 1 + ': ' + lines[i] } return lines.join('\n') } function WebGLShader(gl, type, string) { var shader = gl.createShader(type) gl.shaderSource(shader, string) gl.compileShader(shader) if (gl.getShaderParameter(shader, gl.COMPILE_STATUS) === false) { console.error("THREE.WebGLShader: Shader couldn't compile.") } if (gl.getShaderInfoLog(shader) !== '') { console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog(shader), addLineNumbers(string) ) } // --enable-privileged-webgl-extension // console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); return shader } /** * @author mrdoob / http://mrdoob.com/ */ var programIdCount = 0 function getEncodingComponents(encoding) { switch (encoding) { case LinearEncoding: return ['Linear', '( value )'] case sRGBEncoding: return ['sRGB', '( value )'] case RGBEEncoding: return ['RGBE', '( value )'] case RGBM7Encoding: return ['RGBM', '( value, 7.0 )'] case RGBM16Encoding: return ['RGBM', '( value, 16.0 )'] case RGBDEncoding: return ['RGBD', '( value, 256.0 )'] case GammaEncoding: return ['Gamma', '( value, float( GAMMA_FACTOR ) )'] default: throw new Error('unsupported encoding: ' + encoding) } } function getTexelDecodingFunction(functionName, encoding) { var components = getEncodingComponents(encoding) return ( 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }' ) } function getTexelEncodingFunction(functionName, encoding) { var components = getEncodingComponents(encoding) return ( 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }' ) } function getToneMappingFunction(functionName, toneMapping) { var toneMappingName switch (toneMapping) { case LinearToneMapping: toneMappingName = 'Linear' break case ReinhardToneMapping: toneMappingName = 'Reinhard' break case Uncharted2ToneMapping: toneMappingName = 'Uncharted2' break case CineonToneMapping: toneMappingName = 'OptimizedCineon' break default: throw new Error('unsupported toneMapping: ' + toneMapping) } return ( 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }' ) } function generateExtensions(extensions, parameters, rendererExtensions) { extensions = extensions || {} var chunks = [ extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ? '#extension GL_OES_standard_derivatives : enable' : '', (extensions.fragDepth || parameters.logarithmicDepthBuffer) && rendererExtensions.get('EXT_frag_depth') ? '#extension GL_EXT_frag_depth : enable' : '', extensions.drawBuffers && rendererExtensions.get('WEBGL_draw_buffers') ? '#extension GL_EXT_draw_buffers : require' : '', (extensions.shaderTextureLOD || parameters.envMap) && rendererExtensions.get('EXT_shader_texture_lod') ? '#extension GL_EXT_shader_texture_lod : enable' : '' ] return chunks.filter(filterEmptyLine).join('\n') } function generateDefines(defines) { var chunks = [] for (var name in defines) { var value = defines[name] if (value === false) continue chunks.push('#define ' + name + ' ' + value) } return chunks.join('\n') } function fetchAttributeLocations(gl, program) { var attributes = {} var n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES) for (var i = 0; i < n; i++) { var info = gl.getActiveAttrib(program, i) var name = info.name // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); attributes[name] = gl.getAttribLocation(program, name) } return attributes } function filterEmptyLine(string) { return string !== '' } function replaceLightNums(string, parameters) { return string .replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights) .replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights) .replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights) .replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights) .replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights) } function replaceClippingPlaneNums(string, parameters) { return string .replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes) .replace( /UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection ) } function parseIncludes(string) { var pattern = /^[ \t]*#include +<([\w\d.]+)>/gm function replace(match, include) { var replace = ShaderChunk[include] if (replace === undefined) { throw new Error('Can not resolve #include <' + include + '>') } return parseIncludes(replace) } return string.replace(pattern, replace) } function unrollLoops(string) { var pattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g function replace(match, start, end, snippet) { var unroll = '' for (var i = parseInt(start); i < parseInt(end); i++) { unroll += snippet.replace(/\[ i \]/g, '[ ' + i + ' ]') } return unroll } return string.replace(pattern, replace) } function WebGLProgram(renderer, extensions, code, material, shader, parameters) { var gl = renderer.context var defines = material.defines var vertexShader = shader.vertexShader var fragmentShader = shader.fragmentShader var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC' if (parameters.shadowMapType === PCFShadowMap) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF' } else if (parameters.shadowMapType === PCFSoftShadowMap) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT' } var envMapTypeDefine = 'ENVMAP_TYPE_CUBE' var envMapModeDefine = 'ENVMAP_MODE_REFLECTION' var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY' if (parameters.envMap) { switch (material.envMap.mapping) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE' break case CubeUVReflectionMapping: case CubeUVRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV' break case EquirectangularReflectionMapping: case EquirectangularRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC' break case SphericalReflectionMapping: envMapTypeDefine = 'ENVMAP_TYPE_SPHERE' break } switch (material.envMap.mapping) { case CubeRefractionMapping: case EquirectangularRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION' break } switch (material.combine) { case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY' break case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX' break case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD' break } } var gammaFactorDefine = renderer.gammaFactor > 0 ? renderer.gammaFactor : 1.0 // console.log( 'building new program ' ); // var customExtensions = generateExtensions(material.extensions, parameters, extensions) var customDefines = generateDefines(defines) // var program = gl.createProgram() var prefixVertex, prefixFragment if (material.isRawShaderMaterial) { prefixVertex = [customDefines].filter(filterEmptyLine).join('\n') if (prefixVertex.length > 0) { prefixVertex += '\n' } prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n') if (prefixFragment.length > 0) { prefixFragment += '\n' } } else { prefixVertex = [ 'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;', '#define SHADER_NAME ' + shader.name, customDefines, parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && extensions.get('EXT_frag_depth') ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_COLOR', ' attribute vec3 color;', '#endif', '#ifdef USE_MORPHTARGETS', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ] .filter(filterEmptyLine) .join('\n') prefixFragment = [ customExtensions, 'precision ' + parameters.precision + ' float;', 'precision ' + parameters.precision + ' int;', '#define SHADER_NAME ' + shader.name, customDefines, parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && extensions.get('EXT_frag_depth') ? '#define USE_LOGDEPTHBUF_EXT' : '', parameters.envMap && extensions.get('EXT_shader_texture_lod') ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ? ShaderChunk['encodings_pars_fragment'] : '', // this code is required here because it is used by the various encoding/decoding function defined below parameters.mapEncoding ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.envMapEncoding ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMapEncoding ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.outputEncoding ? getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding) : '', parameters.depthPacking ? '#define DEPTH_PACKING ' + material.depthPacking : '', '\n' ] .filter(filterEmptyLine) .join('\n') } vertexShader = parseIncludes(vertexShader) vertexShader = replaceLightNums(vertexShader, parameters) vertexShader = replaceClippingPlaneNums(vertexShader, parameters) fragmentShader = parseIncludes(fragmentShader) fragmentShader = replaceLightNums(fragmentShader, parameters) fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters) vertexShader = unrollLoops(vertexShader) fragmentShader = unrollLoops(fragmentShader) var vertexGlsl = prefixVertex + vertexShader var fragmentGlsl = prefixFragment + fragmentShader // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); var glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl) var glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl) gl.attachShader(program, glVertexShader) gl.attachShader(program, glFragmentShader) // Force a particular attribute to index 0. if (material.index0AttributeName !== undefined) { gl.bindAttribLocation(program, 0, material.index0AttributeName) } else if (parameters.morphTargets === true) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation(program, 0, 'position') } gl.linkProgram(program) var programLog = gl.getProgramInfoLog(program).trim() var vertexLog = gl.getShaderInfoLog(glVertexShader).trim() var fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim() var runnable = true var haveDiagnostics = true // console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) ); // console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) ); if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) { runnable = false console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter(program, gl.VALIDATE_STATUS), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog ) } else if (programLog !== '') { console.warn('THREE.WebGLProgram: gl.getProgramInfoLog()', programLog) } else if (vertexLog === '' || fragmentLog === '') { haveDiagnostics = false } if (haveDiagnostics) { this.diagnostics = { runnable: runnable, material: material, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } } } // clean up gl.deleteShader(glVertexShader) gl.deleteShader(glFragmentShader) // set up caching for uniform locations var cachedUniforms this.getUniforms = function () { if (cachedUniforms === undefined) { cachedUniforms = new WebGLUniforms(gl, program, renderer) } return cachedUniforms } // set up caching for attribute locations var cachedAttributes this.getAttributes = function () { if (cachedAttributes === undefined) { cachedAttributes = fetchAttributeLocations(gl, program) } return cachedAttributes } // free resource this.destroy = function () { gl.deleteProgram(program) this.program = undefined } // DEPRECATED Object.defineProperties(this, { uniforms: { get: function () { console.warn('THREE.WebGLProgram: .uniforms is now .getUniforms().') return this.getUniforms() } }, attributes: { get: function () { console.warn('THREE.WebGLProgram: .attributes is now .getAttributes().') return this.getAttributes() } } }) // this.id = programIdCount++ this.code = code this.usedTimes = 1 this.program = program this.vertexShader = glVertexShader this.fragmentShader = glFragmentShader return this } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLPrograms(renderer, extensions, capabilities) { var programs = [] var shaderIDs = { MeshDepthMaterial: 'depth', MeshDistanceMaterial: 'distanceRGBA', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshToonMaterial: 'phong', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points', ShadowMaterial: 'shadow' } var parameterNames = [ 'precision', 'supportsVertexTextures', 'map', 'mapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'lightMap', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'displacementMap', 'specularMap', 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'combine', 'vertexColors', 'fog', 'useFog', 'fogExp', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'maxMorphTargets', 'maxMorphNormals', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'alphaTest', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering' ] function allocateBones(object) { var skeleton = object.skeleton var bones = skeleton.bones if (capabilities.floatVertexTextures) { return 1024 } else { // default for when object is not specified // ( for example when prebuilding shader to be used with multiple objects ) // // - leave some extra space for other uniforms // - limit here is ANGLE's 254 max uniform vectors // (up to 54 should be safe) var nVertexUniforms = capabilities.maxVertexUniforms var nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4) var maxBones = Math.min(nVertexMatrices, bones.length) if (maxBones < bones.length) { console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' ) return 0 } return maxBones } } function getTextureEncodingFromMap(map, gammaOverrideLinear) { var encoding if (!map) { encoding = LinearEncoding } else if (map.isTexture) { encoding = map.encoding } else if (map.isWebGLRenderTarget) { console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." ) encoding = map.texture.encoding } // add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point. if (encoding === LinearEncoding && gammaOverrideLinear) { encoding = GammaEncoding } return encoding } this.getParameters = function ( material, lights, shadows, fog, nClipPlanes, nClipIntersection, object ) { var shaderID = shaderIDs[material.type] // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) var maxBones = object.isSkinnedMesh ? allocateBones(object) : 0 var precision = capabilities.precision if (material.precision !== null) { precision = capabilities.getMaxPrecision(material.precision) if (precision !== material.precision) { console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ) } } var currentRenderTarget = renderer.getRenderTarget() var parameters = { shaderID: shaderID, precision: precision, supportsVertexTextures: capabilities.vertexTextures, outputEncoding: getTextureEncodingFromMap( !currentRenderTarget ? null : currentRenderTarget.texture, renderer.gammaOutput ), map: !!material.map, mapEncoding: getTextureEncodingFromMap(material.map, renderer.gammaInput), envMap: !!material.envMap, envMapMode: material.envMap && material.envMap.mapping, envMapEncoding: getTextureEncodingFromMap(material.envMap, renderer.gammaInput), envMapCubeUV: !!material.envMap && (material.envMap.mapping === CubeUVReflectionMapping || material.envMap.mapping === CubeUVRefractionMapping), lightMap: !!material.lightMap, aoMap: !!material.aoMap, emissiveMap: !!material.emissiveMap, emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap, renderer.gammaInput), bumpMap: !!material.bumpMap, normalMap: !!material.normalMap, displacementMap: !!material.displacementMap, roughnessMap: !!material.roughnessMap, metalnessMap: !!material.metalnessMap, specularMap: !!material.specularMap, alphaMap: !!material.alphaMap, gradientMap: !!material.gradientMap, combine: material.combine, vertexColors: material.vertexColors, fog: !!fog, useFog: material.fog, fogExp: fog && fog.isFogExp2, flatShading: material.flatShading, sizeAttenuation: material.sizeAttenuation, logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer, skinning: material.skinning && maxBones > 0, maxBones: maxBones, useVertexTexture: capabilities.floatVertexTextures, morphTargets: material.morphTargets, morphNormals: material.morphNormals, maxMorphTargets: renderer.maxMorphTargets, maxMorphNormals: renderer.maxMorphNormals, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, numClippingPlanes: nClipPlanes, numClipIntersection: nClipIntersection, dithering: material.dithering, shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: renderer.toneMapping, physicallyCorrectLights: renderer.physicallyCorrectLights, premultipliedAlpha: material.premultipliedAlpha, alphaTest: material.alphaTest, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, depthPacking: material.depthPacking !== undefined ? material.depthPacking : false } return parameters } this.getProgramCode = function (material, parameters) { var array = [] if (parameters.shaderID) { array.push(parameters.shaderID) } else { array.push(material.fragmentShader) array.push(material.vertexShader) } if (material.defines !== undefined) { for (var name in material.defines) { array.push(name) array.push(material.defines[name]) } } for (var i = 0; i < parameterNames.length; i++) { array.push(parameters[parameterNames[i]]) } array.push(material.onBeforeCompile.toString()) array.push(renderer.gammaOutput) return array.join() } this.acquireProgram = function (material, shader, parameters, code) { var program // Check if code has been already compiled for (var p = 0, pl = programs.length; p < pl; p++) { var programInfo = programs[p] if (programInfo.code === code) { program = programInfo ++program.usedTimes break } } if (program === undefined) { program = new WebGLProgram(renderer, extensions, code, material, shader, parameters) programs.push(program) } return program } this.releaseProgram = function (program) { if (--program.usedTimes === 0) { // Remove from unordered set var i = programs.indexOf(program) programs[i] = programs[programs.length - 1] programs.pop() // Free WebGL resources program.destroy() } } // Exposed for resource monitoring & error feedback via renderer.info: this.programs = programs } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, infoMemory, infoRender ) { var _isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && _gl instanceof WebGL2RenderingContext var _videoTextures = {} var _canvas // function clampToMaxSize(image, maxSize) { if (image.width > maxSize || image.height > maxSize) { // Warning: Scaling through the canvas will only work with images that use // premultiplied alpha. var scale = maxSize / Math.max(image.width, image.height) var canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas') canvas.width = Math.floor(image.width * scale) canvas.height = Math.floor(image.height * scale) var context = canvas.getContext('2d') context.drawImage(image, 0, 0, image.width, image.height, 0, 0, canvas.width, canvas.height) console.warn( 'THREE.WebGLRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image ) return canvas } return image } function isPowerOfTwo(image) { return _Math.isPowerOfTwo(image.width) && _Math.isPowerOfTwo(image.height) } function makePowerOfTwo(image) { if ( image instanceof HTMLImageElement || image instanceof HTMLCanvasElement || image instanceof ImageBitmap ) { if (_canvas === undefined) _canvas = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas') _canvas.width = _Math.floorPowerOfTwo(image.width) _canvas.height = _Math.floorPowerOfTwo(image.height) var context = _canvas.getContext('2d') context.drawImage(image, 0, 0, _canvas.width, _canvas.height) console.warn( 'THREE.WebGLRenderer: image is not power of two (' + image.width + 'x' + image.height + '). Resized to ' + _canvas.width + 'x' + _canvas.height, image ) return _canvas } return image } function textureNeedsPowerOfTwo(texture) { return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) ) } function textureNeedsGenerateMipmaps(texture, isPowerOfTwo) { return ( texture.generateMipmaps && isPowerOfTwo && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) } // Fallback filters for non-power-of-2 textures function filterFallback(f) { if ( f === NearestFilter || f === NearestMipMapNearestFilter || f === NearestMipMapLinearFilter ) { return _gl.NEAREST } return _gl.LINEAR } // function onTextureDispose(event) { var texture = event.target texture.removeEventListener('dispose', onTextureDispose) deallocateTexture(texture) if (texture.isVideoTexture) { delete _videoTextures[texture.id] } infoMemory.textures-- } function onRenderTargetDispose(event) { var renderTarget = event.target renderTarget.removeEventListener('dispose', onRenderTargetDispose) deallocateRenderTarget(renderTarget) infoMemory.textures-- } // function deallocateTexture(texture) { var textureProperties = properties.get(texture) if (texture.image && textureProperties.__image__webglTextureCube) { // cube texture _gl.deleteTexture(textureProperties.__image__webglTextureCube) } else { // 2D texture if (textureProperties.__webglInit === undefined) return _gl.deleteTexture(textureProperties.__webglTexture) } // remove all webgl properties properties.remove(texture) } function deallocateRenderTarget(renderTarget) { var renderTargetProperties = properties.get(renderTarget) var textureProperties = properties.get(renderTarget.texture) if (!renderTarget) return if (textureProperties.__webglTexture !== undefined) { _gl.deleteTexture(textureProperties.__webglTexture) } if (renderTarget.depthTexture) { renderTarget.depthTexture.dispose() } if (renderTarget.isWebGLRenderTargetCube) { for (var i = 0; i < 6; i++) { _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]) if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]) } } else { _gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer) if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer) } properties.remove(renderTarget.texture) properties.remove(renderTarget) } // function setTexture2D(texture, slot) { var textureProperties = properties.get(texture) if (texture.isVideoTexture) updateVideoTexture(texture) if (texture.version > 0 && textureProperties.__version !== texture.version) { var image = texture.image if (image === undefined) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined', texture ) } else if (image.complete === false) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete', texture ) } else { uploadTexture(textureProperties, texture, slot) return } } state.activeTexture(_gl.TEXTURE0 + slot) state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture) } function setTextureCube(texture, slot) { var textureProperties = properties.get(texture) if (texture.image.length === 6) { if (texture.version > 0 && textureProperties.__version !== texture.version) { if (!textureProperties.__image__webglTextureCube) { texture.addEventListener('dispose', onTextureDispose) textureProperties.__image__webglTextureCube = _gl.createTexture() infoMemory.textures++ } state.activeTexture(_gl.TEXTURE0 + slot) state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube) _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY) var isCompressed = texture && texture.isCompressedTexture var isDataTexture = texture.image[0] && texture.image[0].isDataTexture var cubeImage = [] for (var i = 0; i < 6; i++) { if (!isCompressed && !isDataTexture) { cubeImage[i] = clampToMaxSize(texture.image[i], capabilities.maxCubemapSize) } else { cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i] } } var image = cubeImage[0], isPowerOfTwoImage = isPowerOfTwo(image), glFormat = utils.convert(texture.format), glType = utils.convert(texture.type) setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage) for (var i = 0; i < 6; i++) { if (!isCompressed) { if (isDataTexture) { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data ) } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[i] ) } } else { var mipmap, mipmaps = cubeImage[i].mipmaps for (var j = 0, jl = mipmaps.length; j < jl; j++) { mipmap = mipmaps[j] if (texture.format !== RGBAFormat && texture.format !== RGBFormat) { if (state.getCompressedTextureFormats().indexOf(glFormat) > -1) { state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ) } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' ) } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ) } } } } if (textureNeedsGenerateMipmaps(texture, isPowerOfTwoImage)) { _gl.generateMipmap(_gl.TEXTURE_CUBE_MAP) } textureProperties.__version = texture.version if (texture.onUpdate) texture.onUpdate(texture) } else { state.activeTexture(_gl.TEXTURE0 + slot) state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube) } } } function setTextureCubeDynamic(texture, slot) { state.activeTexture(_gl.TEXTURE0 + slot) state.bindTexture(_gl.TEXTURE_CUBE_MAP, properties.get(texture).__webglTexture) } function setTextureParameters(textureType, texture, isPowerOfTwoImage) { var extension if (isPowerOfTwoImage) { _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, utils.convert(texture.wrapS)) _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, utils.convert(texture.wrapT)) _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, utils.convert(texture.magFilter)) _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, utils.convert(texture.minFilter)) } else { _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE) _gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE) if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.', texture ) } _gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterFallback(texture.magFilter)) _gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterFallback(texture.minFilter)) if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) { console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.', texture ) } } extension = extensions.get('EXT_texture_filter_anisotropic') if (extension) { if (texture.type === FloatType && extensions.get('OES_texture_float_linear') === null) return if ( texture.type === HalfFloatType && extensions.get('OES_texture_half_float_linear') === null ) return if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) { _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy()) ) properties.get(texture).__currentAnisotropy = texture.anisotropy } } } function uploadTexture(textureProperties, texture, slot) { if (textureProperties.__webglInit === undefined) { textureProperties.__webglInit = true texture.addEventListener('dispose', onTextureDispose) textureProperties.__webglTexture = _gl.createTexture() infoMemory.textures++ } state.activeTexture(_gl.TEXTURE0 + slot) state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture) _gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY) _gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha) _gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment) var image = clampToMaxSize(texture.image, capabilities.maxTextureSize) if (textureNeedsPowerOfTwo(texture) && isPowerOfTwo(image) === false) { image = makePowerOfTwo(image) } var isPowerOfTwoImage = isPowerOfTwo(image), glFormat = utils.convert(texture.format), glType = utils.convert(texture.type) setTextureParameters(_gl.TEXTURE_2D, texture, isPowerOfTwoImage) var mipmap, mipmaps = texture.mipmaps if (texture.isDepthTexture) { // populate depth texture with dummy data var internalFormat = _gl.DEPTH_COMPONENT if (texture.type === FloatType) { if (!_isWebGL2) throw new Error('Float Depth Texture only supported in WebGL2.0') internalFormat = _gl.DEPTH_COMPONENT32F } else if (_isWebGL2) { // WebGL 2.0 requires signed internalformat for glTexImage2D internalFormat = _gl.DEPTH_COMPONENT16 } if (texture.format === DepthFormat && internalFormat === _gl.DEPTH_COMPONENT) { // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) { console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' ) texture.type = UnsignedShortType glType = utils.convert(texture.type) } } // Depth stencil textures need the DEPTH_STENCIL internal format // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if (texture.format === DepthStencilFormat) { internalFormat = _gl.DEPTH_STENCIL // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are // DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL. // (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/) if (texture.type !== UnsignedInt248Type) { console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' ) texture.type = UnsignedInt248Type glType = utils.convert(texture.type) } } state.texImage2D( _gl.TEXTURE_2D, 0, internalFormat, image.width, image.height, 0, glFormat, glType, null ) } else if (texture.isDataTexture) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if (mipmaps.length > 0 && isPowerOfTwoImage) { for (var i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i] state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ) } texture.generateMipmaps = false } else { state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data ) } } else if (texture.isCompressedTexture) { for (var i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i] if (texture.format !== RGBAFormat && texture.format !== RGBFormat) { if (state.getCompressedTextureFormats().indexOf(glFormat) > -1) { state.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data ) } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ) } } else { state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ) } } } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if (mipmaps.length > 0 && isPowerOfTwoImage) { for (var i = 0, il = mipmaps.length; i < il; i++) { mipmap = mipmaps[i] state.texImage2D(_gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap) } texture.generateMipmaps = false } else { state.texImage2D(_gl.TEXTURE_2D, 0, glFormat, glFormat, glType, image) } } if (textureNeedsGenerateMipmaps(texture, isPowerOfTwoImage)) _gl.generateMipmap(_gl.TEXTURE_2D) textureProperties.__version = texture.version if (texture.onUpdate) texture.onUpdate(texture) } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture(framebuffer, renderTarget, attachment, textureTarget) { var glFormat = utils.convert(renderTarget.texture.format) var glType = utils.convert(renderTarget.texture.type) state.texImage2D( textureTarget, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null ) _gl.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer) _gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get(renderTarget.texture).__webglTexture, 0 ) _gl.bindFramebuffer(_gl.FRAMEBUFFER, null) } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage(renderbuffer, renderTarget) { _gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer) if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height ) _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ) } else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) { _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height ) _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer ) } else { // FIXME: We don't support !depth !stencil _gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height ) } _gl.bindRenderbuffer(_gl.RENDERBUFFER, null) } // Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture(framebuffer, renderTarget) { var isCube = renderTarget && renderTarget.isWebGLRenderTargetCube if (isCube) throw new Error('Depth Texture with cube render targets is not supported') _gl.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer) if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) { throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture') } // upload an empty depth texture with framebuffer size if ( !properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height ) { renderTarget.depthTexture.image.width = renderTarget.width renderTarget.depthTexture.image.height = renderTarget.height renderTarget.depthTexture.needsUpdate = true } setTexture2D(renderTarget.depthTexture, 0) var webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture if (renderTarget.depthTexture.format === DepthFormat) { _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ) } else if (renderTarget.depthTexture.format === DepthStencilFormat) { _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ) } else { throw new Error('Unknown depthTexture format') } } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer(renderTarget) { var renderTargetProperties = properties.get(renderTarget) var isCube = renderTarget.isWebGLRenderTargetCube === true if (renderTarget.depthTexture) { if (isCube) throw new Error('target.depthTexture not supported in Cube render targets') setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget) } else { if (isCube) { renderTargetProperties.__webglDepthbuffer = [] for (var i = 0; i < 6; i++) { _gl.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]) renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer() setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget) } } else { _gl.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer) renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer() setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget) } } _gl.bindFramebuffer(_gl.FRAMEBUFFER, null) } // Set up GL resources for the render target function setupRenderTarget(renderTarget) { var renderTargetProperties = properties.get(renderTarget) var textureProperties = properties.get(renderTarget.texture) renderTarget.addEventListener('dispose', onRenderTargetDispose) textureProperties.__webglTexture = _gl.createTexture() infoMemory.textures++ var isCube = renderTarget.isWebGLRenderTargetCube === true var isTargetPowerOfTwo = isPowerOfTwo(renderTarget) // Setup framebuffer if (isCube) { renderTargetProperties.__webglFramebuffer = [] for (var i = 0; i < 6; i++) { renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer() } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer() } // Setup color buffer if (isCube) { state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture) setTextureParameters(_gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo) for (var i = 0; i < 6; i++) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[i], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i ) } if (textureNeedsGenerateMipmaps(renderTarget.texture, isTargetPowerOfTwo)) _gl.generateMipmap(_gl.TEXTURE_CUBE_MAP) state.bindTexture(_gl.TEXTURE_CUBE_MAP, null) } else { state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture) setTextureParameters(_gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo) setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D ) if (textureNeedsGenerateMipmaps(renderTarget.texture, isTargetPowerOfTwo)) _gl.generateMipmap(_gl.TEXTURE_2D) state.bindTexture(_gl.TEXTURE_2D, null) } // Setup depth and stencil buffers if (renderTarget.depthBuffer) { setupDepthRenderbuffer(renderTarget) } } function updateRenderTargetMipmap(renderTarget) { var texture = renderTarget.texture var isTargetPowerOfTwo = isPowerOfTwo(renderTarget) if (textureNeedsGenerateMipmaps(texture, isTargetPowerOfTwo)) { var target = renderTarget.isWebGLRenderTargetCube ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D var webglTexture = properties.get(texture).__webglTexture state.bindTexture(target, webglTexture) _gl.generateMipmap(target) state.bindTexture(target, null) } } function updateVideoTexture(texture) { var id = texture.id var frame = infoRender.frame // Check the last frame we updated the VideoTexture if (_videoTextures[id] !== frame) { _videoTextures[id] = frame texture.update() } } this.setTexture2D = setTexture2D this.setTextureCube = setTextureCube this.setTextureCubeDynamic = setTextureCubeDynamic this.setupRenderTarget = setupRenderTarget this.updateRenderTargetMipmap = updateRenderTargetMipmap } /** * @author fordacious / fordacious.github.io */ function WebGLProperties() { var properties = {} function get(object) { var uuid = object.uuid var map = properties[uuid] if (map === undefined) { map = {} properties[uuid] = map } return map } function remove(object) { delete properties[object.uuid] } function update(object, key, value) { var uuid = object.uuid var map = properties[uuid] map[key] = value } function dispose() { properties = {} } return { get: get, remove: remove, update: update, dispose: dispose } } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLState(gl, extensions, utils) { function ColorBuffer() { var locked = false var color = new Vector4() var currentColorMask = null var currentColorClear = new Vector4(0, 0, 0, 0) return { setMask: function (colorMask) { if (currentColorMask !== colorMask && !locked) { gl.colorMask(colorMask, colorMask, colorMask, colorMask) currentColorMask = colorMask } }, setLocked: function (lock) { locked = lock }, setClear: function (r, g, b, a, premultipliedAlpha) { if (premultipliedAlpha === true) { r *= a g *= a b *= a } color.set(r, g, b, a) if (currentColorClear.equals(color) === false) { gl.clearColor(r, g, b, a) currentColorClear.copy(color) } }, reset: function () { locked = false currentColorMask = null currentColorClear.set(-1, 0, 0, 0) // set to invalid state } } } function DepthBuffer() { var locked = false var currentDepthMask = null var currentDepthFunc = null var currentDepthClear = null return { setTest: function (depthTest) { if (depthTest) { enable(gl.DEPTH_TEST) } else { disable(gl.DEPTH_TEST) } }, setMask: function (depthMask) { if (currentDepthMask !== depthMask && !locked) { gl.depthMask(depthMask) currentDepthMask = depthMask } }, setFunc: function (depthFunc) { if (currentDepthFunc !== depthFunc) { if (depthFunc) { switch (depthFunc) { case NeverDepth: gl.depthFunc(gl.NEVER) break case AlwaysDepth: gl.depthFunc(gl.ALWAYS) break case LessDepth: gl.depthFunc(gl.LESS) break case LessEqualDepth: gl.depthFunc(gl.LEQUAL) break case EqualDepth: gl.depthFunc(gl.EQUAL) break case GreaterEqualDepth: gl.depthFunc(gl.GEQUAL) break case GreaterDepth: gl.depthFunc(gl.GREATER) break case NotEqualDepth: gl.depthFunc(gl.NOTEQUAL) break default: gl.depthFunc(gl.LEQUAL) } } else { gl.depthFunc(gl.LEQUAL) } currentDepthFunc = depthFunc } }, setLocked: function (lock) { locked = lock }, setClear: function (depth) { if (currentDepthClear !== depth) { gl.clearDepth(depth) currentDepthClear = depth } }, reset: function () { locked = false currentDepthMask = null currentDepthFunc = null currentDepthClear = null } } } function StencilBuffer() { var locked = false var currentStencilMask = null var currentStencilFunc = null var currentStencilRef = null var currentStencilFuncMask = null var currentStencilFail = null var currentStencilZFail = null var currentStencilZPass = null var currentStencilClear = null return { setTest: function (stencilTest) { if (stencilTest) { enable(gl.STENCIL_TEST) } else { disable(gl.STENCIL_TEST) } }, setMask: function (stencilMask) { if (currentStencilMask !== stencilMask && !locked) { gl.stencilMask(stencilMask) currentStencilMask = stencilMask } }, setFunc: function (stencilFunc, stencilRef, stencilMask) { if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask ) { gl.stencilFunc(stencilFunc, stencilRef, stencilMask) currentStencilFunc = stencilFunc currentStencilRef = stencilRef currentStencilFuncMask = stencilMask } }, setOp: function (stencilFail, stencilZFail, stencilZPass) { if ( currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) { gl.stencilOp(stencilFail, stencilZFail, stencilZPass) currentStencilFail = stencilFail currentStencilZFail = stencilZFail currentStencilZPass = stencilZPass } }, setLocked: function (lock) { locked = lock }, setClear: function (stencil) { if (currentStencilClear !== stencil) { gl.clearStencil(stencil) currentStencilClear = stencil } }, reset: function () { locked = false currentStencilMask = null currentStencilFunc = null currentStencilRef = null currentStencilFuncMask = null currentStencilFail = null currentStencilZFail = null currentStencilZPass = null currentStencilClear = null } } } // var colorBuffer = new ColorBuffer() var depthBuffer = new DepthBuffer() var stencilBuffer = new StencilBuffer() var maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS) var newAttributes = new Uint8Array(maxVertexAttributes) var enabledAttributes = new Uint8Array(maxVertexAttributes) var attributeDivisors = new Uint8Array(maxVertexAttributes) var capabilities = {} var compressedTextureFormats = null var currentProgram = null var currentBlending = null var currentBlendEquation = null var currentBlendSrc = null var currentBlendDst = null var currentBlendEquationAlpha = null var currentBlendSrcAlpha = null var currentBlendDstAlpha = null var currentPremultipledAlpha = false var currentFlipSided = null var currentCullFace = null var currentLineWidth = null var currentPolygonOffsetFactor = null var currentPolygonOffsetUnits = null var maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS) var lineWidthAvailable = false var version = 0 var glVersion = gl.getParameter(gl.VERSION) if (glVersion.indexOf('WebGL') !== -1) { version = parseFloat(/^WebGL\ ([0-9])/.exec(glVersion)[1]) lineWidthAvailable = version >= 1.0 } else if (glVersion.indexOf('OpenGL ES') !== -1) { version = parseFloat(/^OpenGL\ ES\ ([0-9])/.exec(glVersion)[1]) lineWidthAvailable = version >= 2.0 } var currentTextureSlot = null var currentBoundTextures = {} var currentScissor = new Vector4() var currentViewport = new Vector4() function createTexture(type, target, count) { var data = new Uint8Array(4) // 4 is required to match default unpack alignment of 4. var texture = gl.createTexture() gl.bindTexture(type, texture) gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST) gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST) for (var i = 0; i < count; i++) { gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data) } return texture } var emptyTextures = {} emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1) emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture( gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6 ) // init colorBuffer.setClear(0, 0, 0, 1) depthBuffer.setClear(1) stencilBuffer.setClear(0) enable(gl.DEPTH_TEST) depthBuffer.setFunc(LessEqualDepth) setFlipSided(false) setCullFace(CullFaceBack) enable(gl.CULL_FACE) enable(gl.BLEND) setBlending(NormalBlending) // function initAttributes() { for (var i = 0, l = newAttributes.length; i < l; i++) { newAttributes[i] = 0 } } function enableAttribute(attribute) { newAttributes[attribute] = 1 if (enabledAttributes[attribute] === 0) { gl.enableVertexAttribArray(attribute) enabledAttributes[attribute] = 1 } if (attributeDivisors[attribute] !== 0) { var extension = extensions.get('ANGLE_instanced_arrays') extension.vertexAttribDivisorANGLE(attribute, 0) attributeDivisors[attribute] = 0 } } function enableAttributeAndDivisor(attribute, meshPerAttribute) { newAttributes[attribute] = 1 if (enabledAttributes[attribute] === 0) { gl.enableVertexAttribArray(attribute) enabledAttributes[attribute] = 1 } if (attributeDivisors[attribute] !== meshPerAttribute) { var extension = extensions.get('ANGLE_instanced_arrays') extension.vertexAttribDivisorANGLE(attribute, meshPerAttribute) attributeDivisors[attribute] = meshPerAttribute } } function disableUnusedAttributes() { for (var i = 0, l = enabledAttributes.length; i !== l; ++i) { if (enabledAttributes[i] !== newAttributes[i]) { gl.disableVertexAttribArray(i) enabledAttributes[i] = 0 } } } function enable(id) { if (capabilities[id] !== true) { gl.enable(id) capabilities[id] = true } } function disable(id) { if (capabilities[id] !== false) { gl.disable(id) capabilities[id] = false } } function getCompressedTextureFormats() { if (compressedTextureFormats === null) { compressedTextureFormats = [] if ( extensions.get('WEBGL_compressed_texture_pvrtc') || extensions.get('WEBGL_compressed_texture_s3tc') || extensions.get('WEBGL_compressed_texture_etc1') || extensions.get('WEBGL_compressed_texture_astc') ) { var formats = gl.getParameter(gl.COMPRESSED_TEXTURE_FORMATS) for (var i = 0; i < formats.length; i++) { compressedTextureFormats.push(formats[i]) } } } return compressedTextureFormats } function useProgram(program) { if (currentProgram !== program) { gl.useProgram(program) currentProgram = program return true } return false } function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) { if (blending !== NoBlending) { enable(gl.BLEND) } else { disable(gl.BLEND) } if (blending !== CustomBlending) { if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) { switch (blending) { case AdditiveBlending: if (premultipliedAlpha) { gl.blendEquationSeparate(gl.FUNC_ADD, gl.FUNC_ADD) gl.blendFuncSeparate(gl.ONE, gl.ONE, gl.ONE, gl.ONE) } else { gl.blendEquation(gl.FUNC_ADD) gl.blendFunc(gl.SRC_ALPHA, gl.ONE) } break case SubtractiveBlending: if (premultipliedAlpha) { gl.blendEquationSeparate(gl.FUNC_ADD, gl.FUNC_ADD) gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA ) } else { gl.blendEquation(gl.FUNC_ADD) gl.blendFunc(gl.ZERO, gl.ONE_MINUS_SRC_COLOR) } break case MultiplyBlending: if (premultipliedAlpha) { gl.blendEquationSeparate(gl.FUNC_ADD, gl.FUNC_ADD) gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA) } else { gl.blendEquation(gl.FUNC_ADD) gl.blendFunc(gl.ZERO, gl.SRC_COLOR) } break default: if (premultipliedAlpha) { gl.blendEquationSeparate(gl.FUNC_ADD, gl.FUNC_ADD) gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA) } else { gl.blendEquationSeparate(gl.FUNC_ADD, gl.FUNC_ADD) gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ) } } } currentBlendEquation = null currentBlendSrc = null currentBlendDst = null currentBlendEquationAlpha = null currentBlendSrcAlpha = null currentBlendDstAlpha = null } else { blendEquationAlpha = blendEquationAlpha || blendEquation blendSrcAlpha = blendSrcAlpha || blendSrc blendDstAlpha = blendDstAlpha || blendDst if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { gl.blendEquationSeparate(utils.convert(blendEquation), utils.convert(blendEquationAlpha)) currentBlendEquation = blendEquation currentBlendEquationAlpha = blendEquationAlpha } if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { gl.blendFuncSeparate( utils.convert(blendSrc), utils.convert(blendDst), utils.convert(blendSrcAlpha), utils.convert(blendDstAlpha) ) currentBlendSrc = blendSrc currentBlendDst = blendDst currentBlendSrcAlpha = blendSrcAlpha currentBlendDstAlpha = blendDstAlpha } } currentBlending = blending currentPremultipledAlpha = premultipliedAlpha } function setMaterial(material, frontFaceCW) { material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE) var flipSided = material.side === BackSide if (frontFaceCW) flipSided = !flipSided setFlipSided(flipSided) material.transparent === true ? setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha ) : setBlending(NoBlending) depthBuffer.setFunc(material.depthFunc) depthBuffer.setTest(material.depthTest) depthBuffer.setMask(material.depthWrite) colorBuffer.setMask(material.colorWrite) setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ) } // function setFlipSided(flipSided) { if (currentFlipSided !== flipSided) { if (flipSided) { gl.frontFace(gl.CW) } else { gl.frontFace(gl.CCW) } currentFlipSided = flipSided } } function setCullFace(cullFace) { if (cullFace !== CullFaceNone) { enable(gl.CULL_FACE) if (cullFace !== currentCullFace) { if (cullFace === CullFaceBack) { gl.cullFace(gl.BACK) } else if (cullFace === CullFaceFront) { gl.cullFace(gl.FRONT) } else { gl.cullFace(gl.FRONT_AND_BACK) } } } else { disable(gl.CULL_FACE) } currentCullFace = cullFace } function setLineWidth(width) { if (width !== currentLineWidth) { if (lineWidthAvailable) gl.lineWidth(width) currentLineWidth = width } } function setPolygonOffset(polygonOffset, factor, units) { if (polygonOffset) { enable(gl.POLYGON_OFFSET_FILL) if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) { gl.polygonOffset(factor, units) currentPolygonOffsetFactor = factor currentPolygonOffsetUnits = units } } else { disable(gl.POLYGON_OFFSET_FILL) } } function setScissorTest(scissorTest) { if (scissorTest) { enable(gl.SCISSOR_TEST) } else { disable(gl.SCISSOR_TEST) } } // texture function activeTexture(webglSlot) { if (webglSlot === undefined) webglSlot = gl.TEXTURE0 + maxTextures - 1 if (currentTextureSlot !== webglSlot) { gl.activeTexture(webglSlot) currentTextureSlot = webglSlot } } function bindTexture(webglType, webglTexture) { if (currentTextureSlot === null) { activeTexture() } var boundTexture = currentBoundTextures[currentTextureSlot] if (boundTexture === undefined) { boundTexture = { type: undefined, texture: undefined } currentBoundTextures[currentTextureSlot] = boundTexture } if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) { gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]) boundTexture.type = webglType boundTexture.texture = webglTexture } } function compressedTexImage2D() { try { gl.compressedTexImage2D.apply(gl, arguments) } catch (error) { console.error('THREE.WebGLState:', error) } } function texImage2D() { try { gl.texImage2D.apply(gl, arguments) } catch (error) { console.error('THREE.WebGLState:', error) } } // function scissor(scissor) { if (currentScissor.equals(scissor) === false) { gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w) currentScissor.copy(scissor) } } function viewport(viewport) { if (currentViewport.equals(viewport) === false) { gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w) currentViewport.copy(viewport) } } // function reset() { for (var i = 0; i < enabledAttributes.length; i++) { if (enabledAttributes[i] === 1) { gl.disableVertexAttribArray(i) enabledAttributes[i] = 0 } } capabilities = {} compressedTextureFormats = null currentTextureSlot = null currentBoundTextures = {} currentProgram = null currentBlending = null currentFlipSided = null currentCullFace = null colorBuffer.reset() depthBuffer.reset() stencilBuffer.reset() } return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, initAttributes: initAttributes, enableAttribute: enableAttribute, enableAttributeAndDivisor: enableAttributeAndDivisor, disableUnusedAttributes: disableUnusedAttributes, enable: enable, disable: disable, getCompressedTextureFormats: getCompressedTextureFormats, useProgram: useProgram, setBlending: setBlending, setMaterial: setMaterial, setFlipSided: setFlipSided, setCullFace: setCullFace, setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset, setScissorTest: setScissorTest, activeTexture: activeTexture, bindTexture: bindTexture, compressedTexImage2D: compressedTexImage2D, texImage2D: texImage2D, scissor: scissor, viewport: viewport, reset: reset } } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLCapabilities(gl, extensions, parameters) { var maxAnisotropy function getMaxAnisotropy() { if (maxAnisotropy !== undefined) return maxAnisotropy var extension = extensions.get('EXT_texture_filter_anisotropic') if (extension !== null) { maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT) } else { maxAnisotropy = 0 } return maxAnisotropy } function getMaxPrecision(precision) { if (precision === 'highp') { if ( gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0 ) { return 'highp' } precision = 'mediump' } if (precision === 'mediump') { if ( gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0 ) { return 'mediump' } } return 'lowp' } var precision = parameters.precision !== undefined ? parameters.precision : 'highp' var maxPrecision = getMaxPrecision(precision) if (maxPrecision !== precision) { console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ) precision = maxPrecision } var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true var maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS) var maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS) var maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE) var maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE) var maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS) var maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS) var maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS) var maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS) var vertexTextures = maxVertexTextures > 0 var floatFragmentTextures = !!extensions.get('OES_texture_float') var floatVertexTextures = vertexTextures && floatFragmentTextures return { getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision, precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer, maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize, maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms, vertexTextures: vertexTextures, floatFragmentTextures: floatFragmentTextures, floatVertexTextures: floatVertexTextures } } /** * @author mrdoob / http://mrdoob.com/ * @author greggman / http://games.greggman.com/ * @author zz85 / http://www.lab4games.net/zz85/blog * @author tschw */ function PerspectiveCamera(fov, aspect, near, far) { Camera.call(this) this.type = 'PerspectiveCamera' this.fov = fov !== undefined ? fov : 50 this.zoom = 1 this.near = near !== undefined ? near : 0.1 this.far = far !== undefined ? far : 2000 this.focus = 10 this.aspect = aspect !== undefined ? aspect : 1 this.view = null this.filmGauge = 35 // width of the film (default in millimeters) this.filmOffset = 0 // horizontal film offset (same unit as gauge) this.updateProjectionMatrix() } PerspectiveCamera.prototype = Object.assign(Object.create(Camera.prototype), { constructor: PerspectiveCamera, isPerspectiveCamera: true, copy: function (source, recursive) { Camera.prototype.copy.call(this, source, recursive) this.fov = source.fov this.zoom = source.zoom this.near = source.near this.far = source.far this.focus = source.focus this.aspect = source.aspect this.view = source.view === null ? null : Object.assign({}, source.view) this.filmGauge = source.filmGauge this.filmOffset = source.filmOffset return this }, /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength: function (focalLength) { // see http://www.bobatkins.com/photography/technical/field_of_view.html var vExtentSlope = (0.5 * this.getFilmHeight()) / focalLength this.fov = _Math.RAD2DEG * 2 * Math.atan(vExtentSlope) this.updateProjectionMatrix() }, /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength: function () { var vExtentSlope = Math.tan(_Math.DEG2RAD * 0.5 * this.fov) return (0.5 * this.getFilmHeight()) / vExtentSlope }, getEffectiveFOV: function () { return _Math.RAD2DEG * 2 * Math.atan(Math.tan(_Math.DEG2RAD * 0.5 * this.fov) / this.zoom) }, getFilmWidth: function () { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min(this.aspect, 1) }, getFilmHeight: function () { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max(this.aspect, 1) }, /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * var w = 1920; * var h = 1080; * var fullWidth = w * 3; * var fullHeight = h * 2; * * --A-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset: function (fullWidth, fullHeight, x, y, width, height) { this.aspect = fullWidth / fullHeight if (this.view === null) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 } } this.view.enabled = true this.view.fullWidth = fullWidth this.view.fullHeight = fullHeight this.view.offsetX = x this.view.offsetY = y this.view.width = width this.view.height = height this.updateProjectionMatrix() }, clearViewOffset: function () { if (this.view !== null) { this.view.enabled = false } this.updateProjectionMatrix() }, updateProjectionMatrix: function () { var near = this.near, top = (near * Math.tan(_Math.DEG2RAD * 0.5 * this.fov)) / this.zoom, height = 2 * top, width = this.aspect * height, left = -0.5 * width, view = this.view if (this.view !== null && this.view.enabled) { var fullWidth = view.fullWidth, fullHeight = view.fullHeight left += (view.offsetX * width) / fullWidth top -= (view.offsetY * height) / fullHeight width *= view.width / fullWidth height *= view.height / fullHeight } var skew = this.filmOffset if (skew !== 0) left += (near * skew) / this.getFilmWidth() this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far) }, toJSON: function (meta) { var data = Object3D.prototype.toJSON.call(this, meta) data.object.fov = this.fov data.object.zoom = this.zoom data.object.near = this.near data.object.far = this.far data.object.focus = this.focus data.object.aspect = this.aspect if (this.view !== null) data.object.view = Object.assign({}, this.view) data.object.filmGauge = this.filmGauge data.object.filmOffset = this.filmOffset return data } }) /** * @author mrdoob / http://mrdoob.com/ */ function ArrayCamera(array) { PerspectiveCamera.call(this) this.cameras = array || [] } ArrayCamera.prototype = Object.assign(Object.create(PerspectiveCamera.prototype), { constructor: ArrayCamera, isArrayCamera: true }) /** * @author mrdoob / http://mrdoob.com/ */ function WebVRManager(renderer) { var scope = this var device = null var frameData = null var poseTarget = null var standingMatrix = new Matrix4() var standingMatrixInverse = new Matrix4() if (typeof window !== 'undefined' && 'VRFrameData' in window) { frameData = new window.VRFrameData() } var matrixWorldInverse = new Matrix4() var cameraL = new PerspectiveCamera() cameraL.bounds = new Vector4(0.0, 0.0, 0.5, 1.0) cameraL.layers.enable(1) var cameraR = new PerspectiveCamera() cameraR.bounds = new Vector4(0.5, 0.0, 0.5, 1.0) cameraR.layers.enable(2) var cameraVR = new ArrayCamera([cameraL, cameraR]) cameraVR.layers.enable(1) cameraVR.layers.enable(2) // var currentSize, currentPixelRatio function onVRDisplayPresentChange() { if (device !== null && device.isPresenting) { var eyeParameters = device.getEyeParameters('left') var renderWidth = eyeParameters.renderWidth var renderHeight = eyeParameters.renderHeight currentPixelRatio = renderer.getPixelRatio() currentSize = renderer.getSize() renderer.setDrawingBufferSize(renderWidth * 2, renderHeight, 1) } else if (scope.enabled) { renderer.setDrawingBufferSize(currentSize.width, currentSize.height, currentPixelRatio) } } if (typeof window !== 'undefined') { window.addEventListener('vrdisplaypresentchange', onVRDisplayPresentChange, false) } // this.enabled = false this.userHeight = 1.6 this.getDevice = function () { return device } this.setDevice = function (value) { if (value !== undefined) device = value } this.setPoseTarget = function (object) { if (object !== undefined) poseTarget = object } this.getCamera = function (camera) { if (device === null) return camera device.depthNear = camera.near device.depthFar = camera.far device.getFrameData(frameData) // var pose = frameData.pose var poseObject = poseTarget !== null ? poseTarget : camera if (pose.position !== null) { poseObject.position.fromArray(pose.position) } else { poseObject.position.set(0, 0, 0) } if (pose.orientation !== null) { poseObject.quaternion.fromArray(pose.orientation) } var stageParameters = device.stageParameters if (stageParameters) { standingMatrix.fromArray(stageParameters.sittingToStandingTransform) } else { standingMatrix.makeTranslation(0, scope.userHeight, 0) } poseObject.position.applyMatrix4(standingMatrix) poseObject.updateMatrixWorld() if (device.isPresenting === false) return camera // cameraL.near = camera.near cameraR.near = camera.near cameraL.far = camera.far cameraR.far = camera.far cameraVR.matrixWorld.copy(camera.matrixWorld) cameraVR.matrixWorldInverse.copy(camera.matrixWorldInverse) cameraL.matrixWorldInverse.fromArray(frameData.leftViewMatrix) cameraR.matrixWorldInverse.fromArray(frameData.rightViewMatrix) // TODO (mrdoob) Double check this code standingMatrixInverse.getInverse(standingMatrix) cameraL.matrixWorldInverse.multiply(standingMatrixInverse) cameraR.matrixWorldInverse.multiply(standingMatrixInverse) var parent = poseObject.parent if (parent !== null) { matrixWorldInverse.getInverse(parent.matrixWorld) cameraL.matrixWorldInverse.multiply(matrixWorldInverse) cameraR.matrixWorldInverse.multiply(matrixWorldInverse) } // envMap and Mirror needs camera.matrixWorld cameraL.matrixWorld.getInverse(cameraL.matrixWorldInverse) cameraR.matrixWorld.getInverse(cameraR.matrixWorldInverse) cameraL.projectionMatrix.fromArray(frameData.leftProjectionMatrix) cameraR.projectionMatrix.fromArray(frameData.rightProjectionMatrix) // HACK (mrdoob) // https://github.com/w3c/webvr/issues/203 cameraVR.projectionMatrix.copy(cameraL.projectionMatrix) // var layers = device.getLayers() if (layers.length) { var layer = layers[0] if (layer.leftBounds !== null && layer.leftBounds.length === 4) { cameraL.bounds.fromArray(layer.leftBounds) } if (layer.rightBounds !== null && layer.rightBounds.length === 4) { cameraR.bounds.fromArray(layer.rightBounds) } } return cameraVR } this.getStandingMatrix = function () { return standingMatrix } this.submitFrame = function () { if (device && device.isPresenting) device.submitFrame() } this.dispose = function () { if (typeof window !== 'undefined') { window.removeEventListener('vrdisplaypresentchange', onVRDisplayPresentChange) } } } /** * @author mrdoob / http://mrdoob.com/ */ function WebGLExtensions(gl) { var extensions = {} return { get: function (name) { if (extensions[name] !== undefined) { return extensions[name] } var extension switch (name) { case 'WEBGL_depth_texture': extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture') break case 'EXT_texture_filter_anisotropic': extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic') break case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc') break case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc') break case 'WEBGL_compressed_texture_etc1': extension = gl.getExtension('WEBGL_compressed_texture_etc1') break default: extension = gl.getExtension(name) } if (extension === null) { console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.') } extensions[name] = extension return extension } } } /** * @author tschw */ function WebGLClipping() { var scope = this, globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false, plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false } this.uniform = uniform this.numPlanes = 0 this.numIntersection = 0 this.init = function (planes, enableLocalClipping, camera) { var enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled localClippingEnabled = enableLocalClipping globalState = projectPlanes(planes, camera, 0) numGlobalPlanes = planes.length return enabled } this.beginShadows = function () { renderingShadows = true projectPlanes(null) } this.endShadows = function () { renderingShadows = false resetGlobalState() } this.setState = function (planes, clipIntersection, clipShadows, camera, cache, fromCache) { if ( !localClippingEnabled || planes === null || planes.length === 0 || (renderingShadows && !clipShadows) ) { // there's no local clipping if (renderingShadows) { // there's no global clipping projectPlanes(null) } else { resetGlobalState() } } else { var nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4, dstArray = cache.clippingState || null uniform.value = dstArray // ensure unique state dstArray = projectPlanes(planes, camera, lGlobal, fromCache) for (var i = 0; i !== lGlobal; ++i) { dstArray[i] = globalState[i] } cache.clippingState = dstArray this.numIntersection = clipIntersection ? this.numPlanes : 0 this.numPlanes += nGlobal } } function resetGlobalState() { if (uniform.value !== globalState) { uniform.value = globalState uniform.needsUpdate = numGlobalPlanes > 0 } scope.numPlanes = numGlobalPlanes scope.numIntersection = 0 } function projectPlanes(planes, camera, dstOffset, skipTransform) { var nPlanes = planes !== null ? planes.length : 0, dstArray = null if (nPlanes !== 0) { dstArray = uniform.value if (skipTransform !== true || dstArray === null) { var flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse viewNormalMatrix.getNormalMatrix(viewMatrix) if (dstArray === null || dstArray.length < flatSize) { dstArray = new Float32Array(flatSize) } for (var i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) { plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix) plane.normal.toArray(dstArray, i4) dstArray[i4 + 3] = plane.constant } } uniform.value = dstArray uniform.needsUpdate = true } scope.numPlanes = nPlanes return dstArray } } /** * @author thespite / http://www.twitter.com/thespite */ function WebGLUtils(gl, extensions) { function convert(p) { var extension if (p === RepeatWrapping) return gl.REPEAT if (p === ClampToEdgeWrapping) return gl.CLAMP_TO_EDGE if (p === MirroredRepeatWrapping) return gl.MIRRORED_REPEAT if (p === NearestFilter) return gl.NEAREST if (p === NearestMipMapNearestFilter) return gl.NEAREST_MIPMAP_NEAREST if (p === NearestMipMapLinearFilter) return gl.NEAREST_MIPMAP_LINEAR if (p === LinearFilter) return gl.LINEAR if (p === LinearMipMapNearestFilter) return gl.LINEAR_MIPMAP_NEAREST if (p === LinearMipMapLinearFilter) return gl.LINEAR_MIPMAP_LINEAR if (p === UnsignedByteType) return gl.UNSIGNED_BYTE if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4 if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1 if (p === UnsignedShort565Type) return gl.UNSIGNED_SHORT_5_6_5 if (p === ByteType) return gl.BYTE if (p === ShortType) return gl.SHORT if (p === UnsignedShortType) return gl.UNSIGNED_SHORT if (p === IntType) return gl.INT if (p === UnsignedIntType) return gl.UNSIGNED_INT if (p === FloatType) return gl.FLOAT if (p === HalfFloatType) { extension = extensions.get('OES_texture_half_float') if (extension !== null) return extension.HALF_FLOAT_OES } if (p === AlphaFormat) return gl.ALPHA if (p === RGBFormat) return gl.RGB if (p === RGBAFormat) return gl.RGBA if (p === LuminanceFormat) return gl.LUMINANCE if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA if (p === DepthFormat) return gl.DEPTH_COMPONENT if (p === DepthStencilFormat) return gl.DEPTH_STENCIL if (p === AddEquation) return gl.FUNC_ADD if (p === SubtractEquation) return gl.FUNC_SUBTRACT if (p === ReverseSubtractEquation) return gl.FUNC_REVERSE_SUBTRACT if (p === ZeroFactor) return gl.ZERO if (p === OneFactor) return gl.ONE if (p === SrcColorFactor) return gl.SRC_COLOR if (p === OneMinusSrcColorFactor) return gl.ONE_MINUS_SRC_COLOR if (p === SrcAlphaFactor) return gl.SRC_ALPHA if (p === OneMinusSrcAlphaFactor) return gl.ONE_MINUS_SRC_ALPHA if (p === DstAlphaFactor) return gl.DST_ALPHA if (p === OneMinusDstAlphaFactor) return gl.ONE_MINUS_DST_ALPHA if (p === DstColorFactor) return gl.DST_COLOR if (p === OneMinusDstColorFactor) return gl.ONE_MINUS_DST_COLOR if (p === SrcAlphaSaturateFactor) return gl.SRC_ALPHA_SATURATE if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { extension = extensions.get('WEBGL_compressed_texture_s3tc') if (extension !== null) { if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT } } if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { extension = extensions.get('WEBGL_compressed_texture_pvrtc') if (extension !== null) { if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG } } if (p === RGB_ETC1_Format) { extension = extensions.get('WEBGL_compressed_texture_etc1') if (extension !== null) return extension.COMPRESSED_RGB_ETC1_WEBGL } if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) { extension = extensions.get('WEBGL_compressed_texture_astc') if (extension !== null) { return p } } if (p === MinEquation || p === MaxEquation) { extension = extensions.get('EXT_blend_minmax') if (extension !== null) { if (p === MinEquation) return extension.MIN_EXT if (p === MaxEquation) return extension.MAX_EXT } } if (p === UnsignedInt248Type) { extension = extensions.get('WEBGL_depth_texture') if (extension !== null) return extension.UNSIGNED_INT_24_8_WEBGL } return 0 } return { convert: convert } } /** * @author mrdoob / http://mrdoob.com/ */ function UniformsCache() { var lights = {} return { get: function (light) { if (lights[light.id] !== undefined) { return lights[light.id] } var uniforms switch (light.type) { case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color(), shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() } break case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0, shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() } break case 'PointLight': uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0, shadow: false, shadowBias: 0, shadowRadius: 1, shadowMapSize: new Vector2(), shadowCameraNear: 1, shadowCameraFar: 1000 } break case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() } break case 'RectAreaLight': uniforms = { color: new Color(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() // TODO (abelnation): set RectAreaLight shadow uniforms } break } lights[light.id] = uniforms return uniforms } } } var count = 0 function WebGLLights() { var cache = new UniformsCache() var state = { id: count++, hash: '', ambient: [0, 0, 0], directional: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotShadowMap: [], spotShadowMatrix: [], rectArea: [], point: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [] } var vector3 = new Vector3() var matrix4 = new Matrix4() var matrix42 = new Matrix4() function setup(lights, shadows, camera) { var r = 0, g = 0, b = 0 var directionalLength = 0 var pointLength = 0 var spotLength = 0 var rectAreaLength = 0 var hemiLength = 0 var viewMatrix = camera.matrixWorldInverse for (var i = 0, l = lights.length; i < l; i++) { var light = lights[i] var color = light.color var intensity = light.intensity var distance = light.distance var shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null if (light.isAmbientLight) { r += color.r * intensity g += color.g * intensity b += color.b * intensity } else if (light.isDirectionalLight) { var uniforms = cache.get(light) uniforms.color.copy(light.color).multiplyScalar(light.intensity) uniforms.direction.setFromMatrixPosition(light.matrixWorld) vector3.setFromMatrixPosition(light.target.matrixWorld) uniforms.direction.sub(vector3) uniforms.direction.transformDirection(viewMatrix) uniforms.shadow = light.castShadow if (light.castShadow) { var shadow = light.shadow uniforms.shadowBias = shadow.bias uniforms.shadowRadius = shadow.radius uniforms.shadowMapSize = shadow.mapSize } state.directionalShadowMap[directionalLength] = shadowMap state.directionalShadowMatrix[directionalLength] = light.shadow.matrix state.directional[directionalLength] = uniforms directionalLength++ } else if (light.isSpotLight) { var uniforms = cache.get(light) uniforms.position.setFromMatrixPosition(light.matrixWorld) uniforms.position.applyMatrix4(viewMatrix) uniforms.color.copy(color).multiplyScalar(intensity) uniforms.distance = distance uniforms.direction.setFromMatrixPosition(light.matrixWorld) vector3.setFromMatrixPosition(light.target.matrixWorld) uniforms.direction.sub(vector3) uniforms.direction.transformDirection(viewMatrix) uniforms.coneCos = Math.cos(light.angle) uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra)) uniforms.decay = light.distance === 0 ? 0.0 : light.decay uniforms.shadow = light.castShadow if (light.castShadow) { var shadow = light.shadow uniforms.shadowBias = shadow.bias uniforms.shadowRadius = shadow.radius uniforms.shadowMapSize = shadow.mapSize } state.spotShadowMap[spotLength] = shadowMap state.spotShadowMatrix[spotLength] = light.shadow.matrix state.spot[spotLength] = uniforms spotLength++ } else if (light.isRectAreaLight) { var uniforms = cache.get(light) // (a) intensity is the total visible light emitted //uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) ); // (b) intensity is the brightness of the light uniforms.color.copy(color).multiplyScalar(intensity) uniforms.position.setFromMatrixPosition(light.matrixWorld) uniforms.position.applyMatrix4(viewMatrix) // extract local rotation of light to derive width/height half vectors matrix42.identity() matrix4.copy(light.matrixWorld) matrix4.premultiply(viewMatrix) matrix42.extractRotation(matrix4) uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0) uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0) uniforms.halfWidth.applyMatrix4(matrix42) uniforms.halfHeight.applyMatrix4(matrix42) // TODO (abelnation): RectAreaLight distance? // uniforms.distance = distance; state.rectArea[rectAreaLength] = uniforms rectAreaLength++ } else if (light.isPointLight) { var uniforms = cache.get(light) uniforms.position.setFromMatrixPosition(light.matrixWorld) uniforms.position.applyMatrix4(viewMatrix) uniforms.color.copy(light.color).multiplyScalar(light.intensity) uniforms.distance = light.distance uniforms.decay = light.distance === 0 ? 0.0 : light.decay uniforms.shadow = light.castShadow if (light.castShadow) { var shadow = light.shadow uniforms.shadowBias = shadow.bias uniforms.shadowRadius = shadow.radius uniforms.shadowMapSize = shadow.mapSize uniforms.shadowCameraNear = shadow.camera.near uniforms.shadowCameraFar = shadow.camera.far } state.pointShadowMap[pointLength] = shadowMap state.pointShadowMatrix[pointLength] = light.shadow.matrix state.point[pointLength] = uniforms pointLength++ } else if (light.isHemisphereLight) { var uniforms = cache.get(light) uniforms.direction.setFromMatrixPosition(light.matrixWorld) uniforms.direction.transformDirection(viewMatrix) uniforms.direction.normalize() uniforms.skyColor.copy(light.color).multiplyScalar(intensity) uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity) state.hemi[hemiLength] = uniforms hemiLength++ } } state.ambient[0] = r state.ambient[1] = g state.ambient[2] = b state.directional.length = directionalLength state.spot.length = spotLength state.rectArea.length = rectAreaLength state.point.length = pointLength state.hemi.length = hemiLength state.hash = state.id + ',' + directionalLength + ',' + pointLength + ',' + spotLength + ',' + rectAreaLength + ',' + hemiLength + ',' + shadows.length } return { setup: setup, state: state } } /** * @author Mugen87 / https://github.com/Mugen87 */ function WebGLRenderState() { var lights = new WebGLLights() var lightsArray = [] var shadowsArray = [] var spritesArray = [] function init() { lightsArray.length = 0 shadowsArray.length = 0 spritesArray.length = 0 } function pushLight(light) { lightsArray.push(light) } function pushShadow(shadowLight) { shadowsArray.push(shadowLight) } function pushSprite(shadowLight) { spritesArray.push(shadowLight) } function setupLights(camera) { lights.setup(lightsArray, shadowsArray, camera) } var state = { lightsArray: lightsArray, shadowsArray: shadowsArray, spritesArray: spritesArray, lights: lights } return { init: init, state: state, setupLights: setupLights, pushLight: pushLight, pushShadow: pushShadow, pushSprite: pushSprite } } function WebGLRenderStates() { var renderStates = {} function get(scene, camera) { var hash = scene.id + ',' + camera.id var renderState = renderStates[hash] if (renderState === undefined) { renderState = new WebGLRenderState() renderStates[hash] = renderState } return renderState } function dispose() { renderStates = {} } return { get: get, dispose: dispose } } /** * @author supereggbert / http://www.paulbrunt.co.uk/ * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author szimek / https://github.com/szimek/ * @author tschw */ function WebGLRenderer(parameters) { console.log('THREE.WebGLRenderer', REVISION) parameters = parameters || {} var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas'), _context = parameters.context !== undefined ? parameters.context : null, _alpha = parameters.alpha !== undefined ? parameters.alpha : false, _depth = parameters.depth !== undefined ? parameters.depth : true, _stencil = parameters.stencil !== undefined ? parameters.stencil : true, _antialias = parameters.antialias !== undefined ? parameters.antialias : false, _premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true, _preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false, _powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default' var currentRenderList = null var currentRenderState = null // public properties this.domElement = _canvas this.context = null // clearing this.autoClear = true this.autoClearColor = true this.autoClearDepth = true this.autoClearStencil = true // scene graph this.sortObjects = true // user-defined clipping this.clippingPlanes = [] this.localClippingEnabled = false // physically based shading this.gammaFactor = 2.0 // for backwards compatibility this.gammaInput = false this.gammaOutput = false // physical lights this.physicallyCorrectLights = false // tone mapping this.toneMapping = LinearToneMapping this.toneMappingExposure = 1.0 this.toneMappingWhitePoint = 1.0 // morphs this.maxMorphTargets = 8 this.maxMorphNormals = 4 // internal properties var _this = this, _isContextLost = false, // internal state cache _currentRenderTarget = null, _currentFramebuffer = null, _currentMaterialId = -1, _currentGeometryProgram = '', _currentCamera = null, _currentArrayCamera = null, _currentViewport = new Vector4(), _currentScissor = new Vector4(), _currentScissorTest = null, // _usedTextureUnits = 0, // _width = _canvas.width, _height = _canvas.height, _pixelRatio = 1, _viewport = new Vector4(0, 0, _width, _height), _scissor = new Vector4(0, 0, _width, _height), _scissorTest = false, // frustum _frustum = new Frustum(), // clipping _clipping = new WebGLClipping(), _clippingEnabled = false, _localClippingEnabled = false, // camera matrices cache _projScreenMatrix = new Matrix4(), _vector3 = new Vector3(), // info _infoMemory = { geometries: 0, textures: 0 }, _infoRender = { frame: 0, calls: 0, vertices: 0, faces: 0, points: 0 } this.info = { render: _infoRender, memory: _infoMemory, programs: null, autoReset: true, reset: resetInfo } function resetInfo() { _infoRender.frame++ _infoRender.calls = 0 _infoRender.vertices = 0 _infoRender.faces = 0 _infoRender.points = 0 } function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1 } // initialize var _gl try { var contextAttributes = { alpha: _alpha, depth: _depth, stencil: _stencil, antialias: _antialias, premultipliedAlpha: _premultipliedAlpha, preserveDrawingBuffer: _preserveDrawingBuffer, powerPreference: _powerPreference } // event listeners must be registered before WebGL context is created, see #12753 _canvas.addEventListener('webglcontextlost', onContextLost, false) _canvas.addEventListener('webglcontextrestored', onContextRestore, false) _gl = _context || _canvas.getContext('webgl', contextAttributes) || _canvas.getContext('experimental-webgl', contextAttributes) if (_gl === null) { if (_canvas.getContext('webgl') !== null) { throw new Error('Error creating WebGL context with your selected attributes.') } else { throw new Error('Error creating WebGL context.') } } // Some experimental-webgl implementations do not have getShaderPrecisionFormat if (_gl.getShaderPrecisionFormat === undefined) { _gl.getShaderPrecisionFormat = function () { return { rangeMin: 1, rangeMax: 1, precision: 1 } } } } catch (error) { console.error('THREE.WebGLRenderer: ' + error.message) } var extensions, capabilities, state var properties, textures, attributes, geometries, objects var programCache, renderLists, renderStates var background, morphtargets, bufferRenderer, indexedBufferRenderer var spriteRenderer var utils function initGLContext() { extensions = new WebGLExtensions(_gl) extensions.get('WEBGL_depth_texture') extensions.get('OES_texture_float') extensions.get('OES_texture_float_linear') extensions.get('OES_texture_half_float') extensions.get('OES_texture_half_float_linear') extensions.get('OES_standard_derivatives') extensions.get('OES_element_index_uint') extensions.get('ANGLE_instanced_arrays') utils = new WebGLUtils(_gl, extensions) capabilities = new WebGLCapabilities(_gl, extensions, parameters) state = new WebGLState(_gl, extensions, utils) state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio)) state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio)) properties = new WebGLProperties() textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, _infoMemory, _infoRender ) attributes = new WebGLAttributes(_gl) geometries = new WebGLGeometries(_gl, attributes, _infoMemory) objects = new WebGLObjects(geometries, _infoRender) morphtargets = new WebGLMorphtargets(_gl) programCache = new WebGLPrograms(_this, extensions, capabilities) renderLists = new WebGLRenderLists() renderStates = new WebGLRenderStates() background = new WebGLBackground(_this, state, geometries, _premultipliedAlpha) bufferRenderer = new WebGLBufferRenderer(_gl, extensions, _infoRender) indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, _infoRender) spriteRenderer = new WebGLSpriteRenderer(_this, _gl, state, textures, capabilities) _this.info.programs = programCache.programs _this.context = _gl _this.capabilities = capabilities _this.extensions = extensions _this.properties = properties _this.renderLists = renderLists _this.state = state } initGLContext() // vr var vr = new WebVRManager(_this) this.vr = vr // shadow map var shadowMap = new WebGLShadowMap(_this, objects, capabilities.maxTextureSize) this.shadowMap = shadowMap // API this.getContext = function () { return _gl } this.getContextAttributes = function () { return _gl.getContextAttributes() } this.forceContextLoss = function () { var extension = extensions.get('WEBGL_lose_context') if (extension) extension.loseContext() } this.forceContextRestore = function () { var extension = extensions.get('WEBGL_lose_context') if (extension) extension.restoreContext() } this.getPixelRatio = function () { return _pixelRatio } this.setPixelRatio = function (value) { if (value === undefined) return _pixelRatio = value this.setSize(_width, _height, false) } this.getSize = function () { return { width: _width, height: _height } } this.setSize = function (width, height, updateStyle) { var device = vr.getDevice() if (device && device.isPresenting) { console.warn("THREE.WebGLRenderer: Can't change size while VR device is presenting.") return } _width = width _height = height _canvas.width = width * _pixelRatio _canvas.height = height * _pixelRatio if (updateStyle !== false) { _canvas.style.width = width + 'px' _canvas.style.height = height + 'px' } this.setViewport(0, 0, width, height) } this.getDrawingBufferSize = function () { return { width: _width * _pixelRatio, height: _height * _pixelRatio } } this.setDrawingBufferSize = function (width, height, pixelRatio) { _width = width _height = height _pixelRatio = pixelRatio _canvas.width = width * pixelRatio _canvas.height = height * pixelRatio this.setViewport(0, 0, width, height) } this.getCurrentViewport = function () { return _currentViewport } this.setViewport = function (x, y, width, height) { _viewport.set(x, _height - y - height, width, height) state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio)) } this.setScissor = function (x, y, width, height) { _scissor.set(x, _height - y - height, width, height) state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio)) } this.setScissorTest = function (boolean) { state.setScissorTest((_scissorTest = boolean)) } // Clearing this.getClearColor = function () { return background.getClearColor() } this.setClearColor = function () { background.setClearColor.apply(background, arguments) } this.getClearAlpha = function () { return background.getClearAlpha() } this.setClearAlpha = function () { background.setClearAlpha.apply(background, arguments) } this.clear = function (color, depth, stencil) { var bits = 0 if (color === undefined || color) bits |= _gl.COLOR_BUFFER_BIT if (depth === undefined || depth) bits |= _gl.DEPTH_BUFFER_BIT if (stencil === undefined || stencil) bits |= _gl.STENCIL_BUFFER_BIT _gl.clear(bits) } this.clearColor = function () { this.clear(true, false, false) } this.clearDepth = function () { this.clear(false, true, false) } this.clearStencil = function () { this.clear(false, false, true) } this.clearTarget = function (renderTarget, color, depth, stencil) { this.setRenderTarget(renderTarget) this.clear(color, depth, stencil) } // this.dispose = function () { _canvas.removeEventListener('webglcontextlost', onContextLost, false) _canvas.removeEventListener('webglcontextrestored', onContextRestore, false) renderLists.dispose() renderStates.dispose() properties.dispose() objects.dispose() vr.dispose() stopAnimation() } // Events function onContextLost(event) { event.preventDefault() console.log('THREE.WebGLRenderer: Context Lost.') _isContextLost = true } function onContextRestore(/* event */) { console.log('THREE.WebGLRenderer: Context Restored.') _isContextLost = false initGLContext() } function onMaterialDispose(event) { var material = event.target material.removeEventListener('dispose', onMaterialDispose) deallocateMaterial(material) } // Buffer deallocation function deallocateMaterial(material) { releaseMaterialProgramReference(material) properties.remove(material) } function releaseMaterialProgramReference(material) { var programInfo = properties.get(material).program material.program = undefined if (programInfo !== undefined) { programCache.releaseProgram(programInfo) } } // Buffer rendering function renderObjectImmediate(object, program, material) { object.render(function (object) { _this.renderBufferImmediate(object, program, material) }) } this.renderBufferImmediate = function (object, program, material) { state.initAttributes() var buffers = properties.get(object) if (object.hasPositions && !buffers.position) buffers.position = _gl.createBuffer() if (object.hasNormals && !buffers.normal) buffers.normal = _gl.createBuffer() if (object.hasUvs && !buffers.uv) buffers.uv = _gl.createBuffer() if (object.hasColors && !buffers.color) buffers.color = _gl.createBuffer() var programAttributes = program.getAttributes() if (object.hasPositions) { _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.position) _gl.bufferData(_gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW) state.enableAttribute(programAttributes.position) _gl.vertexAttribPointer(programAttributes.position, 3, _gl.FLOAT, false, 0, 0) } if (object.hasNormals) { _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.normal) if ( !material.isMeshPhongMaterial && !material.isMeshStandardMaterial && !material.isMeshNormalMaterial && material.flatShading === true ) { for (var i = 0, l = object.count * 3; i < l; i += 9) { var array = object.normalArray var nx = (array[i + 0] + array[i + 3] + array[i + 6]) / 3 var ny = (array[i + 1] + array[i + 4] + array[i + 7]) / 3 var nz = (array[i + 2] + array[i + 5] + array[i + 8]) / 3 array[i + 0] = nx array[i + 1] = ny array[i + 2] = nz array[i + 3] = nx array[i + 4] = ny array[i + 5] = nz array[i + 6] = nx array[i + 7] = ny array[i + 8] = nz } } _gl.bufferData(_gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW) state.enableAttribute(programAttributes.normal) _gl.vertexAttribPointer(programAttributes.normal, 3, _gl.FLOAT, false, 0, 0) } if (object.hasUvs && material.map) { _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.uv) _gl.bufferData(_gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW) state.enableAttribute(programAttributes.uv) _gl.vertexAttribPointer(programAttributes.uv, 2, _gl.FLOAT, false, 0, 0) } if (object.hasColors && material.vertexColors !== NoColors) { _gl.bindBuffer(_gl.ARRAY_BUFFER, buffers.color) _gl.bufferData(_gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW) state.enableAttribute(programAttributes.color) _gl.vertexAttribPointer(programAttributes.color, 3, _gl.FLOAT, false, 0, 0) } state.disableUnusedAttributes() _gl.drawArrays(_gl.TRIANGLES, 0, object.count) object.count = 0 } this.renderBufferDirect = function (camera, fog, geometry, material, object, group) { var frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0 state.setMaterial(material, frontFaceCW) var program = setProgram(camera, fog, material, object) var geometryProgram = geometry.id + '_' + program.id + '_' + (material.wireframe === true) var updateBuffers = false if (geometryProgram !== _currentGeometryProgram) { _currentGeometryProgram = geometryProgram updateBuffers = true } if (object.morphTargetInfluences) { morphtargets.update(object, geometry, material, program) updateBuffers = true } // var index = geometry.index var position = geometry.attributes.position var rangeFactor = 1 if (material.wireframe === true) { index = geometries.getWireframeAttribute(geometry) rangeFactor = 2 } var attribute var renderer = bufferRenderer if (index !== null) { attribute = attributes.get(index) renderer = indexedBufferRenderer renderer.setIndex(attribute) } if (updateBuffers) { setupVertexAttributes(material, program, geometry) if (index !== null) { _gl.bindBuffer(_gl.ELEMENT_ARRAY_BUFFER, attribute.buffer) } } // var dataCount = Infinity if (index !== null) { dataCount = index.count } else if (position !== undefined) { dataCount = position.count } var rangeStart = geometry.drawRange.start * rangeFactor var rangeCount = geometry.drawRange.count * rangeFactor var groupStart = group !== null ? group.start * rangeFactor : 0 var groupCount = group !== null ? group.count * rangeFactor : Infinity var drawStart = Math.max(rangeStart, groupStart) var drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1 var drawCount = Math.max(0, drawEnd - drawStart + 1) if (drawCount === 0) return // if (object.isMesh) { if (material.wireframe === true) { state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio()) renderer.setMode(_gl.LINES) } else { switch (object.drawMode) { case TrianglesDrawMode: renderer.setMode(_gl.TRIANGLES) break case TriangleStripDrawMode: renderer.setMode(_gl.TRIANGLE_STRIP) break case TriangleFanDrawMode: renderer.setMode(_gl.TRIANGLE_FAN) break } } } else if (object.isLine) { var lineWidth = material.linewidth if (lineWidth === undefined) lineWidth = 1 // Not using Line*Material state.setLineWidth(lineWidth * getTargetPixelRatio()) if (object.isLineSegments) { renderer.setMode(_gl.LINES) } else if (object.isLineLoop) { renderer.setMode(_gl.LINE_LOOP) } else { renderer.setMode(_gl.LINE_STRIP) } } else if (object.isPoints) { renderer.setMode(_gl.POINTS) } if (geometry && geometry.isInstancedBufferGeometry) { if (geometry.maxInstancedCount > 0) { renderer.renderInstances(geometry, drawStart, drawCount) } } else { renderer.render(drawStart, drawCount) } } function setupVertexAttributes(material, program, geometry, startIndex) { if (geometry && geometry.isInstancedBufferGeometry) { if (extensions.get('ANGLE_instanced_arrays') === null) { console.error( 'THREE.WebGLRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' ) return } } if (startIndex === undefined) startIndex = 0 state.initAttributes() var geometryAttributes = geometry.attributes var programAttributes = program.getAttributes() var materialDefaultAttributeValues = material.defaultAttributeValues for (var name in programAttributes) { var programAttribute = programAttributes[name] if (programAttribute >= 0) { var geometryAttribute = geometryAttributes[name] if (geometryAttribute !== undefined) { var normalized = geometryAttribute.normalized var size = geometryAttribute.itemSize var attribute = attributes.get(geometryAttribute) // TODO Attribute may not be available on context restore if (attribute === undefined) continue var buffer = attribute.buffer var type = attribute.type var bytesPerElement = attribute.bytesPerElement if (geometryAttribute.isInterleavedBufferAttribute) { var data = geometryAttribute.data var stride = data.stride var offset = geometryAttribute.offset if (data && data.isInstancedInterleavedBuffer) { state.enableAttributeAndDivisor(programAttribute, data.meshPerAttribute) if (geometry.maxInstancedCount === undefined) { geometry.maxInstancedCount = data.meshPerAttribute * data.count } } else { state.enableAttribute(programAttribute) } _gl.bindBuffer(_gl.ARRAY_BUFFER, buffer) _gl.vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, (startIndex * stride + offset) * bytesPerElement ) } else { if (geometryAttribute.isInstancedBufferAttribute) { state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute ) if (geometry.maxInstancedCount === undefined) { geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count } } else { state.enableAttribute(programAttribute) } _gl.bindBuffer(_gl.ARRAY_BUFFER, buffer) _gl.vertexAttribPointer( programAttribute, size, type, normalized, 0, startIndex * size * bytesPerElement ) } } else if (materialDefaultAttributeValues !== undefined) { var value = materialDefaultAttributeValues[name] if (value !== undefined) { switch (value.length) { case 2: _gl.vertexAttrib2fv(programAttribute, value) break case 3: _gl.vertexAttrib3fv(programAttribute, value) break case 4: _gl.vertexAttrib4fv(programAttribute, value) break default: _gl.vertexAttrib1fv(programAttribute, value) } } } } } state.disableUnusedAttributes() } // Compile this.compile = function (scene, camera) { currentRenderState = renderStates.get(scene, camera) currentRenderState.init() scene.traverse(function (object) { if (object.isLight) { currentRenderState.pushLight(object) if (object.castShadow) { currentRenderState.pushShadow(object) } } }) currentRenderState.setupLights(camera) scene.traverse(function (object) { if (object.material) { if (Array.isArray(object.material)) { for (var i = 0; i < object.material.length; i++) { initMaterial(object.material[i], scene.fog, object) } } else { initMaterial(object.material, scene.fog, object) } } }) } // Animation Loop var isAnimating = false var onAnimationFrame = null function startAnimation() { if (isAnimating) return requestAnimationLoopFrame() isAnimating = true } function stopAnimation() { isAnimating = false } function requestAnimationLoopFrame() { var device = vr.getDevice() if (device && device.isPresenting) { device.requestAnimationFrame(animationLoop) } else { window.requestAnimationFrame(animationLoop) } } function animationLoop(time) { if (isAnimating === false) return onAnimationFrame(time) requestAnimationLoopFrame() } this.animate = function (callback) { onAnimationFrame = callback onAnimationFrame !== null ? startAnimation() : stopAnimation() } // Rendering this.render = function (scene, camera, renderTarget, forceClear) { if (!(camera && camera.isCamera)) { console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.') return } if (_isContextLost) return // reset caching for this frame _currentGeometryProgram = '' _currentMaterialId = -1 _currentCamera = null // update scene graph if (scene.autoUpdate === true) scene.updateMatrixWorld() // update camera matrices and frustum if (camera.parent === null) camera.updateMatrixWorld() if (vr.enabled) { camera = vr.getCamera(camera) } // currentRenderState = renderStates.get(scene, camera) currentRenderState.init() scene.onBeforeRender(_this, scene, camera, renderTarget) _projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse) _frustum.setFromMatrix(_projScreenMatrix) _localClippingEnabled = this.localClippingEnabled _clippingEnabled = _clipping.init(this.clippingPlanes, _localClippingEnabled, camera) currentRenderList = renderLists.get(scene, camera) currentRenderList.init() projectObject(scene, camera, _this.sortObjects) if (_this.sortObjects === true) { currentRenderList.sort() } // if (_clippingEnabled) _clipping.beginShadows() var shadowsArray = currentRenderState.state.shadowsArray shadowMap.render(shadowsArray, scene, camera) currentRenderState.setupLights(camera) if (_clippingEnabled) _clipping.endShadows() // if (this.info.autoReset) this.info.reset() if (renderTarget === undefined) { renderTarget = null } this.setRenderTarget(renderTarget) // background.render(currentRenderList, scene, camera, forceClear) // render scene var opaqueObjects = currentRenderList.opaque var transparentObjects = currentRenderList.transparent if (scene.overrideMaterial) { var overrideMaterial = scene.overrideMaterial if (opaqueObjects.length) renderObjects(opaqueObjects, scene, camera, overrideMaterial) if (transparentObjects.length) renderObjects(transparentObjects, scene, camera, overrideMaterial) } else { // opaque pass (front-to-back order) if (opaqueObjects.length) renderObjects(opaqueObjects, scene, camera) // transparent pass (back-to-front order) if (transparentObjects.length) renderObjects(transparentObjects, scene, camera) } // custom renderers var spritesArray = currentRenderState.state.spritesArray spriteRenderer.render(spritesArray, scene, camera) // Generate mipmap if we're using any kind of mipmap filtering if (renderTarget) { textures.updateRenderTargetMipmap(renderTarget) } // Ensure depth buffer writing is enabled so it can be cleared on next render state.buffers.depth.setTest(true) state.buffers.depth.setMask(true) state.buffers.color.setMask(true) state.setPolygonOffset(false) scene.onAfterRender(_this, scene, camera) if (vr.enabled) { vr.submitFrame() } // _gl.finish(); currentRenderList = null currentRenderState = null } /* // TODO Duplicated code (Frustum) var _sphere = new Sphere(); function isObjectViewable( object ) { var geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere.copy( geometry.boundingSphere ). applyMatrix4( object.matrixWorld ); return isSphereViewable( _sphere ); } function isSpriteViewable( sprite ) { _sphere.center.set( 0, 0, 0 ); _sphere.radius = 0.7071067811865476; _sphere.applyMatrix4( sprite.matrixWorld ); return isSphereViewable( _sphere ); } function isSphereViewable( sphere ) { if ( ! _frustum.intersectsSphere( sphere ) ) return false; var numPlanes = _clipping.numPlanes; if ( numPlanes === 0 ) return true; var planes = _this.clippingPlanes, center = sphere.center, negRad = - sphere.radius, i = 0; do { // out when deeper than radius in the negative halfspace if ( planes[ i ].distanceToPoint( center ) < negRad ) return false; } while ( ++ i !== numPlanes ); return true; } */ function projectObject(object, camera, sortObjects) { if (object.visible === false) return var visible = object.layers.test(camera.layers) if (visible) { if (object.isLight) { currentRenderState.pushLight(object) if (object.castShadow) { currentRenderState.pushShadow(object) } } else if (object.isSprite) { if (!object.frustumCulled || _frustum.intersectsSprite(object)) { currentRenderState.pushSprite(object) } } else if (object.isImmediateRenderObject) { if (sortObjects) { _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix) } currentRenderList.push(object, null, object.material, _vector3.z, null) } else if (object.isMesh || object.isLine || object.isPoints) { if (object.isSkinnedMesh) { object.skeleton.update() } if (!object.frustumCulled || _frustum.intersectsObject(object)) { if (sortObjects) { _vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix) } var geometry = objects.update(object) var material = object.material if (Array.isArray(material)) { var groups = geometry.groups for (var i = 0, l = groups.length; i < l; i++) { var group = groups[i] var groupMaterial = material[group.materialIndex] if (groupMaterial && groupMaterial.visible) { currentRenderList.push(object, geometry, groupMaterial, _vector3.z, group) } } } else if (material.visible) { currentRenderList.push(object, geometry, material, _vector3.z, null) } } } } var children = object.children for (var i = 0, l = children.length; i < l; i++) { projectObject(children[i], camera, sortObjects) } } function renderObjects(renderList, scene, camera, overrideMaterial) { for (var i = 0, l = renderList.length; i < l; i++) { var renderItem = renderList[i] var object = renderItem.object var geometry = renderItem.geometry var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial var group = renderItem.group if (camera.isArrayCamera) { _currentArrayCamera = camera var cameras = camera.cameras for (var j = 0, jl = cameras.length; j < jl; j++) { var camera2 = cameras[j] if (object.layers.test(camera2.layers)) { var bounds = camera2.bounds var x = bounds.x * _width var y = bounds.y * _height var width = bounds.z * _width var height = bounds.w * _height state.viewport(_currentViewport.set(x, y, width, height).multiplyScalar(_pixelRatio)) renderObject(object, scene, camera2, geometry, material, group) } } } else { _currentArrayCamera = null renderObject(object, scene, camera, geometry, material, group) } } } function renderObject(object, scene, camera, geometry, material, group) { object.onBeforeRender(_this, scene, camera, geometry, material, group) currentRenderState = renderStates.get(scene, _currentArrayCamera || camera) object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld) object.normalMatrix.getNormalMatrix(object.modelViewMatrix) if (object.isImmediateRenderObject) { var frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0 state.setMaterial(material, frontFaceCW) var program = setProgram(camera, scene.fog, material, object) _currentGeometryProgram = '' renderObjectImmediate(object, program, material) } else { _this.renderBufferDirect(camera, scene.fog, geometry, material, object, group) } object.onAfterRender(_this, scene, camera, geometry, material, group) currentRenderState = renderStates.get(scene, _currentArrayCamera || camera) } function initMaterial(material, fog, object) { var materialProperties = properties.get(material) var lights = currentRenderState.state.lights var shadowsArray = currentRenderState.state.shadowsArray var parameters = programCache.getParameters( material, lights.state, shadowsArray, fog, _clipping.numPlanes, _clipping.numIntersection, object ) var code = programCache.getProgramCode(material, parameters) var program = materialProperties.program var programChange = true if (program === undefined) { // new material material.addEventListener('dispose', onMaterialDispose) } else if (program.code !== code) { // changed glsl or parameters releaseMaterialProgramReference(material) } else if (materialProperties.lightsHash !== lights.state.hash) { properties.update(material, 'lightsHash', lights.state.hash) programChange = false } else if (parameters.shaderID !== undefined) { // same glsl and uniform list return } else { // only rebuild uniform list programChange = false } if (programChange) { if (parameters.shaderID) { var shader = ShaderLib[parameters.shaderID] materialProperties.shader = { name: material.type, uniforms: UniformsUtils.clone(shader.uniforms), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader } } else { materialProperties.shader = { name: material.type, uniforms: material.uniforms, vertexShader: material.vertexShader, fragmentShader: material.fragmentShader } } material.onBeforeCompile(materialProperties.shader) program = programCache.acquireProgram(material, materialProperties.shader, parameters, code) materialProperties.program = program material.program = program } var programAttributes = program.getAttributes() if (material.morphTargets) { material.numSupportedMorphTargets = 0 for (var i = 0; i < _this.maxMorphTargets; i++) { if (programAttributes['morphTarget' + i] >= 0) { material.numSupportedMorphTargets++ } } } if (material.morphNormals) { material.numSupportedMorphNormals = 0 for (var i = 0; i < _this.maxMorphNormals; i++) { if (programAttributes['morphNormal' + i] >= 0) { material.numSupportedMorphNormals++ } } } var uniforms = materialProperties.shader.uniforms if ( (!material.isShaderMaterial && !material.isRawShaderMaterial) || material.clipping === true ) { materialProperties.numClippingPlanes = _clipping.numPlanes materialProperties.numIntersection = _clipping.numIntersection uniforms.clippingPlanes = _clipping.uniform } materialProperties.fog = fog // store the light setup it was created for materialProperties.lightsHash = lights.state.hash if (material.lights) { // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = lights.state.ambient uniforms.directionalLights.value = lights.state.directional uniforms.spotLights.value = lights.state.spot uniforms.rectAreaLights.value = lights.state.rectArea uniforms.pointLights.value = lights.state.point uniforms.hemisphereLights.value = lights.state.hemi uniforms.directionalShadowMap.value = lights.state.directionalShadowMap uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix uniforms.spotShadowMap.value = lights.state.spotShadowMap uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix uniforms.pointShadowMap.value = lights.state.pointShadowMap uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix // TODO (abelnation): add area lights shadow info to uniforms } var progUniforms = materialProperties.program.getUniforms(), uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms) materialProperties.uniformsList = uniformsList } function setProgram(camera, fog, material, object) { _usedTextureUnits = 0 var materialProperties = properties.get(material) var lights = currentRenderState.state.lights if (_clippingEnabled) { if (_localClippingEnabled || camera !== _currentCamera) { var useCache = camera === _currentCamera && material.id === _currentMaterialId // we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) _clipping.setState( material.clippingPlanes, material.clipIntersection, material.clipShadows, camera, materialProperties, useCache ) } } if (material.needsUpdate === false) { if (materialProperties.program === undefined) { material.needsUpdate = true } else if (material.fog && materialProperties.fog !== fog) { material.needsUpdate = true } else if (material.lights && materialProperties.lightsHash !== lights.state.hash) { material.needsUpdate = true } else if ( materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== _clipping.numPlanes || materialProperties.numIntersection !== _clipping.numIntersection) ) { material.needsUpdate = true } } if (material.needsUpdate) { initMaterial(material, fog, object) material.needsUpdate = false } var refreshProgram = false var refreshMaterial = false var refreshLights = false var program = materialProperties.program, p_uniforms = program.getUniforms(), m_uniforms = materialProperties.shader.uniforms if (state.useProgram(program.program)) { refreshProgram = true refreshMaterial = true refreshLights = true } if (material.id !== _currentMaterialId) { _currentMaterialId = material.id refreshMaterial = true } if (refreshProgram || camera !== _currentCamera) { p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix) if (capabilities.logarithmicDepthBuffer) { p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2)) } // Avoid unneeded uniform updates per ArrayCamera's sub-camera if (_currentCamera !== (_currentArrayCamera || camera)) { _currentCamera = _currentArrayCamera || camera // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true // set to true on material change refreshLights = true // remains set until update done } // load material specific uniforms // (shader material also gets them for the sake of genericity) if ( material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.envMap ) { var uCamPos = p_uniforms.map.cameraPosition if (uCamPos !== undefined) { uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld)) } } if ( material.isMeshPhongMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.skinning ) { p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse) } } // skinning uniforms must be set even if material didn't change // auto-setting of texture unit for bone texture must go before other textures // not sure why, but otherwise weird things happen if (material.skinning) { p_uniforms.setOptional(_gl, object, 'bindMatrix') p_uniforms.setOptional(_gl, object, 'bindMatrixInverse') var skeleton = object.skeleton if (skeleton) { var bones = skeleton.bones if (capabilities.floatVertexTextures) { if (skeleton.boneTexture === undefined) { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) var size = Math.sqrt(bones.length * 4) // 4 pixels needed for 1 matrix size = _Math.ceilPowerOfTwo(size) size = Math.max(size, 4) var boneMatrices = new Float32Array(size * size * 4) // 4 floats per RGBA pixel boneMatrices.set(skeleton.boneMatrices) // copy current values var boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType) boneTexture.needsUpdate = true skeleton.boneMatrices = boneMatrices skeleton.boneTexture = boneTexture skeleton.boneTextureSize = size } p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture) p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize) } else { p_uniforms.setOptional(_gl, skeleton, 'boneMatrices') } } } if (refreshMaterial) { p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure) p_uniforms.setValue(_gl, 'toneMappingWhitePoint', _this.toneMappingWhitePoint) if (material.lights) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate(m_uniforms, refreshLights) } // refresh uniforms common to several materials if (fog && material.fog) { refreshUniformsFog(m_uniforms, fog) } if (material.isMeshBasicMaterial) { refreshUniformsCommon(m_uniforms, material) } else if (material.isMeshLambertMaterial) { refreshUniformsCommon(m_uniforms, material) refreshUniformsLambert(m_uniforms, material) } else if (material.isMeshPhongMaterial) { refreshUniformsCommon(m_uniforms, material) if (material.isMeshToonMaterial) { refreshUniformsToon(m_uniforms, material) } else { refreshUniformsPhong(m_uniforms, material) } } else if (material.isMeshStandardMaterial) { refreshUniformsCommon(m_uniforms, material) if (material.isMeshPhysicalMaterial) { refreshUniformsPhysical(m_uniforms, material) } else { refreshUniformsStandard(m_uniforms, material) } } else if (material.isMeshDepthMaterial) { refreshUniformsCommon(m_uniforms, material) refreshUniformsDepth(m_uniforms, material) } else if (material.isMeshDistanceMaterial) { refreshUniformsCommon(m_uniforms, material) refreshUniformsDistance(m_uniforms, material) } else if (material.isMeshNormalMaterial) { refreshUniformsCommon(m_uniforms, material) refreshUniformsNormal(m_uniforms, material) } else if (material.isLineBasicMaterial) { refreshUniformsLine(m_uniforms, material) if (material.isLineDashedMaterial) { refreshUniformsDash(m_uniforms, material) } } else if (material.isPointsMaterial) { refreshUniformsPoints(m_uniforms, material) } else if (material.isShadowMaterial) { m_uniforms.color.value = material.color m_uniforms.opacity.value = material.opacity } // RectAreaLight Texture // TODO (mrdoob): Find a nicer implementation if (m_uniforms.ltc_1 !== undefined) m_uniforms.ltc_1.value = UniformsLib.LTC_1 if (m_uniforms.ltc_2 !== undefined) m_uniforms.ltc_2.value = UniformsLib.LTC_2 WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, _this) } if (material.isShaderMaterial && material.uniformsNeedUpdate === true) { WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, _this) material.uniformsNeedUpdate = false } // common matrices p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix) p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix) p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld) return program } // Uniforms (refresh uniforms objects) function refreshUniformsCommon(uniforms, material) { uniforms.opacity.value = material.opacity if (material.color) { uniforms.diffuse.value = material.color } if (material.emissive) { uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity) } if (material.map) { uniforms.map.value = material.map } if (material.alphaMap) { uniforms.alphaMap.value = material.alphaMap } if (material.specularMap) { uniforms.specularMap.value = material.specularMap } if (material.envMap) { uniforms.envMap.value = material.envMap // don't flip CubeTexture envMaps, flip everything else: // WebGLRenderTargetCube will be flipped for backwards compatibility // WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture // this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future uniforms.flipEnvMap.value = !(material.envMap && material.envMap.isCubeTexture) ? 1 : -1 uniforms.reflectivity.value = material.reflectivity uniforms.refractionRatio.value = material.refractionRatio } if (material.lightMap) { uniforms.lightMap.value = material.lightMap uniforms.lightMapIntensity.value = material.lightMapIntensity } if (material.aoMap) { uniforms.aoMap.value = material.aoMap uniforms.aoMapIntensity.value = material.aoMapIntensity } // uv repeat and offset setting priorities // 1. color map // 2. specular map // 3. normal map // 4. bump map // 5. alpha map // 6. emissive map var uvScaleMap if (material.map) { uvScaleMap = material.map } else if (material.specularMap) { uvScaleMap = material.specularMap } else if (material.displacementMap) { uvScaleMap = material.displacementMap } else if (material.normalMap) { uvScaleMap = material.normalMap } else if (material.bumpMap) { uvScaleMap = material.bumpMap } else if (material.roughnessMap) { uvScaleMap = material.roughnessMap } else if (material.metalnessMap) { uvScaleMap = material.metalnessMap } else if (material.alphaMap) { uvScaleMap = material.alphaMap } else if (material.emissiveMap) { uvScaleMap = material.emissiveMap } if (uvScaleMap !== undefined) { // backwards compatibility if (uvScaleMap.isWebGLRenderTarget) { uvScaleMap = uvScaleMap.texture } if (uvScaleMap.matrixAutoUpdate === true) { var offset = uvScaleMap.offset var repeat = uvScaleMap.repeat var rotation = uvScaleMap.rotation var center = uvScaleMap.center uvScaleMap.matrix.setUvTransform( offset.x, offset.y, repeat.x, repeat.y, rotation, center.x, center.y ) } uniforms.uvTransform.value.copy(uvScaleMap.matrix) } } function refreshUniformsLine(uniforms, material) { uniforms.diffuse.value = material.color uniforms.opacity.value = material.opacity } function refreshUniformsDash(uniforms, material) { uniforms.dashSize.value = material.dashSize uniforms.totalSize.value = material.dashSize + material.gapSize uniforms.scale.value = material.scale } function refreshUniformsPoints(uniforms, material) { uniforms.diffuse.value = material.color uniforms.opacity.value = material.opacity uniforms.size.value = material.size * _pixelRatio uniforms.scale.value = _height * 0.5 uniforms.map.value = material.map if (material.map !== null) { if (material.map.matrixAutoUpdate === true) { var offset = material.map.offset var repeat = material.map.repeat var rotation = material.map.rotation var center = material.map.center material.map.matrix.setUvTransform( offset.x, offset.y, repeat.x, repeat.y, rotation, center.x, center.y ) } uniforms.uvTransform.value.copy(material.map.matrix) } } function refreshUniformsFog(uniforms, fog) { uniforms.fogColor.value = fog.color if (fog.isFog) { uniforms.fogNear.value = fog.near uniforms.fogFar.value = fog.far } else if (fog.isFogExp2) { uniforms.fogDensity.value = fog.density } } function refreshUniformsLambert(uniforms, material) { if (material.emissiveMap) { uniforms.emissiveMap.value = material.emissiveMap } } function refreshUniformsPhong(uniforms, material) { uniforms.specular.value = material.specular uniforms.shininess.value = Math.max(material.shininess, 1e-4) // to prevent pow( 0.0, 0.0 ) if (material.emissiveMap) { uniforms.emissiveMap.value = material.emissiveMap } if (material.bumpMap) { uniforms.bumpMap.value = material.bumpMap uniforms.bumpScale.value = material.bumpScale } if (material.normalMap) { uniforms.normalMap.value = material.normalMap uniforms.normalScale.value.copy(material.normalScale) } if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap uniforms.displacementScale.value = material.displacementScale uniforms.displacementBias.value = material.displacementBias } } function refreshUniformsToon(uniforms, material) { refreshUniformsPhong(uniforms, material) if (material.gradientMap) { uniforms.gradientMap.value = material.gradientMap } } function refreshUniformsStandard(uniforms, material) { uniforms.roughness.value = material.roughness uniforms.metalness.value = material.metalness if (material.roughnessMap) { uniforms.roughnessMap.value = material.roughnessMap } if (material.metalnessMap) { uniforms.metalnessMap.value = material.metalnessMap } if (material.emissiveMap) { uniforms.emissiveMap.value = material.emissiveMap } if (material.bumpMap) { uniforms.bumpMap.value = material.bumpMap uniforms.bumpScale.value = material.bumpScale } if (material.normalMap) { uniforms.normalMap.value = material.normalMap uniforms.normalScale.value.copy(material.normalScale) } if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap uniforms.displacementScale.value = material.displacementScale uniforms.displacementBias.value = material.displacementBias } if (material.envMap) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity } } function refreshUniformsPhysical(uniforms, material) { uniforms.clearCoat.value = material.clearCoat uniforms.clearCoatRoughness.value = material.clearCoatRoughness refreshUniformsStandard(uniforms, material) } function refreshUniformsDepth(uniforms, material) { if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap uniforms.displacementScale.value = material.displacementScale uniforms.displacementBias.value = material.displacementBias } } function refreshUniformsDistance(uniforms, material) { if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap uniforms.displacementScale.value = material.displacementScale uniforms.displacementBias.value = material.displacementBias } uniforms.referencePosition.value.copy(material.referencePosition) uniforms.nearDistance.value = material.nearDistance uniforms.farDistance.value = material.farDistance } function refreshUniformsNormal(uniforms, material) { if (material.bumpMap) { uniforms.bumpMap.value = material.bumpMap uniforms.bumpScale.value = material.bumpScale } if (material.normalMap) { uniforms.normalMap.value = material.normalMap uniforms.normalScale.value.copy(material.normalScale) } if (material.displacementMap) { uniforms.displacementMap.value = material.displacementMap uniforms.displacementScale.value = material.displacementScale uniforms.displacementBias.value = material.displacementBias } } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate(uniforms, value) { uniforms.ambientLightColor.needsUpdate = value uniforms.directionalLights.needsUpdate = value uniforms.pointLights.needsUpdate = value uniforms.spotLights.needsUpdate = value uniforms.rectAreaLights.needsUpdate = value uniforms.hemisphereLights.needsUpdate = value } // Textures function allocTextureUnit() { var textureUnit = _usedTextureUnits if (textureUnit >= capabilities.maxTextures) { console.warn( 'THREE.WebGLRenderer: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures ) } _usedTextureUnits += 1 return textureUnit } this.allocTextureUnit = allocTextureUnit // this.setTexture2D = setTexture2D; this.setTexture2D = (function () { var warned = false // backwards compatibility: peel texture.texture return function setTexture2D(texture, slot) { if (texture && texture.isWebGLRenderTarget) { if (!warned) { console.warn( "THREE.WebGLRenderer.setTexture2D: don't use render targets as textures. Use their .texture property instead." ) warned = true } texture = texture.texture } textures.setTexture2D(texture, slot) } })() this.setTexture = (function () { var warned = false return function setTexture(texture, slot) { if (!warned) { console.warn('THREE.WebGLRenderer: .setTexture is deprecated, use setTexture2D instead.') warned = true } textures.setTexture2D(texture, slot) } })() this.setTextureCube = (function () { var warned = false return function setTextureCube(texture, slot) { // backwards compatibility: peel texture.texture if (texture && texture.isWebGLRenderTargetCube) { if (!warned) { console.warn( "THREE.WebGLRenderer.setTextureCube: don't use cube render targets as textures. Use their .texture property instead." ) warned = true } texture = texture.texture } // currently relying on the fact that WebGLRenderTargetCube.texture is a Texture and NOT a CubeTexture // TODO: unify these code paths if ( (texture && texture.isCubeTexture) || (Array.isArray(texture.image) && texture.image.length === 6) ) { // CompressedTexture can have Array in image :/ // this function alone should take care of cube textures textures.setTextureCube(texture, slot) } else { // assumed: texture property of THREE.WebGLRenderTargetCube textures.setTextureCubeDynamic(texture, slot) } } })() this.getRenderTarget = function () { return _currentRenderTarget } this.setRenderTarget = function (renderTarget) { _currentRenderTarget = renderTarget if (renderTarget && properties.get(renderTarget).__webglFramebuffer === undefined) { textures.setupRenderTarget(renderTarget) } var framebuffer = null var isCube = false if (renderTarget) { var __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer if (renderTarget.isWebGLRenderTargetCube) { framebuffer = __webglFramebuffer[renderTarget.activeCubeFace] isCube = true } else { framebuffer = __webglFramebuffer } _currentViewport.copy(renderTarget.viewport) _currentScissor.copy(renderTarget.scissor) _currentScissorTest = renderTarget.scissorTest } else { _currentViewport.copy(_viewport).multiplyScalar(_pixelRatio) _currentScissor.copy(_scissor).multiplyScalar(_pixelRatio) _currentScissorTest = _scissorTest } if (_currentFramebuffer !== framebuffer) { _gl.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer) _currentFramebuffer = framebuffer } state.viewport(_currentViewport) state.scissor(_currentScissor) state.setScissorTest(_currentScissorTest) if (isCube) { var textureProperties = properties.get(renderTarget.texture) _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, renderTarget.activeMipMapLevel ) } } this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer) { if (!(renderTarget && renderTarget.isWebGLRenderTarget)) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ) return } var framebuffer = properties.get(renderTarget).__webglFramebuffer if (framebuffer) { var restore = false if (framebuffer !== _currentFramebuffer) { _gl.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer) restore = true } try { var texture = renderTarget.texture var textureFormat = texture.format var textureType = texture.type if ( textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_FORMAT) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ) return } if ( textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_TYPE) && // IE11, Edge and Chrome Mac < 52 (#9513) !( textureType === FloatType && (extensions.get('OES_texture_float') || extensions.get('WEBGL_color_buffer_float')) ) && // Chrome Mac >= 52 and Firefox !(textureType === HalfFloatType && extensions.get('EXT_color_buffer_half_float')) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ) return } if (_gl.checkFramebufferStatus(_gl.FRAMEBUFFER) === _gl.FRAMEBUFFER_COMPLETE) { // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if ( x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height ) { _gl.readPixels( x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer ) } } else { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' ) } } finally { if (restore) { _gl.bindFramebuffer(_gl.FRAMEBUFFER, _currentFramebuffer) } } } } this.copyFramebufferToTexture = function (position, texture, level) { var width = texture.image.width var height = texture.image.height var internalFormat = utils.convert(texture.format) this.setTexture2D(texture, 0) _gl.copyTexImage2D( _gl.TEXTURE_2D, level || 0, internalFormat, position.x, position.y, width, height, 0 ) } } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function FogExp2(color, density) { this.name = '' this.color = new Color(color) this.density = density !== undefined ? density : 0.00025 } FogExp2.prototype.isFogExp2 = true FogExp2.prototype.clone = function () { return new FogExp2(this.color.getHex(), this.density) } FogExp2.prototype.toJSON = function (/* meta */) { return { type: 'FogExp2', color: this.color.getHex(), density: this.density } } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Fog(color, near, far) { this.name = '' this.color = new Color(color) this.near = near !== undefined ? near : 1 this.far = far !== undefined ? far : 1000 } Fog.prototype.isFog = true Fog.prototype.clone = function () { return new Fog(this.color.getHex(), this.near, this.far) } Fog.prototype.toJSON = function (/* meta */) { return { type: 'Fog', color: this.color.getHex(), near: this.near, far: this.far } } /** * @author mrdoob / http://mrdoob.com/ */ function Scene() { Object3D.call(this) this.type = 'Scene' this.background = null this.fog = null this.overrideMaterial = null this.autoUpdate = true // checked by the renderer } Scene.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: Scene, copy: function (source, recursive) { Object3D.prototype.copy.call(this, source, recursive) if (source.background !== null) this.background = source.background.clone() if (source.fog !== null) this.fog = source.fog.clone() if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone() this.autoUpdate = source.autoUpdate this.matrixAutoUpdate = source.matrixAutoUpdate return this }, toJSON: function (meta) { var data = Object3D.prototype.toJSON.call(this, meta) if (this.background !== null) data.object.background = this.background.toJSON(meta) if (this.fog !== null) data.object.fog = this.fog.toJSON() return data } }) /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * uvOffset: new THREE.Vector2(), * uvScale: new THREE.Vector2() * } */ function SpriteMaterial(parameters) { Material.call(this) this.type = 'SpriteMaterial' this.color = new Color(0xffffff) this.map = null this.rotation = 0 this.fog = false this.lights = false this.setValues(parameters) } SpriteMaterial.prototype = Object.create(Material.prototype) SpriteMaterial.prototype.constructor = SpriteMaterial SpriteMaterial.prototype.isSpriteMaterial = true SpriteMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.color.copy(source.color) this.map = source.map this.rotation = source.rotation return this } /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ */ function Sprite(material) { Object3D.call(this) this.type = 'Sprite' this.material = material !== undefined ? material : new SpriteMaterial() this.center = new Vector2(0.5, 0.5) } Sprite.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: Sprite, isSprite: true, raycast: (function () { var intersectPoint = new Vector3() var worldPosition = new Vector3() var worldScale = new Vector3() return function raycast(raycaster, intersects) { worldPosition.setFromMatrixPosition(this.matrixWorld) raycaster.ray.closestPointToPoint(worldPosition, intersectPoint) worldScale.setFromMatrixScale(this.matrixWorld) var guessSizeSq = (worldScale.x * worldScale.y) / 4 if (worldPosition.distanceToSquared(intersectPoint) > guessSizeSq) return var distance = raycaster.ray.origin.distanceTo(intersectPoint) if (distance < raycaster.near || distance > raycaster.far) return intersects.push({ distance: distance, point: intersectPoint.clone(), face: null, object: this }) } })(), clone: function () { return new this.constructor(this.material).copy(this) }, copy: function (source) { Object3D.prototype.copy.call(this, source) if (source.center !== undefined) this.center.copy(source.center) return this } }) /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function LOD() { Object3D.call(this) this.type = 'LOD' Object.defineProperties(this, { levels: { enumerable: true, value: [] } }) } LOD.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: LOD, copy: function (source) { Object3D.prototype.copy.call(this, source, false) var levels = source.levels for (var i = 0, l = levels.length; i < l; i++) { var level = levels[i] this.addLevel(level.object.clone(), level.distance) } return this }, addLevel: function (object, distance) { if (distance === undefined) distance = 0 distance = Math.abs(distance) var levels = this.levels for (var l = 0; l < levels.length; l++) { if (distance < levels[l].distance) { break } } levels.splice(l, 0, { distance: distance, object: object }) this.add(object) }, getObjectForDistance: function (distance) { var levels = this.levels for (var i = 1, l = levels.length; i < l; i++) { if (distance < levels[i].distance) { break } } return levels[i - 1].object }, raycast: (function () { var matrixPosition = new Vector3() return function raycast(raycaster, intersects) { matrixPosition.setFromMatrixPosition(this.matrixWorld) var distance = raycaster.ray.origin.distanceTo(matrixPosition) this.getObjectForDistance(distance).raycast(raycaster, intersects) } })(), update: (function () { var v1 = new Vector3() var v2 = new Vector3() return function update(camera) { var levels = this.levels if (levels.length > 1) { v1.setFromMatrixPosition(camera.matrixWorld) v2.setFromMatrixPosition(this.matrixWorld) var distance = v1.distanceTo(v2) levels[0].object.visible = true for (var i = 1, l = levels.length; i < l; i++) { if (distance >= levels[i].distance) { levels[i - 1].object.visible = false levels[i].object.visible = true } else { break } } for (; i < l; i++) { levels[i].object.visible = false } } } })(), toJSON: function (meta) { var data = Object3D.prototype.toJSON.call(this, meta) data.object.levels = [] var levels = this.levels for (var i = 0, l = levels.length; i < l; i++) { var level = levels[i] data.object.levels.push({ object: level.object.uuid, distance: level.distance }) } return data } }) /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author michael guerrero / http://realitymeltdown.com * @author ikerr / http://verold.com */ function Skeleton(bones, boneInverses) { // copy the bone array bones = bones || [] this.bones = bones.slice(0) this.boneMatrices = new Float32Array(this.bones.length * 16) // use the supplied bone inverses or calculate the inverses if (boneInverses === undefined) { this.calculateInverses() } else { if (this.bones.length === boneInverses.length) { this.boneInverses = boneInverses.slice(0) } else { console.warn('THREE.Skeleton boneInverses is the wrong length.') this.boneInverses = [] for (var i = 0, il = this.bones.length; i < il; i++) { this.boneInverses.push(new Matrix4()) } } } } Object.assign(Skeleton.prototype, { calculateInverses: function () { this.boneInverses = [] for (var i = 0, il = this.bones.length; i < il; i++) { var inverse = new Matrix4() if (this.bones[i]) { inverse.getInverse(this.bones[i].matrixWorld) } this.boneInverses.push(inverse) } }, pose: function () { var bone, i, il // recover the bind-time world matrices for (i = 0, il = this.bones.length; i < il; i++) { bone = this.bones[i] if (bone) { bone.matrixWorld.getInverse(this.boneInverses[i]) } } // compute the local matrices, positions, rotations and scales for (i = 0, il = this.bones.length; i < il; i++) { bone = this.bones[i] if (bone) { if (bone.parent && bone.parent.isBone) { bone.matrix.getInverse(bone.parent.matrixWorld) bone.matrix.multiply(bone.matrixWorld) } else { bone.matrix.copy(bone.matrixWorld) } bone.matrix.decompose(bone.position, bone.quaternion, bone.scale) } } }, update: (function () { var offsetMatrix = new Matrix4() var identityMatrix = new Matrix4() return function update() { var bones = this.bones var boneInverses = this.boneInverses var boneMatrices = this.boneMatrices var boneTexture = this.boneTexture // flatten bone matrices to array for (var i = 0, il = bones.length; i < il; i++) { // compute the offset between the current and the original transform var matrix = bones[i] ? bones[i].matrixWorld : identityMatrix offsetMatrix.multiplyMatrices(matrix, boneInverses[i]) offsetMatrix.toArray(boneMatrices, i * 16) } if (boneTexture !== undefined) { boneTexture.needsUpdate = true } } })(), clone: function () { return new Skeleton(this.bones, this.boneInverses) }, getBoneByName: function (name) { for (var i = 0, il = this.bones.length; i < il; i++) { var bone = this.bones[i] if (bone.name === name) { return bone } } return undefined } }) /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ function Bone() { Object3D.call(this) this.type = 'Bone' } Bone.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: Bone, isBone: true }) /** * @author mikael emtinger / http://gomo.se/ * @author alteredq / http://alteredqualia.com/ * @author ikerr / http://verold.com */ function SkinnedMesh(geometry, material) { Mesh.call(this, geometry, material) this.type = 'SkinnedMesh' this.bindMode = 'attached' this.bindMatrix = new Matrix4() this.bindMatrixInverse = new Matrix4() var bones = this.initBones() var skeleton = new Skeleton(bones) this.bind(skeleton, this.matrixWorld) this.normalizeSkinWeights() } SkinnedMesh.prototype = Object.assign(Object.create(Mesh.prototype), { constructor: SkinnedMesh, isSkinnedMesh: true, initBones: function () { var bones = [], bone, gbone var i, il if (this.geometry && this.geometry.bones !== undefined) { // first, create array of 'Bone' objects from geometry data for (i = 0, il = this.geometry.bones.length; i < il; i++) { gbone = this.geometry.bones[i] // create new 'Bone' object bone = new Bone() bones.push(bone) // apply values bone.name = gbone.name bone.position.fromArray(gbone.pos) bone.quaternion.fromArray(gbone.rotq) if (gbone.scl !== undefined) bone.scale.fromArray(gbone.scl) } // second, create bone hierarchy for (i = 0, il = this.geometry.bones.length; i < il; i++) { gbone = this.geometry.bones[i] if (gbone.parent !== -1 && gbone.parent !== null && bones[gbone.parent] !== undefined) { // subsequent bones in the hierarchy bones[gbone.parent].add(bones[i]) } else { // topmost bone, immediate child of the skinned mesh this.add(bones[i]) } } } // now the bones are part of the scene graph and children of the skinned mesh. // let's update the corresponding matrices this.updateMatrixWorld(true) return bones }, bind: function (skeleton, bindMatrix) { this.skeleton = skeleton if (bindMatrix === undefined) { this.updateMatrixWorld(true) this.skeleton.calculateInverses() bindMatrix = this.matrixWorld } this.bindMatrix.copy(bindMatrix) this.bindMatrixInverse.getInverse(bindMatrix) }, pose: function () { this.skeleton.pose() }, normalizeSkinWeights: function () { var scale, i if (this.geometry && this.geometry.isGeometry) { for (i = 0; i < this.geometry.skinWeights.length; i++) { var sw = this.geometry.skinWeights[i] scale = 1.0 / sw.manhattanLength() if (scale !== Infinity) { sw.multiplyScalar(scale) } else { sw.set(1, 0, 0, 0) // do something reasonable } } } else if (this.geometry && this.geometry.isBufferGeometry) { var vec = new Vector4() var skinWeight = this.geometry.attributes.skinWeight for (i = 0; i < skinWeight.count; i++) { vec.x = skinWeight.getX(i) vec.y = skinWeight.getY(i) vec.z = skinWeight.getZ(i) vec.w = skinWeight.getW(i) scale = 1.0 / vec.manhattanLength() if (scale !== Infinity) { vec.multiplyScalar(scale) } else { vec.set(1, 0, 0, 0) // do something reasonable } skinWeight.setXYZW(i, vec.x, vec.y, vec.z, vec.w) } } }, updateMatrixWorld: function (force) { Mesh.prototype.updateMatrixWorld.call(this, force) if (this.bindMode === 'attached') { this.bindMatrixInverse.getInverse(this.matrixWorld) } else if (this.bindMode === 'detached') { this.bindMatrixInverse.getInverse(this.bindMatrix) } else { console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode) } }, clone: function () { return new this.constructor(this.geometry, this.material).copy(this) } }) /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * linewidth: , * linecap: "round", * linejoin: "round" * } */ function LineBasicMaterial(parameters) { Material.call(this) this.type = 'LineBasicMaterial' this.color = new Color(0xffffff) this.linewidth = 1 this.linecap = 'round' this.linejoin = 'round' this.lights = false this.setValues(parameters) } LineBasicMaterial.prototype = Object.create(Material.prototype) LineBasicMaterial.prototype.constructor = LineBasicMaterial LineBasicMaterial.prototype.isLineBasicMaterial = true LineBasicMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.color.copy(source.color) this.linewidth = source.linewidth this.linecap = source.linecap this.linejoin = source.linejoin return this } /** * @author mrdoob / http://mrdoob.com/ */ function Line(geometry, material, mode) { if (mode === 1) { console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' ) return new LineSegments(geometry, material) } Object3D.call(this) this.type = 'Line' this.geometry = geometry !== undefined ? geometry : new BufferGeometry() this.material = material !== undefined ? material : new LineBasicMaterial({ color: Math.random() * 0xffffff }) } Line.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: Line, isLine: true, computeLineDistances: (function () { var start = new Vector3() var end = new Vector3() return function computeLineDistances() { var geometry = this.geometry if (geometry.isBufferGeometry) { // we assume non-indexed geometry if (geometry.index === null) { var positionAttribute = geometry.attributes.position var lineDistances = [0] for (var i = 1, l = positionAttribute.count; i < l; i++) { start.fromBufferAttribute(positionAttribute, i - 1) end.fromBufferAttribute(positionAttribute, i) lineDistances[i] = lineDistances[i - 1] lineDistances[i] += start.distanceTo(end) } geometry.addAttribute( 'lineDistance', new THREE.Float32BufferAttribute(lineDistances, 1) ) } else { console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ) } } else if (geometry.isGeometry) { var vertices = geometry.vertices var lineDistances = geometry.lineDistances lineDistances[0] = 0 for (var i = 1, l = vertices.length; i < l; i++) { lineDistances[i] = lineDistances[i - 1] lineDistances[i] += vertices[i - 1].distanceTo(vertices[i]) } } return this } })(), raycast: (function () { var inverseMatrix = new Matrix4() var ray = new Ray() var sphere = new Sphere() return function raycast(raycaster, intersects) { var precision = raycaster.linePrecision var precisionSq = precision * precision var geometry = this.geometry var matrixWorld = this.matrixWorld // Checking boundingSphere distance to ray if (geometry.boundingSphere === null) geometry.computeBoundingSphere() sphere.copy(geometry.boundingSphere) sphere.applyMatrix4(matrixWorld) if (raycaster.ray.intersectsSphere(sphere) === false) return // inverseMatrix.getInverse(matrixWorld) ray.copy(raycaster.ray).applyMatrix4(inverseMatrix) var vStart = new Vector3() var vEnd = new Vector3() var interSegment = new Vector3() var interRay = new Vector3() var step = this && this.isLineSegments ? 2 : 1 if (geometry.isBufferGeometry) { var index = geometry.index var attributes = geometry.attributes var positions = attributes.position.array if (index !== null) { var indices = index.array for (var i = 0, l = indices.length - 1; i < l; i += step) { var a = indices[i] var b = indices[i + 1] vStart.fromArray(positions, a * 3) vEnd.fromArray(positions, b * 3) var distSq = ray.distanceSqToSegment(vStart, vEnd, interRay, interSegment) if (distSq > precisionSq) continue interRay.applyMatrix4(this.matrixWorld) //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo(interRay) if (distance < raycaster.near || distance > raycaster.far) continue intersects.push({ distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4(this.matrixWorld), index: i, face: null, faceIndex: null, object: this }) } } else { for (var i = 0, l = positions.length / 3 - 1; i < l; i += step) { vStart.fromArray(positions, 3 * i) vEnd.fromArray(positions, 3 * i + 3) var distSq = ray.distanceSqToSegment(vStart, vEnd, interRay, interSegment) if (distSq > precisionSq) continue interRay.applyMatrix4(this.matrixWorld) //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo(interRay) if (distance < raycaster.near || distance > raycaster.far) continue intersects.push({ distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4(this.matrixWorld), index: i, face: null, faceIndex: null, object: this }) } } } else if (geometry.isGeometry) { var vertices = geometry.vertices var nbVertices = vertices.length for (var i = 0; i < nbVertices - 1; i += step) { var distSq = ray.distanceSqToSegment( vertices[i], vertices[i + 1], interRay, interSegment ) if (distSq > precisionSq) continue interRay.applyMatrix4(this.matrixWorld) //Move back to world space for distance calculation var distance = raycaster.ray.origin.distanceTo(interRay) if (distance < raycaster.near || distance > raycaster.far) continue intersects.push({ distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: interSegment.clone().applyMatrix4(this.matrixWorld), index: i, face: null, faceIndex: null, object: this }) } } } })(), clone: function () { return new this.constructor(this.geometry, this.material).copy(this) } }) /** * @author mrdoob / http://mrdoob.com/ */ function LineSegments(geometry, material) { Line.call(this, geometry, material) this.type = 'LineSegments' } LineSegments.prototype = Object.assign(Object.create(Line.prototype), { constructor: LineSegments, isLineSegments: true, computeLineDistances: (function () { var start = new Vector3() var end = new Vector3() return function computeLineDistances() { var geometry = this.geometry if (geometry.isBufferGeometry) { // we assume non-indexed geometry if (geometry.index === null) { var positionAttribute = geometry.attributes.position var lineDistances = [] for (var i = 0, l = positionAttribute.count; i < l; i += 2) { start.fromBufferAttribute(positionAttribute, i) end.fromBufferAttribute(positionAttribute, i + 1) lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1] lineDistances[i + 1] = lineDistances[i] + start.distanceTo(end) } geometry.addAttribute( 'lineDistance', new THREE.Float32BufferAttribute(lineDistances, 1) ) } else { console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ) } } else if (geometry.isGeometry) { var vertices = geometry.vertices var lineDistances = geometry.lineDistances for (var i = 0, l = vertices.length; i < l; i += 2) { start.copy(vertices[i]) end.copy(vertices[i + 1]) lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1] lineDistances[i + 1] = lineDistances[i] + start.distanceTo(end) } } return this } })() }) /** * @author mgreter / http://github.com/mgreter */ function LineLoop(geometry, material) { Line.call(this, geometry, material) this.type = 'LineLoop' } LineLoop.prototype = Object.assign(Object.create(Line.prototype), { constructor: LineLoop, isLineLoop: true }) /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * map: new THREE.Texture( ), * * size: , * sizeAttenuation: * } */ function PointsMaterial(parameters) { Material.call(this) this.type = 'PointsMaterial' this.color = new Color(0xffffff) this.map = null this.size = 1 this.sizeAttenuation = true this.lights = false this.setValues(parameters) } PointsMaterial.prototype = Object.create(Material.prototype) PointsMaterial.prototype.constructor = PointsMaterial PointsMaterial.prototype.isPointsMaterial = true PointsMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.color.copy(source.color) this.map = source.map this.size = source.size this.sizeAttenuation = source.sizeAttenuation return this } /** * @author alteredq / http://alteredqualia.com/ */ function Points(geometry, material) { Object3D.call(this) this.type = 'Points' this.geometry = geometry !== undefined ? geometry : new BufferGeometry() this.material = material !== undefined ? material : new PointsMaterial({ color: Math.random() * 0xffffff }) } Points.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: Points, isPoints: true, raycast: (function () { var inverseMatrix = new Matrix4() var ray = new Ray() var sphere = new Sphere() return function raycast(raycaster, intersects) { var object = this var geometry = this.geometry var matrixWorld = this.matrixWorld var threshold = raycaster.params.Points.threshold // Checking boundingSphere distance to ray if (geometry.boundingSphere === null) geometry.computeBoundingSphere() sphere.copy(geometry.boundingSphere) sphere.applyMatrix4(matrixWorld) sphere.radius += threshold if (raycaster.ray.intersectsSphere(sphere) === false) return // inverseMatrix.getInverse(matrixWorld) ray.copy(raycaster.ray).applyMatrix4(inverseMatrix) var localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3) var localThresholdSq = localThreshold * localThreshold var position = new Vector3() function testPoint(point, index) { var rayPointDistanceSq = ray.distanceSqToPoint(point) if (rayPointDistanceSq < localThresholdSq) { var intersectPoint = ray.closestPointToPoint(point) intersectPoint.applyMatrix4(matrixWorld) var distance = raycaster.ray.origin.distanceTo(intersectPoint) if (distance < raycaster.near || distance > raycaster.far) return intersects.push({ distance: distance, distanceToRay: Math.sqrt(rayPointDistanceSq), point: intersectPoint.clone(), index: index, face: null, object: object }) } } if (geometry.isBufferGeometry) { var index = geometry.index var attributes = geometry.attributes var positions = attributes.position.array if (index !== null) { var indices = index.array for (var i = 0, il = indices.length; i < il; i++) { var a = indices[i] position.fromArray(positions, a * 3) testPoint(position, a) } } else { for (var i = 0, l = positions.length / 3; i < l; i++) { position.fromArray(positions, i * 3) testPoint(position, i) } } } else { var vertices = geometry.vertices for (var i = 0, l = vertices.length; i < l; i++) { testPoint(vertices[i], i) } } } })(), clone: function () { return new this.constructor(this.geometry, this.material).copy(this) } }) /** * @author mrdoob / http://mrdoob.com/ */ function Group() { Object3D.call(this) this.type = 'Group' } Group.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: Group, isGroup: true }) /** * @author mrdoob / http://mrdoob.com/ */ function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { Texture.call(this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) this.generateMipmaps = false } VideoTexture.prototype = Object.assign(Object.create(Texture.prototype), { constructor: VideoTexture, isVideoTexture: true, update: function () { var video = this.image if (video.readyState >= video.HAVE_CURRENT_DATA) { this.needsUpdate = true } } }) /** * @author alteredq / http://alteredqualia.com/ */ function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) { Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) this.image = { width: width, height: height } this.mipmaps = mipmaps // no flipping for cube textures // (also flipping doesn't work for compressed textures ) this.flipY = false // can't generate mipmaps for compressed textures // mips must be embedded in DDS files this.generateMipmaps = false } CompressedTexture.prototype = Object.create(Texture.prototype) CompressedTexture.prototype.constructor = CompressedTexture CompressedTexture.prototype.isCompressedTexture = true /** * @author Matt DesLauriers / @mattdesl * @author atix / arthursilber.de */ function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) { format = format !== undefined ? format : DepthFormat if (format !== DepthFormat && format !== DepthStencilFormat) { throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' ) } if (type === undefined && format === DepthFormat) type = UnsignedShortType if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type Texture.call(this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) this.image = { width: width, height: height } this.magFilter = magFilter !== undefined ? magFilter : NearestFilter this.minFilter = minFilter !== undefined ? minFilter : NearestFilter this.flipY = false this.generateMipmaps = false } DepthTexture.prototype = Object.create(Texture.prototype) DepthTexture.prototype.constructor = DepthTexture DepthTexture.prototype.isDepthTexture = true /** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ function WireframeGeometry(geometry) { BufferGeometry.call(this) this.type = 'WireframeGeometry' // buffer var vertices = [] // helper variables var i, j, l, o, ol var edge = [0, 0], edges = {}, e, edge1, edge2 var key, keys = ['a', 'b', 'c'] var vertex // different logic for Geometry and BufferGeometry if (geometry && geometry.isGeometry) { // create a data structure that contains all edges without duplicates var faces = geometry.faces for (i = 0, l = faces.length; i < l; i++) { var face = faces[i] for (j = 0; j < 3; j++) { edge1 = face[keys[j]] edge2 = face[keys[(j + 1) % 3]] edge[0] = Math.min(edge1, edge2) // sorting prevents duplicates edge[1] = Math.max(edge1, edge2) key = edge[0] + ',' + edge[1] if (edges[key] === undefined) { edges[key] = { index1: edge[0], index2: edge[1] } } } } // generate vertices for (key in edges) { e = edges[key] vertex = geometry.vertices[e.index1] vertices.push(vertex.x, vertex.y, vertex.z) vertex = geometry.vertices[e.index2] vertices.push(vertex.x, vertex.y, vertex.z) } } else if (geometry && geometry.isBufferGeometry) { var position, indices, groups var group, start, count var index1, index2 vertex = new Vector3() if (geometry.index !== null) { // indexed BufferGeometry position = geometry.attributes.position indices = geometry.index groups = geometry.groups if (groups.length === 0) { groups = [{ start: 0, count: indices.count, materialIndex: 0 }] } // create a data structure that contains all eges without duplicates for (o = 0, ol = groups.length; o < ol; ++o) { group = groups[o] start = group.start count = group.count for (i = start, l = start + count; i < l; i += 3) { for (j = 0; j < 3; j++) { edge1 = indices.getX(i + j) edge2 = indices.getX(i + ((j + 1) % 3)) edge[0] = Math.min(edge1, edge2) // sorting prevents duplicates edge[1] = Math.max(edge1, edge2) key = edge[0] + ',' + edge[1] if (edges[key] === undefined) { edges[key] = { index1: edge[0], index2: edge[1] } } } } } // generate vertices for (key in edges) { e = edges[key] vertex.fromBufferAttribute(position, e.index1) vertices.push(vertex.x, vertex.y, vertex.z) vertex.fromBufferAttribute(position, e.index2) vertices.push(vertex.x, vertex.y, vertex.z) } } else { // non-indexed BufferGeometry position = geometry.attributes.position for (i = 0, l = position.count / 3; i < l; i++) { for (j = 0; j < 3; j++) { // three edges per triangle, an edge is represented as (index1, index2) // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) index1 = 3 * i + j vertex.fromBufferAttribute(position, index1) vertices.push(vertex.x, vertex.y, vertex.z) index2 = 3 * i + ((j + 1) % 3) vertex.fromBufferAttribute(position, index2) vertices.push(vertex.x, vertex.y, vertex.z) } } } } // build geometry this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) } WireframeGeometry.prototype = Object.create(BufferGeometry.prototype) WireframeGeometry.prototype.constructor = WireframeGeometry /** * @author zz85 / https://github.com/zz85 * @author Mugen87 / https://github.com/Mugen87 * * Parametric Surfaces Geometry * based on the brilliant article by @prideout http://prideout.net/blog/?p=44 */ // ParametricGeometry function ParametricGeometry(func, slices, stacks) { Geometry.call(this) this.type = 'ParametricGeometry' this.parameters = { func: func, slices: slices, stacks: stacks } this.fromBufferGeometry(new ParametricBufferGeometry(func, slices, stacks)) this.mergeVertices() } ParametricGeometry.prototype = Object.create(Geometry.prototype) ParametricGeometry.prototype.constructor = ParametricGeometry // ParametricBufferGeometry function ParametricBufferGeometry(func, slices, stacks) { BufferGeometry.call(this) this.type = 'ParametricBufferGeometry' this.parameters = { func: func, slices: slices, stacks: stacks } // buffers var indices = [] var vertices = [] var normals = [] var uvs = [] var EPS = 0.00001 var normal = new Vector3() var p0 = new Vector3(), p1 = new Vector3() var pu = new Vector3(), pv = new Vector3() var i, j // generate vertices, normals and uvs var sliceCount = slices + 1 for (i = 0; i <= stacks; i++) { var v = i / stacks for (j = 0; j <= slices; j++) { var u = j / slices // vertex p0 = func(u, v, p0) vertices.push(p0.x, p0.y, p0.z) // normal // approximate tangent vectors via finite differences if (u - EPS >= 0) { p1 = func(u - EPS, v, p1) pu.subVectors(p0, p1) } else { p1 = func(u + EPS, v, p1) pu.subVectors(p1, p0) } if (v - EPS >= 0) { p1 = func(u, v - EPS, p1) pv.subVectors(p0, p1) } else { p1 = func(u, v + EPS, p1) pv.subVectors(p1, p0) } // cross product of tangent vectors returns surface normal normal.crossVectors(pu, pv).normalize() normals.push(normal.x, normal.y, normal.z) // uv uvs.push(u, v) } } // generate indices for (i = 0; i < stacks; i++) { for (j = 0; j < slices; j++) { var a = i * sliceCount + j var b = i * sliceCount + j + 1 var c = (i + 1) * sliceCount + j + 1 var d = (i + 1) * sliceCount + j // faces one and two indices.push(a, b, d) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) } ParametricBufferGeometry.prototype = Object.create(BufferGeometry.prototype) ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry /** * @author clockworkgeek / https://github.com/clockworkgeek * @author timothypratley / https://github.com/timothypratley * @author WestLangley / http://github.com/WestLangley * @author Mugen87 / https://github.com/Mugen87 */ // PolyhedronGeometry function PolyhedronGeometry(vertices, indices, radius, detail) { Geometry.call(this) this.type = 'PolyhedronGeometry' this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail } this.fromBufferGeometry(new PolyhedronBufferGeometry(vertices, indices, radius, detail)) this.mergeVertices() } PolyhedronGeometry.prototype = Object.create(Geometry.prototype) PolyhedronGeometry.prototype.constructor = PolyhedronGeometry // PolyhedronBufferGeometry function PolyhedronBufferGeometry(vertices, indices, radius, detail) { BufferGeometry.call(this) this.type = 'PolyhedronBufferGeometry' this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail } radius = radius || 1 detail = detail || 0 // default buffer data var vertexBuffer = [] var uvBuffer = [] // the subdivision creates the vertex buffer data subdivide(detail) // all vertices should lie on a conceptual sphere with a given radius appplyRadius(radius) // finally, create the uv data generateUVs() // build non-indexed geometry this.addAttribute('position', new Float32BufferAttribute(vertexBuffer, 3)) this.addAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3)) this.addAttribute('uv', new Float32BufferAttribute(uvBuffer, 2)) if (detail === 0) { this.computeVertexNormals() // flat normals } else { this.normalizeNormals() // smooth normals } // helper functions function subdivide(detail) { var a = new Vector3() var b = new Vector3() var c = new Vector3() // iterate over all faces and apply a subdivison with the given detail value for (var i = 0; i < indices.length; i += 3) { // get the vertices of the face getVertexByIndex(indices[i + 0], a) getVertexByIndex(indices[i + 1], b) getVertexByIndex(indices[i + 2], c) // perform subdivision subdivideFace(a, b, c, detail) } } function subdivideFace(a, b, c, detail) { var cols = Math.pow(2, detail) // we use this multidimensional array as a data structure for creating the subdivision var v = [] var i, j // construct all of the vertices for this subdivision for (i = 0; i <= cols; i++) { v[i] = [] var aj = a.clone().lerp(c, i / cols) var bj = b.clone().lerp(c, i / cols) var rows = cols - i for (j = 0; j <= rows; j++) { if (j === 0 && i === cols) { v[i][j] = aj } else { v[i][j] = aj.clone().lerp(bj, j / rows) } } } // construct all of the faces for (i = 0; i < cols; i++) { for (j = 0; j < 2 * (cols - i) - 1; j++) { var k = Math.floor(j / 2) if (j % 2 === 0) { pushVertex(v[i][k + 1]) pushVertex(v[i + 1][k]) pushVertex(v[i][k]) } else { pushVertex(v[i][k + 1]) pushVertex(v[i + 1][k + 1]) pushVertex(v[i + 1][k]) } } } } function appplyRadius(radius) { var vertex = new Vector3() // iterate over the entire buffer and apply the radius to each vertex for (var i = 0; i < vertexBuffer.length; i += 3) { vertex.x = vertexBuffer[i + 0] vertex.y = vertexBuffer[i + 1] vertex.z = vertexBuffer[i + 2] vertex.normalize().multiplyScalar(radius) vertexBuffer[i + 0] = vertex.x vertexBuffer[i + 1] = vertex.y vertexBuffer[i + 2] = vertex.z } } function generateUVs() { var vertex = new Vector3() for (var i = 0; i < vertexBuffer.length; i += 3) { vertex.x = vertexBuffer[i + 0] vertex.y = vertexBuffer[i + 1] vertex.z = vertexBuffer[i + 2] var u = azimuth(vertex) / 2 / Math.PI + 0.5 var v = inclination(vertex) / Math.PI + 0.5 uvBuffer.push(u, 1 - v) } correctUVs() correctSeam() } function correctSeam() { // handle case when face straddles the seam, see #3269 for (var i = 0; i < uvBuffer.length; i += 6) { // uv data of a single face var x0 = uvBuffer[i + 0] var x1 = uvBuffer[i + 2] var x2 = uvBuffer[i + 4] var max = Math.max(x0, x1, x2) var min = Math.min(x0, x1, x2) // 0.9 is somewhat arbitrary if (max > 0.9 && min < 0.1) { if (x0 < 0.2) uvBuffer[i + 0] += 1 if (x1 < 0.2) uvBuffer[i + 2] += 1 if (x2 < 0.2) uvBuffer[i + 4] += 1 } } } function pushVertex(vertex) { vertexBuffer.push(vertex.x, vertex.y, vertex.z) } function getVertexByIndex(index, vertex) { var stride = index * 3 vertex.x = vertices[stride + 0] vertex.y = vertices[stride + 1] vertex.z = vertices[stride + 2] } function correctUVs() { var a = new Vector3() var b = new Vector3() var c = new Vector3() var centroid = new Vector3() var uvA = new Vector2() var uvB = new Vector2() var uvC = new Vector2() for (var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) { a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]) b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]) c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]) uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]) uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]) uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]) centroid.copy(a).add(b).add(c).divideScalar(3) var azi = azimuth(centroid) correctUV(uvA, j + 0, a, azi) correctUV(uvB, j + 2, b, azi) correctUV(uvC, j + 4, c, azi) } } function correctUV(uv, stride, vector, azimuth) { if (azimuth < 0 && uv.x === 1) { uvBuffer[stride] = uv.x - 1 } if (vector.x === 0 && vector.z === 0) { uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5 } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth(vector) { return Math.atan2(vector.z, -vector.x) } // Angle above the XZ plane. function inclination(vector) { return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z)) } } PolyhedronBufferGeometry.prototype = Object.create(BufferGeometry.prototype) PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry /** * @author timothypratley / https://github.com/timothypratley * @author Mugen87 / https://github.com/Mugen87 */ // TetrahedronGeometry function TetrahedronGeometry(radius, detail) { Geometry.call(this) this.type = 'TetrahedronGeometry' this.parameters = { radius: radius, detail: detail } this.fromBufferGeometry(new TetrahedronBufferGeometry(radius, detail)) this.mergeVertices() } TetrahedronGeometry.prototype = Object.create(Geometry.prototype) TetrahedronGeometry.prototype.constructor = TetrahedronGeometry // TetrahedronBufferGeometry function TetrahedronBufferGeometry(radius, detail) { var vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1] var indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1] PolyhedronBufferGeometry.call(this, vertices, indices, radius, detail) this.type = 'TetrahedronBufferGeometry' this.parameters = { radius: radius, detail: detail } } TetrahedronBufferGeometry.prototype = Object.create(PolyhedronBufferGeometry.prototype) TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry /** * @author timothypratley / https://github.com/timothypratley * @author Mugen87 / https://github.com/Mugen87 */ // OctahedronGeometry function OctahedronGeometry(radius, detail) { Geometry.call(this) this.type = 'OctahedronGeometry' this.parameters = { radius: radius, detail: detail } this.fromBufferGeometry(new OctahedronBufferGeometry(radius, detail)) this.mergeVertices() } OctahedronGeometry.prototype = Object.create(Geometry.prototype) OctahedronGeometry.prototype.constructor = OctahedronGeometry // OctahedronBufferGeometry function OctahedronBufferGeometry(radius, detail) { var vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1] var indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2] PolyhedronBufferGeometry.call(this, vertices, indices, radius, detail) this.type = 'OctahedronBufferGeometry' this.parameters = { radius: radius, detail: detail } } OctahedronBufferGeometry.prototype = Object.create(PolyhedronBufferGeometry.prototype) OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry /** * @author timothypratley / https://github.com/timothypratley * @author Mugen87 / https://github.com/Mugen87 */ // IcosahedronGeometry function IcosahedronGeometry(radius, detail) { Geometry.call(this) this.type = 'IcosahedronGeometry' this.parameters = { radius: radius, detail: detail } this.fromBufferGeometry(new IcosahedronBufferGeometry(radius, detail)) this.mergeVertices() } IcosahedronGeometry.prototype = Object.create(Geometry.prototype) IcosahedronGeometry.prototype.constructor = IcosahedronGeometry // IcosahedronBufferGeometry function IcosahedronBufferGeometry(radius, detail) { var t = (1 + Math.sqrt(5)) / 2 var vertices = [ -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1 ] var indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ] PolyhedronBufferGeometry.call(this, vertices, indices, radius, detail) this.type = 'IcosahedronBufferGeometry' this.parameters = { radius: radius, detail: detail } } IcosahedronBufferGeometry.prototype = Object.create(PolyhedronBufferGeometry.prototype) IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry /** * @author Abe Pazos / https://hamoid.com * @author Mugen87 / https://github.com/Mugen87 */ // DodecahedronGeometry function DodecahedronGeometry(radius, detail) { Geometry.call(this) this.type = 'DodecahedronGeometry' this.parameters = { radius: radius, detail: detail } this.fromBufferGeometry(new DodecahedronBufferGeometry(radius, detail)) this.mergeVertices() } DodecahedronGeometry.prototype = Object.create(Geometry.prototype) DodecahedronGeometry.prototype.constructor = DodecahedronGeometry // DodecahedronBufferGeometry function DodecahedronBufferGeometry(radius, detail) { var t = (1 + Math.sqrt(5)) / 2 var r = 1 / t var vertices = [ // (±1, ±1, ±1) -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0) -r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ) -t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r ] var indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ] PolyhedronBufferGeometry.call(this, vertices, indices, radius, detail) this.type = 'DodecahedronBufferGeometry' this.parameters = { radius: radius, detail: detail } } DodecahedronBufferGeometry.prototype = Object.create(PolyhedronBufferGeometry.prototype) DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry /** * @author oosmoxiecode / https://github.com/oosmoxiecode * @author WestLangley / https://github.com/WestLangley * @author zz85 / https://github.com/zz85 * @author miningold / https://github.com/miningold * @author jonobr1 / https://github.com/jonobr1 * @author Mugen87 / https://github.com/Mugen87 * */ // TubeGeometry function TubeGeometry(path, tubularSegments, radius, radialSegments, closed, taper) { Geometry.call(this) this.type = 'TubeGeometry' this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed } if (taper !== undefined) console.warn('THREE.TubeGeometry: taper has been removed.') var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) // expose internals this.tangents = bufferGeometry.tangents this.normals = bufferGeometry.normals this.binormals = bufferGeometry.binormals // create geometry this.fromBufferGeometry(bufferGeometry) this.mergeVertices() } TubeGeometry.prototype = Object.create(Geometry.prototype) TubeGeometry.prototype.constructor = TubeGeometry // TubeBufferGeometry function TubeBufferGeometry(path, tubularSegments, radius, radialSegments, closed) { BufferGeometry.call(this) this.type = 'TubeBufferGeometry' this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed } tubularSegments = tubularSegments || 64 radius = radius || 1 radialSegments = radialSegments || 8 closed = closed || false var frames = path.computeFrenetFrames(tubularSegments, closed) // expose internals this.tangents = frames.tangents this.normals = frames.normals this.binormals = frames.binormals // helper variables var vertex = new Vector3() var normal = new Vector3() var uv = new Vector2() var P = new Vector3() var i, j // buffer var vertices = [] var normals = [] var uvs = [] var indices = [] // create buffer data generateBufferData() // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) // functions function generateBufferData() { for (i = 0; i < tubularSegments; i++) { generateSegment(i) } // if the geometry is not closed, generate the last row of vertices and normals // at the regular position on the given path // // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) generateSegment(closed === false ? tubularSegments : 0) // uvs are generated in a separate function. // this makes it easy compute correct values for closed geometries generateUVs() // finally create faces generateIndices() } function generateSegment(i) { // we use getPointAt to sample evenly distributed points from the given path P = path.getPointAt(i / tubularSegments, P) // retrieve corresponding normal and binormal var N = frames.normals[i] var B = frames.binormals[i] // generate normals and vertices for the current segment for (j = 0; j <= radialSegments; j++) { var v = (j / radialSegments) * Math.PI * 2 var sin = Math.sin(v) var cos = -Math.cos(v) // normal normal.x = cos * N.x + sin * B.x normal.y = cos * N.y + sin * B.y normal.z = cos * N.z + sin * B.z normal.normalize() normals.push(normal.x, normal.y, normal.z) // vertex vertex.x = P.x + radius * normal.x vertex.y = P.y + radius * normal.y vertex.z = P.z + radius * normal.z vertices.push(vertex.x, vertex.y, vertex.z) } } function generateIndices() { for (j = 1; j <= tubularSegments; j++) { for (i = 1; i <= radialSegments; i++) { var a = (radialSegments + 1) * (j - 1) + (i - 1) var b = (radialSegments + 1) * j + (i - 1) var c = (radialSegments + 1) * j + i var d = (radialSegments + 1) * (j - 1) + i // faces indices.push(a, b, d) indices.push(b, c, d) } } } function generateUVs() { for (i = 0; i <= tubularSegments; i++) { for (j = 0; j <= radialSegments; j++) { uv.x = i / tubularSegments uv.y = j / radialSegments uvs.push(uv.x, uv.y) } } } } TubeBufferGeometry.prototype = Object.create(BufferGeometry.prototype) TubeBufferGeometry.prototype.constructor = TubeBufferGeometry /** * @author oosmoxiecode * @author Mugen87 / https://github.com/Mugen87 * * based on http://www.blackpawn.com/texts/pqtorus/ */ // TorusKnotGeometry function TorusKnotGeometry(radius, tube, tubularSegments, radialSegments, p, q, heightScale) { Geometry.call(this) this.type = 'TorusKnotGeometry' this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q } if (heightScale !== undefined) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' ) this.fromBufferGeometry( new TorusKnotBufferGeometry(radius, tube, tubularSegments, radialSegments, p, q) ) this.mergeVertices() } TorusKnotGeometry.prototype = Object.create(Geometry.prototype) TorusKnotGeometry.prototype.constructor = TorusKnotGeometry // TorusKnotBufferGeometry function TorusKnotBufferGeometry(radius, tube, tubularSegments, radialSegments, p, q) { BufferGeometry.call(this) this.type = 'TorusKnotBufferGeometry' this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q } radius = radius || 1 tube = tube || 0.4 tubularSegments = Math.floor(tubularSegments) || 64 radialSegments = Math.floor(radialSegments) || 8 p = p || 2 q = q || 3 // buffers var indices = [] var vertices = [] var normals = [] var uvs = [] // helper variables var i, j var vertex = new Vector3() var normal = new Vector3() var P1 = new Vector3() var P2 = new Vector3() var B = new Vector3() var T = new Vector3() var N = new Vector3() // generate vertices, normals and uvs for (i = 0; i <= tubularSegments; ++i) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segement var u = (i / tubularSegments) * p * Math.PI * 2 // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve(u, p, q, radius, P1) calculatePositionOnCurve(u + 0.01, p, q, radius, P2) // calculate orthonormal basis T.subVectors(P2, P1) N.addVectors(P2, P1) B.crossVectors(T, N) N.crossVectors(B, T) // normalize B, N. T can be ignored, we don't use it B.normalize() N.normalize() for (j = 0; j <= radialSegments; ++j) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. var v = (j / radialSegments) * Math.PI * 2 var cx = -tube * Math.cos(v) var cy = tube * Math.sin(v) // now calculate the final vertex position. // first we orient the extrusion with our basis vectos, then we add it to the current position on the curve vertex.x = P1.x + (cx * N.x + cy * B.x) vertex.y = P1.y + (cx * N.y + cy * B.y) vertex.z = P1.z + (cx * N.z + cy * B.z) vertices.push(vertex.x, vertex.y, vertex.z) // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors(vertex, P1).normalize() normals.push(normal.x, normal.y, normal.z) // uv uvs.push(i / tubularSegments) uvs.push(j / radialSegments) } } // generate indices for (j = 1; j <= tubularSegments; j++) { for (i = 1; i <= radialSegments; i++) { // indices var a = (radialSegments + 1) * (j - 1) + (i - 1) var b = (radialSegments + 1) * j + (i - 1) var c = (radialSegments + 1) * j + i var d = (radialSegments + 1) * (j - 1) + i // faces indices.push(a, b, d) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) // this function calculates the current position on the torus curve function calculatePositionOnCurve(u, p, q, radius, position) { var cu = Math.cos(u) var su = Math.sin(u) var quOverP = (q / p) * u var cs = Math.cos(quOverP) position.x = radius * (2 + cs) * 0.5 * cu position.y = radius * (2 + cs) * su * 0.5 position.z = radius * Math.sin(quOverP) * 0.5 } } TorusKnotBufferGeometry.prototype = Object.create(BufferGeometry.prototype) TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry /** * @author oosmoxiecode * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ // TorusGeometry function TorusGeometry(radius, tube, radialSegments, tubularSegments, arc) { Geometry.call(this) this.type = 'TorusGeometry' this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc } this.fromBufferGeometry( new TorusBufferGeometry(radius, tube, radialSegments, tubularSegments, arc) ) this.mergeVertices() } TorusGeometry.prototype = Object.create(Geometry.prototype) TorusGeometry.prototype.constructor = TorusGeometry // TorusBufferGeometry function TorusBufferGeometry(radius, tube, radialSegments, tubularSegments, arc) { BufferGeometry.call(this) this.type = 'TorusBufferGeometry' this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc } radius = radius || 1 tube = tube || 0.4 radialSegments = Math.floor(radialSegments) || 8 tubularSegments = Math.floor(tubularSegments) || 6 arc = arc || Math.PI * 2 // buffers var indices = [] var vertices = [] var normals = [] var uvs = [] // helper variables var center = new Vector3() var vertex = new Vector3() var normal = new Vector3() var j, i // generate vertices, normals and uvs for (j = 0; j <= radialSegments; j++) { for (i = 0; i <= tubularSegments; i++) { var u = (i / tubularSegments) * arc var v = (j / radialSegments) * Math.PI * 2 // vertex vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u) vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u) vertex.z = tube * Math.sin(v) vertices.push(vertex.x, vertex.y, vertex.z) // normal center.x = radius * Math.cos(u) center.y = radius * Math.sin(u) normal.subVectors(vertex, center).normalize() normals.push(normal.x, normal.y, normal.z) // uv uvs.push(i / tubularSegments) uvs.push(j / radialSegments) } } // generate indices for (j = 1; j <= radialSegments; j++) { for (i = 1; i <= tubularSegments; i++) { // indices var a = (tubularSegments + 1) * j + i - 1 var b = (tubularSegments + 1) * (j - 1) + i - 1 var c = (tubularSegments + 1) * (j - 1) + i var d = (tubularSegments + 1) * j + i // faces indices.push(a, b, d) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) } TorusBufferGeometry.prototype = Object.create(BufferGeometry.prototype) TorusBufferGeometry.prototype.constructor = TorusBufferGeometry /** * @author Mugen87 / https://github.com/Mugen87 * Port from https://github.com/mapbox/earcut (v2.1.2) */ var Earcut = { triangulate: function (data, holeIndices, dim) { dim = dim || 2 var hasHoles = holeIndices && holeIndices.length, outerLen = hasHoles ? holeIndices[0] * dim : data.length, outerNode = linkedList(data, 0, outerLen, dim, true), triangles = [] if (!outerNode) return triangles var minX, minY, maxX, maxY, x, y, invSize if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim) // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if (data.length > 80 * dim) { minX = maxX = data[0] minY = maxY = data[1] for (var i = dim; i < outerLen; i += dim) { x = data[i] y = data[i + 1] if (x < minX) minX = x if (y < minY) minY = y if (x > maxX) maxX = x if (y > maxY) maxY = y } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.max(maxX - minX, maxY - minY) invSize = invSize !== 0 ? 1 / invSize : 0 } earcutLinked(outerNode, triangles, dim, minX, minY, invSize) return triangles } } // create a circular doubly linked list from polygon points in the specified winding order function linkedList(data, start, end, dim, clockwise) { var i, last if (clockwise === signedArea(data, start, end, dim) > 0) { for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last) } else { for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last) } if (last && equals(last, last.next)) { removeNode(last) last = last.next } return last } // eliminate colinear or duplicate points function filterPoints(start, end) { if (!start) return start if (!end) end = start var p = start, again do { again = false if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { removeNode(p) p = end = p.prev if (p === p.next) break again = true } else { p = p.next } } while (again || p !== end) return end } // main ear slicing loop which triangulates a polygon (given as a linked list) function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) { if (!ear) return // interlink polygon nodes in z-order if (!pass && invSize) indexCurve(ear, minX, minY, invSize) var stop = ear, prev, next // iterate through ears, slicing them one by one while (ear.prev !== ear.next) { prev = ear.prev next = ear.next if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) { // cut off the triangle triangles.push(prev.i / dim) triangles.push(ear.i / dim) triangles.push(next.i / dim) removeNode(ear) // skipping the next vertice leads to less sliver triangles ear = next.next stop = next.next continue } ear = next // if we looped through the whole remaining polygon and can't find any more ears if (ear === stop) { // try filtering points and slicing again if (!pass) { earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1) // if this didn't work, try curing all small self-intersections locally } else if (pass === 1) { ear = cureLocalIntersections(ear, triangles, dim) earcutLinked(ear, triangles, dim, minX, minY, invSize, 2) // as a last resort, try splitting the remaining polygon into two } else if (pass === 2) { splitEarcut(ear, triangles, dim, minX, minY, invSize) } break } } } // check whether a polygon node forms a valid ear with adjacent nodes function isEar(ear) { var a = ear.prev, b = ear, c = ear.next if (area(a, b, c) >= 0) return false // reflex, can't be an ear // now make sure we don't have other points inside the potential ear var p = ear.next.next while (p !== ear.prev) { if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) { return false } p = p.next } return true } function isEarHashed(ear, minX, minY, invSize) { var a = ear.prev, b = ear, c = ear.next if (area(a, b, c) >= 0) return false // reflex, can't be an ear // triangle bbox; min & max are calculated like this for speed var minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : b.x < c.x ? b.x : c.x, minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : b.y < c.y ? b.y : c.y, maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : b.x > c.x ? b.x : c.x, maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : b.y > c.y ? b.y : c.y // z-order range for the current triangle bbox; var minZ = zOrder(minTX, minTY, minX, minY, invSize), maxZ = zOrder(maxTX, maxTY, minX, minY, invSize) // first look for points inside the triangle in increasing z-order var p = ear.nextZ while (p && p.z <= maxZ) { if ( p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0 ) return false p = p.nextZ } // then look for points in decreasing z-order p = ear.prevZ while (p && p.z >= minZ) { if ( p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0 ) return false p = p.prevZ } return true } // go through all polygon nodes and cure small local self-intersections function cureLocalIntersections(start, triangles, dim) { var p = start do { var a = p.prev, b = p.next.next if ( !equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a) ) { triangles.push(a.i / dim) triangles.push(p.i / dim) triangles.push(b.i / dim) // remove two nodes involved removeNode(p) removeNode(p.next) p = start = b } p = p.next } while (p !== start) return p } // try splitting polygon into two and triangulate them independently function splitEarcut(start, triangles, dim, minX, minY, invSize) { // look for a valid diagonal that divides the polygon into two var a = start do { var b = a.next.next while (b !== a.prev) { if (a.i !== b.i && isValidDiagonal(a, b)) { // split the polygon in two by the diagonal var c = splitPolygon(a, b) // filter colinear points around the cuts a = filterPoints(a, a.next) c = filterPoints(c, c.next) // run earcut on each half earcutLinked(a, triangles, dim, minX, minY, invSize) earcutLinked(c, triangles, dim, minX, minY, invSize) return } b = b.next } a = a.next } while (a !== start) } // link every hole into the outer loop, producing a single-ring polygon without holes function eliminateHoles(data, holeIndices, outerNode, dim) { var queue = [], i, len, start, end, list for (i = 0, len = holeIndices.length; i < len; i++) { start = holeIndices[i] * dim end = i < len - 1 ? holeIndices[i + 1] * dim : data.length list = linkedList(data, start, end, dim, false) if (list === list.next) list.steiner = true queue.push(getLeftmost(list)) } queue.sort(compareX) // process holes from left to right for (i = 0; i < queue.length; i++) { eliminateHole(queue[i], outerNode) outerNode = filterPoints(outerNode, outerNode.next) } return outerNode } function compareX(a, b) { return a.x - b.x } // find a bridge between vertices that connects hole with an outer ring and and link it function eliminateHole(hole, outerNode) { outerNode = findHoleBridge(hole, outerNode) if (outerNode) { var b = splitPolygon(outerNode, hole) filterPoints(b, b.next) } } // David Eberly's algorithm for finding a bridge between hole and outer polygon function findHoleBridge(hole, outerNode) { var p = outerNode, hx = hole.x, hy = hole.y, qx = -Infinity, m // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) { var x = p.x + ((hy - p.y) * (p.next.x - p.x)) / (p.next.y - p.y) if (x <= hx && x > qx) { qx = x if (x === hx) { if (hy === p.y) return p if (hy === p.next.y) return p.next } m = p.x < p.next.x ? p : p.next } } p = p.next } while (p !== outerNode) if (!m) return null if (hx === qx) return m.prev // hole touches outer segment; pick lower endpoint // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point var stop = m, mx = m.x, my = m.y, tanMin = Infinity, tan p = m.next while (p !== stop) { if ( hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y) ) { tan = Math.abs(hy - p.y) / (hx - p.x) // tangential if ((tan < tanMin || (tan === tanMin && p.x > m.x)) && locallyInside(p, hole)) { m = p tanMin = tan } } p = p.next } return m } // interlink polygon nodes in z-order function indexCurve(start, minX, minY, invSize) { var p = start do { if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize) p.prevZ = p.prev p.nextZ = p.next p = p.next } while (p !== start) p.prevZ.nextZ = null p.prevZ = null sortLinked(p) } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html function sortLinked(list) { var i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1 do { p = list list = null tail = null numMerges = 0 while (p) { numMerges++ q = p pSize = 0 for (i = 0; i < inSize; i++) { pSize++ q = q.nextZ if (!q) break } qSize = inSize while (pSize > 0 || (qSize > 0 && q)) { if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) { e = p p = p.nextZ pSize-- } else { e = q q = q.nextZ qSize-- } if (tail) tail.nextZ = e else list = e e.prevZ = tail tail = e } p = q } tail.nextZ = null inSize *= 2 } while (numMerges > 1) return list } // z-order of a point given coords and inverse of the longer side of data bbox function zOrder(x, y, minX, minY, invSize) { // coords are transformed into non-negative 15-bit integer range x = 32767 * (x - minX) * invSize y = 32767 * (y - minY) * invSize x = (x | (x << 8)) & 0x00ff00ff x = (x | (x << 4)) & 0x0f0f0f0f x = (x | (x << 2)) & 0x33333333 x = (x | (x << 1)) & 0x55555555 y = (y | (y << 8)) & 0x00ff00ff y = (y | (y << 4)) & 0x0f0f0f0f y = (y | (y << 2)) & 0x33333333 y = (y | (y << 1)) & 0x55555555 return x | (y << 1) } // find the leftmost node of a polygon ring function getLeftmost(start) { var p = start, leftmost = start do { if (p.x < leftmost.x) leftmost = p p = p.next } while (p !== start) return leftmost } // check if a point lies within a convex triangle function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) { return ( (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0 ) } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) function isValidDiagonal(a, b) { return ( a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) ) } // signed area of a triangle function area(p, q, r) { return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y) } // check if two points are equal function equals(p1, p2) { return p1.x === p2.x && p1.y === p2.y } // check if two segments intersect function intersects(p1, q1, p2, q2) { if ((equals(p1, q1) && equals(p2, q2)) || (equals(p1, q2) && equals(p2, q1))) return true return ( area(p1, q1, p2) > 0 !== area(p1, q1, q2) > 0 && area(p2, q2, p1) > 0 !== area(p2, q2, q1) > 0 ) } // check if a polygon diagonal intersects any polygon segments function intersectsPolygon(a, b) { var p = a do { if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b) ) { return true } p = p.next } while (p !== a) return false } // check if a polygon diagonal is locally inside the polygon function locallyInside(a, b) { return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0 } // check if the middle point of a polygon diagonal is inside the polygon function middleInside(a, b) { var p = a, inside = false, px = (a.x + b.x) / 2, py = (a.y + b.y) / 2 do { if ( p.y > py !== p.next.y > py && p.next.y !== p.y && px < ((p.next.x - p.x) * (py - p.y)) / (p.next.y - p.y) + p.x ) { inside = !inside } p = p.next } while (p !== a) return inside } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring function splitPolygon(a, b) { var a2 = new Node(a.i, a.x, a.y), b2 = new Node(b.i, b.x, b.y), an = a.next, bp = b.prev a.next = b b.prev = a a2.next = an an.prev = a2 b2.next = a2 a2.prev = b2 bp.next = b2 b2.prev = bp return b2 } // create a node and optionally link it with previous one (in a circular doubly linked list) function insertNode(i, x, y, last) { var p = new Node(i, x, y) if (!last) { p.prev = p p.next = p } else { p.next = last.next p.prev = last last.next.prev = p last.next = p } return p } function removeNode(p) { p.next.prev = p.prev p.prev.next = p.next if (p.prevZ) p.prevZ.nextZ = p.nextZ if (p.nextZ) p.nextZ.prevZ = p.prevZ } function Node(i, x, y) { // vertice index in coordinates array this.i = i // vertex coordinates this.x = x this.y = y // previous and next vertice nodes in a polygon ring this.prev = null this.next = null // z-order curve value this.z = null // previous and next nodes in z-order this.prevZ = null this.nextZ = null // indicates whether this is a steiner point this.steiner = false } function signedArea(data, start, end, dim) { var sum = 0 for (var i = start, j = end - dim; i < end; i += dim) { sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]) j = i } return sum } /** * @author zz85 / http://www.lab4games.net/zz85/blog */ var ShapeUtils = { // calculate area of the contour polygon area: function (contour) { var n = contour.length var a = 0.0 for (var p = n - 1, q = 0; q < n; p = q++) { a += contour[p].x * contour[q].y - contour[q].x * contour[p].y } return a * 0.5 }, isClockWise: function (pts) { return ShapeUtils.area(pts) < 0 }, triangulateShape: function (contour, holes) { var vertices = [] // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] var holeIndices = [] // array of hole indices var faces = [] // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] removeDupEndPts(contour) addContour(vertices, contour) // var holeIndex = contour.length holes.forEach(removeDupEndPts) for (var i = 0; i < holes.length; i++) { holeIndices.push(holeIndex) holeIndex += holes[i].length addContour(vertices, holes[i]) } // var triangles = Earcut.triangulate(vertices, holeIndices) // for (var i = 0; i < triangles.length; i += 3) { faces.push(triangles.slice(i, i + 3)) } return faces } } function removeDupEndPts(points) { var l = points.length if (l > 2 && points[l - 1].equals(points[0])) { points.pop() } } function addContour(vertices, contour) { for (var i = 0; i < contour.length; i++) { vertices.push(contour[i].x) vertices.push(contour[i].y) } } /** * @author zz85 / http://www.lab4games.net/zz85/blog * * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * amount: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline is bevel * bevelSegments: , // number of bevel layers * * extrudePath: // curve to extrude shape along * frames: // containing arrays of tangents, normals, binormals * * UVGenerator: // object that provides UV generator functions * * } */ // ExtrudeGeometry function ExtrudeGeometry(shapes, options) { Geometry.call(this) this.type = 'ExtrudeGeometry' this.parameters = { shapes: shapes, options: options } this.fromBufferGeometry(new ExtrudeBufferGeometry(shapes, options)) this.mergeVertices() } ExtrudeGeometry.prototype = Object.create(Geometry.prototype) ExtrudeGeometry.prototype.constructor = ExtrudeGeometry // ExtrudeBufferGeometry function ExtrudeBufferGeometry(shapes, options) { if (typeof shapes === 'undefined') { return } BufferGeometry.call(this) this.type = 'ExtrudeBufferGeometry' shapes = Array.isArray(shapes) ? shapes : [shapes] this.addShapeList(shapes, options) this.computeVertexNormals() // can't really use automatic vertex normals // as then front and back sides get smoothed too // should do separate smoothing just for sides //this.computeVertexNormals(); //console.log( "took", ( Date.now() - startTime ) ); } ExtrudeBufferGeometry.prototype = Object.create(BufferGeometry.prototype) ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry ExtrudeBufferGeometry.prototype.getArrays = function () { var positionAttribute = this.getAttribute('position') var verticesArray = positionAttribute ? Array.prototype.slice.call(positionAttribute.array) : [] var uvAttribute = this.getAttribute('uv') var uvArray = uvAttribute ? Array.prototype.slice.call(uvAttribute.array) : [] var IndexAttribute = this.index var indicesArray = IndexAttribute ? Array.prototype.slice.call(IndexAttribute.array) : [] return { position: verticesArray, uv: uvArray, index: indicesArray } } ExtrudeBufferGeometry.prototype.addShapeList = function (shapes, options) { var sl = shapes.length options.arrays = this.getArrays() for (var s = 0; s < sl; s++) { var shape = shapes[s] this.addShape(shape, options) } this.setIndex(options.arrays.index) this.addAttribute('position', new Float32BufferAttribute(options.arrays.position, 3)) this.addAttribute('uv', new Float32BufferAttribute(options.arrays.uv, 2)) } ExtrudeBufferGeometry.prototype.addShape = function (shape, options) { var arrays = options.arrays ? options.arrays : this.getArrays() var verticesArray = arrays.position var indicesArray = arrays.index var uvArray = arrays.uv var placeholder = [] var amount = options.amount !== undefined ? options.amount : 100 var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6 // 10 var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2 // 8 var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3 var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true // false var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12 var steps = options.steps !== undefined ? options.steps : 1 var extrudePath = options.extrudePath var extrudePts, extrudeByPath = false // Use default WorldUVGenerator if no UV generators are specified. var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : ExtrudeGeometry.WorldUVGenerator var splineTube, binormal, normal, position2 if (extrudePath) { extrudePts = extrudePath.getSpacedPoints(steps) extrudeByPath = true bevelEnabled = false // bevels not supported for path extrusion // SETUP TNB variables // TODO1 - have a .isClosed in spline? splineTube = options.frames !== undefined ? options.frames : extrudePath.computeFrenetFrames(steps, false) // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new Vector3() normal = new Vector3() position2 = new Vector3() } // Safeguards if bevels are not enabled if (!bevelEnabled) { bevelSegments = 0 bevelThickness = 0 bevelSize = 0 } // Variables initialization var ahole, h, hl // looping of holes var scope = this var shapePoints = shape.extractPoints(curveSegments) var vertices = shapePoints.shape var holes = shapePoints.holes var reverse = !ShapeUtils.isClockWise(vertices) if (reverse) { vertices = vertices.reverse() // Maybe we should also check if holes are in the opposite direction, just to be safe ... for (h = 0, hl = holes.length; h < hl; h++) { ahole = holes[h] if (ShapeUtils.isClockWise(ahole)) { holes[h] = ahole.reverse() } } } var faces = ShapeUtils.triangulateShape(vertices, holes) /* Vertices */ var contour = vertices // vertices has all points but contour has only points of circumference for (h = 0, hl = holes.length; h < hl; h++) { ahole = holes[h] vertices = vertices.concat(ahole) } function scalePt2(pt, vec, size) { if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist') return vec.clone().multiplyScalar(size).add(pt) } var b, bs, t, z, vert, vlen = vertices.length, face, flen = faces.length // Find directions for point movement function getBevelVec(inPt, inPrev, inNext) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. var v_trans_x, v_trans_y, shrink_by // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y var v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y // check for collinear edges var collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x if (Math.abs(collinear0) > Number.EPSILON) { // not collinear // length of vectors for normalizing var v_prev_len = Math.sqrt(v_prev_lensq) var v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y) // shift adjacent points by unit vectors to the left var ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len var ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len var ptNextShift_x = inNext.x - v_next_y / v_next_len var ptNextShift_y = inNext.y + v_next_x / v_next_len // scaling factor for v_prev to intersection point var sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x) // vector from inPt to intersection point v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes var v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y if (v_trans_lensq <= 2) { return new Vector2(v_trans_x, v_trans_y) } else { shrink_by = Math.sqrt(v_trans_lensq / 2) } } else { // handle special case of collinear edges var direction_eq = false // assumes: opposite if (v_prev_x > Number.EPSILON) { if (v_next_x > Number.EPSILON) { direction_eq = true } } else { if (v_prev_x < -Number.EPSILON) { if (v_next_x < -Number.EPSILON) { direction_eq = true } } else { if (Math.sign(v_prev_y) === Math.sign(v_next_y)) { direction_eq = true } } } if (direction_eq) { // console.log("Warning: lines are a straight sequence"); v_trans_x = -v_prev_y v_trans_y = v_prev_x shrink_by = Math.sqrt(v_prev_lensq) } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x v_trans_y = v_prev_y shrink_by = Math.sqrt(v_prev_lensq / 2) } } return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by) } var contourMovements = [] for (var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { if (j === il) j = 0 if (k === il) k = 0 // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]) } var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat() for (h = 0, hl = holes.length; h < hl; h++) { ahole = holes[h] oneHoleMovements = [] for (i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) { if (j === il) j = 0 if (k === il) k = 0 // (j)---(i)---(k) oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]) } holesMovements.push(oneHoleMovements) verticesMovements = verticesMovements.concat(oneHoleMovements) } // Loop bevelSegments, 1 for the front, 1 for the back for (b = 0; b < bevelSegments; b++) { //for ( b = bevelSegments; b > 0; b -- ) { t = b / bevelSegments z = bevelThickness * Math.cos((t * Math.PI) / 2) bs = bevelSize * Math.sin((t * Math.PI) / 2) // contract shape for (i = 0, il = contour.length; i < il; i++) { vert = scalePt2(contour[i], contourMovements[i], bs) v(vert.x, vert.y, -z) } // expand holes for (h = 0, hl = holes.length; h < hl; h++) { ahole = holes[h] oneHoleMovements = holesMovements[h] for (i = 0, il = ahole.length; i < il; i++) { vert = scalePt2(ahole[i], oneHoleMovements[i], bs) v(vert.x, vert.y, -z) } } } bs = bevelSize // Back facing vertices for (i = 0; i < vlen; i++) { vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i] if (!extrudeByPath) { v(vert.x, vert.y, 0) } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy(splineTube.normals[0]).multiplyScalar(vert.x) binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y) position2.copy(extrudePts[0]).add(normal).add(binormal) v(position2.x, position2.y, position2.z) } } // Add stepped vertices... // Including front facing vertices var s for (s = 1; s <= steps; s++) { for (i = 0; i < vlen; i++) { vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i] if (!extrudeByPath) { v(vert.x, vert.y, (amount / steps) * s) } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy(splineTube.normals[s]).multiplyScalar(vert.x) binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y) position2.copy(extrudePts[s]).add(normal).add(binormal) v(position2.x, position2.y, position2.z) } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for (b = bevelSegments - 1; b >= 0; b--) { t = b / bevelSegments z = bevelThickness * Math.cos((t * Math.PI) / 2) bs = bevelSize * Math.sin((t * Math.PI) / 2) // contract shape for (i = 0, il = contour.length; i < il; i++) { vert = scalePt2(contour[i], contourMovements[i], bs) v(vert.x, vert.y, amount + z) } // expand holes for (h = 0, hl = holes.length; h < hl; h++) { ahole = holes[h] oneHoleMovements = holesMovements[h] for (i = 0, il = ahole.length; i < il; i++) { vert = scalePt2(ahole[i], oneHoleMovements[i], bs) if (!extrudeByPath) { v(vert.x, vert.y, amount + z) } else { v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z) } } } } /* Faces */ // Top and bottom faces buildLidFaces() // Sides faces buildSideFaces() ///// Internal functions function buildLidFaces() { var start = verticesArray.length / 3 if (bevelEnabled) { var layer = 0 // steps + 1 var offset = vlen * layer // Bottom faces for (i = 0; i < flen; i++) { face = faces[i] f3(face[2] + offset, face[1] + offset, face[0] + offset) } layer = steps + bevelSegments * 2 offset = vlen * layer // Top faces for (i = 0; i < flen; i++) { face = faces[i] f3(face[0] + offset, face[1] + offset, face[2] + offset) } } else { // Bottom faces for (i = 0; i < flen; i++) { face = faces[i] f3(face[2], face[1], face[0]) } // Top faces for (i = 0; i < flen; i++) { face = faces[i] f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps) } } scope.addGroup( start, verticesArray.length / 3 - start, options.material !== undefined ? options.material : 0 ) } // Create faces for the z-sides of the shape function buildSideFaces() { var start = verticesArray.length / 3 var layeroffset = 0 sidewalls(contour, layeroffset) layeroffset += contour.length for (h = 0, hl = holes.length; h < hl; h++) { ahole = holes[h] sidewalls(ahole, layeroffset) //, true layeroffset += ahole.length } scope.addGroup( start, verticesArray.length / 3 - start, options.extrudeMaterial !== undefined ? options.extrudeMaterial : 1 ) } function sidewalls(contour, layeroffset) { var j, k i = contour.length while (--i >= 0) { j = i k = i - 1 if (k < 0) k = contour.length - 1 //console.log('b', i,j, i-1, k,vertices.length); var s = 0, sl = steps + bevelSegments * 2 for (s = 0; s < sl; s++) { var slen1 = vlen * s var slen2 = vlen * (s + 1) var a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2 f4(a, b, c, d) } } } function v(x, y, z) { placeholder.push(x) placeholder.push(y) placeholder.push(z) } function f3(a, b, c) { addVertex(a) addVertex(b) addVertex(c) var nextIndex = verticesArray.length / 3 var uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 ) addUV(uvs[0]) addUV(uvs[1]) addUV(uvs[2]) } function f4(a, b, c, d) { addVertex(a) addVertex(b) addVertex(d) addVertex(b) addVertex(c) addVertex(d) var nextIndex = verticesArray.length / 3 var uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 ) addUV(uvs[0]) addUV(uvs[1]) addUV(uvs[3]) addUV(uvs[1]) addUV(uvs[2]) addUV(uvs[3]) } function addVertex(index) { indicesArray.push(verticesArray.length / 3) verticesArray.push(placeholder[index * 3 + 0]) verticesArray.push(placeholder[index * 3 + 1]) verticesArray.push(placeholder[index * 3 + 2]) } function addUV(vector2) { uvArray.push(vector2.x) uvArray.push(vector2.y) } if (!options.arrays) { this.setIndex(indicesArray) this.addAttribute('position', new Float32BufferAttribute(verticesArray, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvArray, 2)) } } ExtrudeGeometry.WorldUVGenerator = { generateTopUV: function (geometry, vertices, indexA, indexB, indexC) { var a_x = vertices[indexA * 3] var a_y = vertices[indexA * 3 + 1] var b_x = vertices[indexB * 3] var b_y = vertices[indexB * 3 + 1] var c_x = vertices[indexC * 3] var c_y = vertices[indexC * 3 + 1] return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)] }, generateSideWallUV: function (geometry, vertices, indexA, indexB, indexC, indexD) { var a_x = vertices[indexA * 3] var a_y = vertices[indexA * 3 + 1] var a_z = vertices[indexA * 3 + 2] var b_x = vertices[indexB * 3] var b_y = vertices[indexB * 3 + 1] var b_z = vertices[indexB * 3 + 2] var c_x = vertices[indexC * 3] var c_y = vertices[indexC * 3 + 1] var c_z = vertices[indexC * 3 + 2] var d_x = vertices[indexD * 3] var d_y = vertices[indexD * 3 + 1] var d_z = vertices[indexD * 3 + 2] if (Math.abs(a_y - b_y) < 0.01) { return [ new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z) ] } else { return [ new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z) ] } } } /** * @author zz85 / http://www.lab4games.net/zz85/blog * @author alteredq / http://alteredqualia.com/ * * Text = 3D Text * * parameters = { * font: , // font * * size: , // size of the text * height: , // thickness to extrude text * curveSegments: , // number of points on the curves * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into text bevel goes * bevelSize: // how far from text outline is bevel * } */ // TextGeometry function TextGeometry(text, parameters) { Geometry.call(this) this.type = 'TextGeometry' this.parameters = { text: text, parameters: parameters } this.fromBufferGeometry(new TextBufferGeometry(text, parameters)) this.mergeVertices() } TextGeometry.prototype = Object.create(Geometry.prototype) TextGeometry.prototype.constructor = TextGeometry // TextBufferGeometry function TextBufferGeometry(text, parameters) { parameters = parameters || {} var font = parameters.font if (!(font && font.isFont)) { console.error('THREE.TextGeometry: font parameter is not an instance of THREE.Font.') return new Geometry() } var shapes = font.generateShapes(text, parameters.size, parameters.curveSegments) // translate parameters to ExtrudeGeometry API parameters.amount = parameters.height !== undefined ? parameters.height : 50 // defaults if (parameters.bevelThickness === undefined) parameters.bevelThickness = 10 if (parameters.bevelSize === undefined) parameters.bevelSize = 8 if (parameters.bevelEnabled === undefined) parameters.bevelEnabled = false ExtrudeBufferGeometry.call(this, shapes, parameters) this.type = 'TextBufferGeometry' } TextBufferGeometry.prototype = Object.create(ExtrudeBufferGeometry.prototype) TextBufferGeometry.prototype.constructor = TextBufferGeometry /** * @author mrdoob / http://mrdoob.com/ * @author benaadams / https://twitter.com/ben_a_adams * @author Mugen87 / https://github.com/Mugen87 */ // SphereGeometry function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { Geometry.call(this) this.type = 'SphereGeometry' this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength } this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) ) this.mergeVertices() } SphereGeometry.prototype = Object.create(Geometry.prototype) SphereGeometry.prototype.constructor = SphereGeometry // SphereBufferGeometry function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) { BufferGeometry.call(this) this.type = 'SphereBufferGeometry' this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength } radius = radius || 1 widthSegments = Math.max(3, Math.floor(widthSegments) || 8) heightSegments = Math.max(2, Math.floor(heightSegments) || 6) phiStart = phiStart !== undefined ? phiStart : 0 phiLength = phiLength !== undefined ? phiLength : Math.PI * 2 thetaStart = thetaStart !== undefined ? thetaStart : 0 thetaLength = thetaLength !== undefined ? thetaLength : Math.PI var thetaEnd = thetaStart + thetaLength var ix, iy var index = 0 var grid = [] var vertex = new Vector3() var normal = new Vector3() // buffers var indices = [] var vertices = [] var normals = [] var uvs = [] // generate vertices, normals and uvs for (iy = 0; iy <= heightSegments; iy++) { var verticesRow = [] var v = iy / heightSegments for (ix = 0; ix <= widthSegments; ix++) { var u = ix / widthSegments // vertex vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength) vertex.y = radius * Math.cos(thetaStart + v * thetaLength) vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength) vertices.push(vertex.x, vertex.y, vertex.z) // normal normal.set(vertex.x, vertex.y, vertex.z).normalize() normals.push(normal.x, normal.y, normal.z) // uv uvs.push(u, 1 - v) verticesRow.push(index++) } grid.push(verticesRow) } // indices for (iy = 0; iy < heightSegments; iy++) { for (ix = 0; ix < widthSegments; ix++) { var a = grid[iy][ix + 1] var b = grid[iy][ix] var c = grid[iy + 1][ix] var d = grid[iy + 1][ix + 1] if (iy !== 0 || thetaStart > 0) indices.push(a, b, d) if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) } SphereBufferGeometry.prototype = Object.create(BufferGeometry.prototype) SphereBufferGeometry.prototype.constructor = SphereBufferGeometry /** * @author Kaleb Murphy * @author Mugen87 / https://github.com/Mugen87 */ // RingGeometry function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { Geometry.call(this) this.type = 'RingGeometry' this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength } this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) ) this.mergeVertices() } RingGeometry.prototype = Object.create(Geometry.prototype) RingGeometry.prototype.constructor = RingGeometry // RingBufferGeometry function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) { BufferGeometry.call(this) this.type = 'RingBufferGeometry' this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength } innerRadius = innerRadius || 0.5 outerRadius = outerRadius || 1 thetaStart = thetaStart !== undefined ? thetaStart : 0 thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2 thetaSegments = thetaSegments !== undefined ? Math.max(3, thetaSegments) : 8 phiSegments = phiSegments !== undefined ? Math.max(1, phiSegments) : 1 // buffers var indices = [] var vertices = [] var normals = [] var uvs = [] // some helper variables var segment var radius = innerRadius var radiusStep = (outerRadius - innerRadius) / phiSegments var vertex = new Vector3() var uv = new Vector2() var j, i // generate vertices, normals and uvs for (j = 0; j <= phiSegments; j++) { for (i = 0; i <= thetaSegments; i++) { // values are generate from the inside of the ring to the outside segment = thetaStart + (i / thetaSegments) * thetaLength // vertex vertex.x = radius * Math.cos(segment) vertex.y = radius * Math.sin(segment) vertices.push(vertex.x, vertex.y, vertex.z) // normal normals.push(0, 0, 1) // uv uv.x = (vertex.x / outerRadius + 1) / 2 uv.y = (vertex.y / outerRadius + 1) / 2 uvs.push(uv.x, uv.y) } // increase the radius for next row of vertices radius += radiusStep } // indices for (j = 0; j < phiSegments; j++) { var thetaSegmentLevel = j * (thetaSegments + 1) for (i = 0; i < thetaSegments; i++) { segment = i + thetaSegmentLevel var a = segment var b = segment + thetaSegments + 1 var c = segment + thetaSegments + 2 var d = segment + 1 // faces indices.push(a, b, d) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) } RingBufferGeometry.prototype = Object.create(BufferGeometry.prototype) RingBufferGeometry.prototype.constructor = RingBufferGeometry /** * @author astrodud / http://astrodud.isgreat.org/ * @author zz85 / https://github.com/zz85 * @author bhouston / http://clara.io * @author Mugen87 / https://github.com/Mugen87 */ // LatheGeometry function LatheGeometry(points, segments, phiStart, phiLength) { Geometry.call(this) this.type = 'LatheGeometry' this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength } this.fromBufferGeometry(new LatheBufferGeometry(points, segments, phiStart, phiLength)) this.mergeVertices() } LatheGeometry.prototype = Object.create(Geometry.prototype) LatheGeometry.prototype.constructor = LatheGeometry // LatheBufferGeometry function LatheBufferGeometry(points, segments, phiStart, phiLength) { BufferGeometry.call(this) this.type = 'LatheBufferGeometry' this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength } segments = Math.floor(segments) || 12 phiStart = phiStart || 0 phiLength = phiLength || Math.PI * 2 // clamp phiLength so it's in range of [ 0, 2PI ] phiLength = _Math.clamp(phiLength, 0, Math.PI * 2) // buffers var indices = [] var vertices = [] var uvs = [] // helper variables var base var inverseSegments = 1.0 / segments var vertex = new Vector3() var uv = new Vector2() var i, j // generate vertices and uvs for (i = 0; i <= segments; i++) { var phi = phiStart + i * inverseSegments * phiLength var sin = Math.sin(phi) var cos = Math.cos(phi) for (j = 0; j <= points.length - 1; j++) { // vertex vertex.x = points[j].x * sin vertex.y = points[j].y vertex.z = points[j].x * cos vertices.push(vertex.x, vertex.y, vertex.z) // uv uv.x = i / segments uv.y = j / (points.length - 1) uvs.push(uv.x, uv.y) } } // indices for (i = 0; i < segments; i++) { for (j = 0; j < points.length - 1; j++) { base = j + i * points.length var a = base var b = base + points.length var c = base + points.length + 1 var d = base + 1 // faces indices.push(a, b, d) indices.push(b, c, d) } } // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) // generate normals this.computeVertexNormals() // if the geometry is closed, we need to average the normals along the seam. // because the corresponding vertices are identical (but still have different UVs). if (phiLength === Math.PI * 2) { var normals = this.attributes.normal.array var n1 = new Vector3() var n2 = new Vector3() var n = new Vector3() // this is the buffer offset for the last line of vertices base = segments * points.length * 3 for (i = 0, j = 0; i < points.length; i++, j += 3) { // select the normal of the vertex in the first line n1.x = normals[j + 0] n1.y = normals[j + 1] n1.z = normals[j + 2] // select the normal of the vertex in the last line n2.x = normals[base + j + 0] n2.y = normals[base + j + 1] n2.z = normals[base + j + 2] // average normals n.addVectors(n1, n2).normalize() // assign the new values to both normals normals[j + 0] = normals[base + j + 0] = n.x normals[j + 1] = normals[base + j + 1] = n.y normals[j + 2] = normals[base + j + 2] = n.z } } } LatheBufferGeometry.prototype = Object.create(BufferGeometry.prototype) LatheBufferGeometry.prototype.constructor = LatheBufferGeometry /** * @author jonobr1 / http://jonobr1.com * @author Mugen87 / https://github.com/Mugen87 */ // ShapeGeometry function ShapeGeometry(shapes, curveSegments) { Geometry.call(this) this.type = 'ShapeGeometry' if (typeof curveSegments === 'object') { console.warn('THREE.ShapeGeometry: Options parameter has been removed.') curveSegments = curveSegments.curveSegments } this.parameters = { shapes: shapes, curveSegments: curveSegments } this.fromBufferGeometry(new ShapeBufferGeometry(shapes, curveSegments)) this.mergeVertices() } ShapeGeometry.prototype = Object.create(Geometry.prototype) ShapeGeometry.prototype.constructor = ShapeGeometry ShapeGeometry.prototype.toJSON = function () { var data = Geometry.prototype.toJSON.call(this) var shapes = this.parameters.shapes return toJSON(shapes, data) } // ShapeBufferGeometry function ShapeBufferGeometry(shapes, curveSegments) { BufferGeometry.call(this) this.type = 'ShapeBufferGeometry' this.parameters = { shapes: shapes, curveSegments: curveSegments } curveSegments = curveSegments || 12 // buffers var indices = [] var vertices = [] var normals = [] var uvs = [] // helper variables var groupStart = 0 var groupCount = 0 // allow single and array values for "shapes" parameter if (Array.isArray(shapes) === false) { addShape(shapes) } else { for (var i = 0; i < shapes.length; i++) { addShape(shapes[i]) this.addGroup(groupStart, groupCount, i) // enables MultiMaterial support groupStart += groupCount groupCount = 0 } } // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) // helper functions function addShape(shape) { var i, l, shapeHole var indexOffset = vertices.length / 3 var points = shape.extractPoints(curveSegments) var shapeVertices = points.shape var shapeHoles = points.holes // check direction of vertices if (ShapeUtils.isClockWise(shapeVertices) === false) { shapeVertices = shapeVertices.reverse() // also check if holes are in the opposite direction for (i = 0, l = shapeHoles.length; i < l; i++) { shapeHole = shapeHoles[i] if (ShapeUtils.isClockWise(shapeHole) === true) { shapeHoles[i] = shapeHole.reverse() } } } var faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles) // join vertices of inner and outer paths to a single array for (i = 0, l = shapeHoles.length; i < l; i++) { shapeHole = shapeHoles[i] shapeVertices = shapeVertices.concat(shapeHole) } // vertices, normals, uvs for (i = 0, l = shapeVertices.length; i < l; i++) { var vertex = shapeVertices[i] vertices.push(vertex.x, vertex.y, 0) normals.push(0, 0, 1) uvs.push(vertex.x, vertex.y) // world uvs } // incides for (i = 0, l = faces.length; i < l; i++) { var face = faces[i] var a = face[0] + indexOffset var b = face[1] + indexOffset var c = face[2] + indexOffset indices.push(a, b, c) groupCount += 3 } } } ShapeBufferGeometry.prototype = Object.create(BufferGeometry.prototype) ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry ShapeBufferGeometry.prototype.toJSON = function () { var data = BufferGeometry.prototype.toJSON.call(this) var shapes = this.parameters.shapes return toJSON(shapes, data) } // function toJSON(shapes, data) { data.shapes = [] if (Array.isArray(shapes)) { for (var i = 0, l = shapes.length; i < l; i++) { var shape = shapes[i] data.shapes.push(shape.uuid) } } else { data.shapes.push(shapes.uuid) } return data } /** * @author WestLangley / http://github.com/WestLangley * @author Mugen87 / https://github.com/Mugen87 */ function EdgesGeometry(geometry, thresholdAngle) { BufferGeometry.call(this) this.type = 'EdgesGeometry' this.parameters = { thresholdAngle: thresholdAngle } thresholdAngle = thresholdAngle !== undefined ? thresholdAngle : 1 // buffer var vertices = [] // helper variables var thresholdDot = Math.cos(_Math.DEG2RAD * thresholdAngle) var edge = [0, 0], edges = {}, edge1, edge2 var key, keys = ['a', 'b', 'c'] // prepare source geometry var geometry2 if (geometry.isBufferGeometry) { geometry2 = new Geometry() geometry2.fromBufferGeometry(geometry) } else { geometry2 = geometry.clone() } geometry2.mergeVertices() geometry2.computeFaceNormals() var sourceVertices = geometry2.vertices var faces = geometry2.faces // now create a data structure where each entry represents an edge with its adjoining faces for (var i = 0, l = faces.length; i < l; i++) { var face = faces[i] for (var j = 0; j < 3; j++) { edge1 = face[keys[j]] edge2 = face[keys[(j + 1) % 3]] edge[0] = Math.min(edge1, edge2) edge[1] = Math.max(edge1, edge2) key = edge[0] + ',' + edge[1] if (edges[key] === undefined) { edges[key] = { index1: edge[0], index2: edge[1], face1: i, face2: undefined } } else { edges[key].face2 = i } } } // generate vertices for (key in edges) { var e = edges[key] // an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree. if ( e.face2 === undefined || faces[e.face1].normal.dot(faces[e.face2].normal) <= thresholdDot ) { var vertex = sourceVertices[e.index1] vertices.push(vertex.x, vertex.y, vertex.z) vertex = sourceVertices[e.index2] vertices.push(vertex.x, vertex.y, vertex.z) } } // build geometry this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) } EdgesGeometry.prototype = Object.create(BufferGeometry.prototype) EdgesGeometry.prototype.constructor = EdgesGeometry /** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ // CylinderGeometry function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { Geometry.call(this) this.type = 'CylinderGeometry' this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength } this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) ) this.mergeVertices() } CylinderGeometry.prototype = Object.create(Geometry.prototype) CylinderGeometry.prototype.constructor = CylinderGeometry // CylinderBufferGeometry function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { BufferGeometry.call(this) this.type = 'CylinderBufferGeometry' this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength } var scope = this radiusTop = radiusTop !== undefined ? radiusTop : 1 radiusBottom = radiusBottom !== undefined ? radiusBottom : 1 height = height || 1 radialSegments = Math.floor(radialSegments) || 8 heightSegments = Math.floor(heightSegments) || 1 openEnded = openEnded !== undefined ? openEnded : false thetaStart = thetaStart !== undefined ? thetaStart : 0.0 thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2 // buffers var indices = [] var vertices = [] var normals = [] var uvs = [] // helper variables var index = 0 var indexArray = [] var halfHeight = height / 2 var groupStart = 0 // generate geometry generateTorso() if (openEnded === false) { if (radiusTop > 0) generateCap(true) if (radiusBottom > 0) generateCap(false) } // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) function generateTorso() { var x, y var normal = new Vector3() var vertex = new Vector3() var groupCount = 0 // this will be used to calculate the normal var slope = (radiusBottom - radiusTop) / height // generate vertices, normals and uvs for (y = 0; y <= heightSegments; y++) { var indexRow = [] var v = y / heightSegments // calculate the radius of the current row var radius = v * (radiusBottom - radiusTop) + radiusTop for (x = 0; x <= radialSegments; x++) { var u = x / radialSegments var theta = u * thetaLength + thetaStart var sinTheta = Math.sin(theta) var cosTheta = Math.cos(theta) // vertex vertex.x = radius * sinTheta vertex.y = -v * height + halfHeight vertex.z = radius * cosTheta vertices.push(vertex.x, vertex.y, vertex.z) // normal normal.set(sinTheta, slope, cosTheta).normalize() normals.push(normal.x, normal.y, normal.z) // uv uvs.push(u, 1 - v) // save index of vertex in respective row indexRow.push(index++) } // now save vertices of the row in our index array indexArray.push(indexRow) } // generate indices for (x = 0; x < radialSegments; x++) { for (y = 0; y < heightSegments; y++) { // we use the index array to access the correct indices var a = indexArray[y][x] var b = indexArray[y + 1][x] var c = indexArray[y + 1][x + 1] var d = indexArray[y][x + 1] // faces indices.push(a, b, d) indices.push(b, c, d) // update group counter groupCount += 6 } } // add a group to the geometry. this will ensure multi material support scope.addGroup(groupStart, groupCount, 0) // calculate new start value for groups groupStart += groupCount } function generateCap(top) { var x, centerIndexStart, centerIndexEnd var uv = new Vector2() var vertex = new Vector3() var groupCount = 0 var radius = top === true ? radiusTop : radiusBottom var sign = top === true ? 1 : -1 // save the index of the first center vertex centerIndexStart = index // first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment for (x = 1; x <= radialSegments; x++) { // vertex vertices.push(0, halfHeight * sign, 0) // normal normals.push(0, sign, 0) // uv uvs.push(0.5, 0.5) // increase index index++ } // save the index of the last center vertex centerIndexEnd = index // now we generate the surrounding vertices, normals and uvs for (x = 0; x <= radialSegments; x++) { var u = x / radialSegments var theta = u * thetaLength + thetaStart var cosTheta = Math.cos(theta) var sinTheta = Math.sin(theta) // vertex vertex.x = radius * sinTheta vertex.y = halfHeight * sign vertex.z = radius * cosTheta vertices.push(vertex.x, vertex.y, vertex.z) // normal normals.push(0, sign, 0) // uv uv.x = cosTheta * 0.5 + 0.5 uv.y = sinTheta * 0.5 * sign + 0.5 uvs.push(uv.x, uv.y) // increase index index++ } // generate indices for (x = 0; x < radialSegments; x++) { var c = centerIndexStart + x var i = centerIndexEnd + x if (top === true) { // face top indices.push(i, i + 1, c) } else { // face bottom indices.push(i + 1, i, c) } groupCount += 3 } // add a group to the geometry. this will ensure multi material support scope.addGroup(groupStart, groupCount, top === true ? 1 : 2) // calculate new start value for groups groupStart += groupCount } } CylinderBufferGeometry.prototype = Object.create(BufferGeometry.prototype) CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry /** * @author abelnation / http://github.com/abelnation */ // ConeGeometry function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) this.type = 'ConeGeometry' this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength } } ConeGeometry.prototype = Object.create(CylinderGeometry.prototype) ConeGeometry.prototype.constructor = ConeGeometry // ConeBufferGeometry function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) this.type = 'ConeBufferGeometry' this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength } } ConeBufferGeometry.prototype = Object.create(CylinderBufferGeometry.prototype) ConeBufferGeometry.prototype.constructor = ConeBufferGeometry /** * @author benaadams / https://twitter.com/ben_a_adams * @author Mugen87 / https://github.com/Mugen87 * @author hughes */ // CircleGeometry function CircleGeometry(radius, segments, thetaStart, thetaLength) { Geometry.call(this) this.type = 'CircleGeometry' this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength } this.fromBufferGeometry(new CircleBufferGeometry(radius, segments, thetaStart, thetaLength)) this.mergeVertices() } CircleGeometry.prototype = Object.create(Geometry.prototype) CircleGeometry.prototype.constructor = CircleGeometry // CircleBufferGeometry function CircleBufferGeometry(radius, segments, thetaStart, thetaLength) { BufferGeometry.call(this) this.type = 'CircleBufferGeometry' this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength } radius = radius || 1 segments = segments !== undefined ? Math.max(3, segments) : 8 thetaStart = thetaStart !== undefined ? thetaStart : 0 thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2 // buffers var indices = [] var vertices = [] var normals = [] var uvs = [] // helper variables var i, s var vertex = new Vector3() var uv = new Vector2() // center point vertices.push(0, 0, 0) normals.push(0, 0, 1) uvs.push(0.5, 0.5) for (s = 0, i = 3; s <= segments; s++, i += 3) { var segment = thetaStart + (s / segments) * thetaLength // vertex vertex.x = radius * Math.cos(segment) vertex.y = radius * Math.sin(segment) vertices.push(vertex.x, vertex.y, vertex.z) // normal normals.push(0, 0, 1) // uvs uv.x = (vertices[i] / radius + 1) / 2 uv.y = (vertices[i + 1] / radius + 1) / 2 uvs.push(uv.x, uv.y) } // indices for (i = 1; i <= segments; i++) { indices.push(i, i + 1, 0) } // build geometry this.setIndex(indices) this.addAttribute('position', new Float32BufferAttribute(vertices, 3)) this.addAttribute('normal', new Float32BufferAttribute(normals, 3)) this.addAttribute('uv', new Float32BufferAttribute(uvs, 2)) } CircleBufferGeometry.prototype = Object.create(BufferGeometry.prototype) CircleBufferGeometry.prototype.constructor = CircleBufferGeometry var Geometries = Object.freeze({ WireframeGeometry: WireframeGeometry, ParametricGeometry: ParametricGeometry, ParametricBufferGeometry: ParametricBufferGeometry, TetrahedronGeometry: TetrahedronGeometry, TetrahedronBufferGeometry: TetrahedronBufferGeometry, OctahedronGeometry: OctahedronGeometry, OctahedronBufferGeometry: OctahedronBufferGeometry, IcosahedronGeometry: IcosahedronGeometry, IcosahedronBufferGeometry: IcosahedronBufferGeometry, DodecahedronGeometry: DodecahedronGeometry, DodecahedronBufferGeometry: DodecahedronBufferGeometry, PolyhedronGeometry: PolyhedronGeometry, PolyhedronBufferGeometry: PolyhedronBufferGeometry, TubeGeometry: TubeGeometry, TubeBufferGeometry: TubeBufferGeometry, TorusKnotGeometry: TorusKnotGeometry, TorusKnotBufferGeometry: TorusKnotBufferGeometry, TorusGeometry: TorusGeometry, TorusBufferGeometry: TorusBufferGeometry, TextGeometry: TextGeometry, TextBufferGeometry: TextBufferGeometry, SphereGeometry: SphereGeometry, SphereBufferGeometry: SphereBufferGeometry, RingGeometry: RingGeometry, RingBufferGeometry: RingBufferGeometry, PlaneGeometry: PlaneGeometry, PlaneBufferGeometry: PlaneBufferGeometry, LatheGeometry: LatheGeometry, LatheBufferGeometry: LatheBufferGeometry, ShapeGeometry: ShapeGeometry, ShapeBufferGeometry: ShapeBufferGeometry, ExtrudeGeometry: ExtrudeGeometry, ExtrudeBufferGeometry: ExtrudeBufferGeometry, EdgesGeometry: EdgesGeometry, ConeGeometry: ConeGeometry, ConeBufferGeometry: ConeBufferGeometry, CylinderGeometry: CylinderGeometry, CylinderBufferGeometry: CylinderBufferGeometry, CircleGeometry: CircleGeometry, CircleBufferGeometry: CircleBufferGeometry, BoxGeometry: BoxGeometry, BoxBufferGeometry: BoxBufferGeometry }) /** * @author mrdoob / http://mrdoob.com/ * * parameters = { * color: , * opacity: * } */ function ShadowMaterial(parameters) { Material.call(this) this.type = 'ShadowMaterial' this.color = new Color(0x000000) this.opacity = 1.0 this.lights = true this.transparent = true this.setValues(parameters) } ShadowMaterial.prototype = Object.create(Material.prototype) ShadowMaterial.prototype.constructor = ShadowMaterial ShadowMaterial.prototype.isShadowMaterial = true /** * @author mrdoob / http://mrdoob.com/ */ function RawShaderMaterial(parameters) { ShaderMaterial.call(this, parameters) this.type = 'RawShaderMaterial' } RawShaderMaterial.prototype = Object.create(ShaderMaterial.prototype) RawShaderMaterial.prototype.constructor = RawShaderMaterial RawShaderMaterial.prototype.isRawShaderMaterial = true /** * @author WestLangley / http://github.com/WestLangley * * parameters = { * color: , * roughness: , * metalness: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * roughnessMap: new THREE.Texture( ), * * metalnessMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ), * envMapIntensity: * * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshStandardMaterial(parameters) { Material.call(this) this.defines = { STANDARD: '' } this.type = 'MeshStandardMaterial' this.color = new Color(0xffffff) // diffuse this.roughness = 0.5 this.metalness = 0.5 this.map = null this.lightMap = null this.lightMapIntensity = 1.0 this.aoMap = null this.aoMapIntensity = 1.0 this.emissive = new Color(0x000000) this.emissiveIntensity = 1.0 this.emissiveMap = null this.bumpMap = null this.bumpScale = 1 this.normalMap = null this.normalScale = new Vector2(1, 1) this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.roughnessMap = null this.metalnessMap = null this.alphaMap = null this.envMap = null this.envMapIntensity = 1.0 this.refractionRatio = 0.98 this.wireframe = false this.wireframeLinewidth = 1 this.wireframeLinecap = 'round' this.wireframeLinejoin = 'round' this.skinning = false this.morphTargets = false this.morphNormals = false this.setValues(parameters) } MeshStandardMaterial.prototype = Object.create(Material.prototype) MeshStandardMaterial.prototype.constructor = MeshStandardMaterial MeshStandardMaterial.prototype.isMeshStandardMaterial = true MeshStandardMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.defines = { STANDARD: '' } this.color.copy(source.color) this.roughness = source.roughness this.metalness = source.metalness this.map = source.map this.lightMap = source.lightMap this.lightMapIntensity = source.lightMapIntensity this.aoMap = source.aoMap this.aoMapIntensity = source.aoMapIntensity this.emissive.copy(source.emissive) this.emissiveMap = source.emissiveMap this.emissiveIntensity = source.emissiveIntensity this.bumpMap = source.bumpMap this.bumpScale = source.bumpScale this.normalMap = source.normalMap this.normalScale.copy(source.normalScale) this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias this.roughnessMap = source.roughnessMap this.metalnessMap = source.metalnessMap this.alphaMap = source.alphaMap this.envMap = source.envMap this.envMapIntensity = source.envMapIntensity this.refractionRatio = source.refractionRatio this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.wireframeLinecap = source.wireframeLinecap this.wireframeLinejoin = source.wireframeLinejoin this.skinning = source.skinning this.morphTargets = source.morphTargets this.morphNormals = source.morphNormals return this } /** * @author WestLangley / http://github.com/WestLangley * * parameters = { * reflectivity: * } */ function MeshPhysicalMaterial(parameters) { MeshStandardMaterial.call(this) this.defines = { PHYSICAL: '' } this.type = 'MeshPhysicalMaterial' this.reflectivity = 0.5 // maps to F0 = 0.04 this.clearCoat = 0.0 this.clearCoatRoughness = 0.0 this.setValues(parameters) } MeshPhysicalMaterial.prototype = Object.create(MeshStandardMaterial.prototype) MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true MeshPhysicalMaterial.prototype.copy = function (source) { MeshStandardMaterial.prototype.copy.call(this, source) this.defines = { PHYSICAL: '' } this.reflectivity = source.reflectivity this.clearCoat = source.clearCoat this.clearCoatRoughness = source.clearCoatRoughness return this } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * specular: , * shininess: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshPhongMaterial(parameters) { Material.call(this) this.type = 'MeshPhongMaterial' this.color = new Color(0xffffff) // diffuse this.specular = new Color(0x111111) this.shininess = 30 this.map = null this.lightMap = null this.lightMapIntensity = 1.0 this.aoMap = null this.aoMapIntensity = 1.0 this.emissive = new Color(0x000000) this.emissiveIntensity = 1.0 this.emissiveMap = null this.bumpMap = null this.bumpScale = 1 this.normalMap = null this.normalScale = new Vector2(1, 1) this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.specularMap = null this.alphaMap = null this.envMap = null this.combine = MultiplyOperation this.reflectivity = 1 this.refractionRatio = 0.98 this.wireframe = false this.wireframeLinewidth = 1 this.wireframeLinecap = 'round' this.wireframeLinejoin = 'round' this.skinning = false this.morphTargets = false this.morphNormals = false this.setValues(parameters) } MeshPhongMaterial.prototype = Object.create(Material.prototype) MeshPhongMaterial.prototype.constructor = MeshPhongMaterial MeshPhongMaterial.prototype.isMeshPhongMaterial = true MeshPhongMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.color.copy(source.color) this.specular.copy(source.specular) this.shininess = source.shininess this.map = source.map this.lightMap = source.lightMap this.lightMapIntensity = source.lightMapIntensity this.aoMap = source.aoMap this.aoMapIntensity = source.aoMapIntensity this.emissive.copy(source.emissive) this.emissiveMap = source.emissiveMap this.emissiveIntensity = source.emissiveIntensity this.bumpMap = source.bumpMap this.bumpScale = source.bumpScale this.normalMap = source.normalMap this.normalScale.copy(source.normalScale) this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias this.specularMap = source.specularMap this.alphaMap = source.alphaMap this.envMap = source.envMap this.combine = source.combine this.reflectivity = source.reflectivity this.refractionRatio = source.refractionRatio this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.wireframeLinecap = source.wireframeLinecap this.wireframeLinejoin = source.wireframeLinejoin this.skinning = source.skinning this.morphTargets = source.morphTargets this.morphNormals = source.morphNormals return this } /** * @author takahirox / http://github.com/takahirox * * parameters = { * gradientMap: new THREE.Texture( ) * } */ function MeshToonMaterial(parameters) { MeshPhongMaterial.call(this) this.defines = { TOON: '' } this.type = 'MeshToonMaterial' this.gradientMap = null this.setValues(parameters) } MeshToonMaterial.prototype = Object.create(MeshPhongMaterial.prototype) MeshToonMaterial.prototype.constructor = MeshToonMaterial MeshToonMaterial.prototype.isMeshToonMaterial = true MeshToonMaterial.prototype.copy = function (source) { MeshPhongMaterial.prototype.copy.call(this, source) this.gradientMap = source.gradientMap return this } /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley * * parameters = { * opacity: , * * bumpMap: new THREE.Texture( ), * bumpScale: , * * normalMap: new THREE.Texture( ), * normalScale: , * * displacementMap: new THREE.Texture( ), * displacementScale: , * displacementBias: , * * wireframe: , * wireframeLinewidth: * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshNormalMaterial(parameters) { Material.call(this) this.type = 'MeshNormalMaterial' this.bumpMap = null this.bumpScale = 1 this.normalMap = null this.normalScale = new Vector2(1, 1) this.displacementMap = null this.displacementScale = 1 this.displacementBias = 0 this.wireframe = false this.wireframeLinewidth = 1 this.fog = false this.lights = false this.skinning = false this.morphTargets = false this.morphNormals = false this.setValues(parameters) } MeshNormalMaterial.prototype = Object.create(Material.prototype) MeshNormalMaterial.prototype.constructor = MeshNormalMaterial MeshNormalMaterial.prototype.isMeshNormalMaterial = true MeshNormalMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.bumpMap = source.bumpMap this.bumpScale = source.bumpScale this.normalMap = source.normalMap this.normalScale.copy(source.normalScale) this.displacementMap = source.displacementMap this.displacementScale = source.displacementScale this.displacementBias = source.displacementBias this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.skinning = source.skinning this.morphTargets = source.morphTargets this.morphNormals = source.morphNormals return this } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * map: new THREE.Texture( ), * * lightMap: new THREE.Texture( ), * lightMapIntensity: * * aoMap: new THREE.Texture( ), * aoMapIntensity: * * emissive: , * emissiveIntensity: * emissiveMap: new THREE.Texture( ), * * specularMap: new THREE.Texture( ), * * alphaMap: new THREE.Texture( ), * * envMap: new THREE.TextureCube( [posx, negx, posy, negy, posz, negz] ), * combine: THREE.Multiply, * reflectivity: , * refractionRatio: , * * wireframe: , * wireframeLinewidth: , * * skinning: , * morphTargets: , * morphNormals: * } */ function MeshLambertMaterial(parameters) { Material.call(this) this.type = 'MeshLambertMaterial' this.color = new Color(0xffffff) // diffuse this.map = null this.lightMap = null this.lightMapIntensity = 1.0 this.aoMap = null this.aoMapIntensity = 1.0 this.emissive = new Color(0x000000) this.emissiveIntensity = 1.0 this.emissiveMap = null this.specularMap = null this.alphaMap = null this.envMap = null this.combine = MultiplyOperation this.reflectivity = 1 this.refractionRatio = 0.98 this.wireframe = false this.wireframeLinewidth = 1 this.wireframeLinecap = 'round' this.wireframeLinejoin = 'round' this.skinning = false this.morphTargets = false this.morphNormals = false this.setValues(parameters) } MeshLambertMaterial.prototype = Object.create(Material.prototype) MeshLambertMaterial.prototype.constructor = MeshLambertMaterial MeshLambertMaterial.prototype.isMeshLambertMaterial = true MeshLambertMaterial.prototype.copy = function (source) { Material.prototype.copy.call(this, source) this.color.copy(source.color) this.map = source.map this.lightMap = source.lightMap this.lightMapIntensity = source.lightMapIntensity this.aoMap = source.aoMap this.aoMapIntensity = source.aoMapIntensity this.emissive.copy(source.emissive) this.emissiveMap = source.emissiveMap this.emissiveIntensity = source.emissiveIntensity this.specularMap = source.specularMap this.alphaMap = source.alphaMap this.envMap = source.envMap this.combine = source.combine this.reflectivity = source.reflectivity this.refractionRatio = source.refractionRatio this.wireframe = source.wireframe this.wireframeLinewidth = source.wireframeLinewidth this.wireframeLinecap = source.wireframeLinecap this.wireframeLinejoin = source.wireframeLinejoin this.skinning = source.skinning this.morphTargets = source.morphTargets this.morphNormals = source.morphNormals return this } /** * @author alteredq / http://alteredqualia.com/ * * parameters = { * color: , * opacity: , * * linewidth: , * * scale: , * dashSize: , * gapSize: * } */ function LineDashedMaterial(parameters) { LineBasicMaterial.call(this) this.type = 'LineDashedMaterial' this.scale = 1 this.dashSize = 3 this.gapSize = 1 this.setValues(parameters) } LineDashedMaterial.prototype = Object.create(LineBasicMaterial.prototype) LineDashedMaterial.prototype.constructor = LineDashedMaterial LineDashedMaterial.prototype.isLineDashedMaterial = true LineDashedMaterial.prototype.copy = function (source) { LineBasicMaterial.prototype.copy.call(this, source) this.scale = source.scale this.dashSize = source.dashSize this.gapSize = source.gapSize return this } var Materials = Object.freeze({ ShadowMaterial: ShadowMaterial, SpriteMaterial: SpriteMaterial, RawShaderMaterial: RawShaderMaterial, ShaderMaterial: ShaderMaterial, PointsMaterial: PointsMaterial, MeshPhysicalMaterial: MeshPhysicalMaterial, MeshStandardMaterial: MeshStandardMaterial, MeshPhongMaterial: MeshPhongMaterial, MeshToonMaterial: MeshToonMaterial, MeshNormalMaterial: MeshNormalMaterial, MeshLambertMaterial: MeshLambertMaterial, MeshDepthMaterial: MeshDepthMaterial, MeshDistanceMaterial: MeshDistanceMaterial, MeshBasicMaterial: MeshBasicMaterial, LineDashedMaterial: LineDashedMaterial, LineBasicMaterial: LineBasicMaterial, Material: Material }) /** * @author mrdoob / http://mrdoob.com/ */ var Cache = { enabled: false, files: {}, add: function (key, file) { if (this.enabled === false) return // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[key] = file }, get: function (key) { if (this.enabled === false) return // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[key] }, remove: function (key) { delete this.files[key] }, clear: function () { this.files = {} } } /** * @author mrdoob / http://mrdoob.com/ */ function LoadingManager(onLoad, onProgress, onError) { var scope = this var isLoading = false var itemsLoaded = 0 var itemsTotal = 0 var urlModifier = undefined this.onStart = undefined this.onLoad = onLoad this.onProgress = onProgress this.onError = onError this.itemStart = function (url) { itemsTotal++ if (isLoading === false) { if (scope.onStart !== undefined) { scope.onStart(url, itemsLoaded, itemsTotal) } } isLoading = true } this.itemEnd = function (url) { itemsLoaded++ if (scope.onProgress !== undefined) { scope.onProgress(url, itemsLoaded, itemsTotal) } if (itemsLoaded === itemsTotal) { isLoading = false if (scope.onLoad !== undefined) { scope.onLoad() } } } this.itemError = function (url) { if (scope.onError !== undefined) { scope.onError(url) } } this.resolveURL = function (url) { if (urlModifier) { return urlModifier(url) } return url } this.setURLModifier = function (transform) { urlModifier = transform return this } } var DefaultLoadingManager = new LoadingManager() /** * @author mrdoob / http://mrdoob.com/ */ var loading = {} function FileLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager } Object.assign(FileLoader.prototype, { load: function (url, onLoad, onProgress, onError) { if (url === undefined) url = '' if (this.path !== undefined) url = this.path + url url = this.manager.resolveURL(url) var scope = this var cached = Cache.get(url) if (cached !== undefined) { scope.manager.itemStart(url) setTimeout(function () { if (onLoad) onLoad(cached) scope.manager.itemEnd(url) }, 0) return cached } // Check if request is duplicate if (loading[url] !== undefined) { loading[url].push({ onLoad: onLoad, onProgress: onProgress, onError: onError }) return } // Check for data: URI var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/ var dataUriRegexResult = url.match(dataUriRegex) // Safari can not handle Data URIs through XMLHttpRequest so process manually if (dataUriRegexResult) { var mimeType = dataUriRegexResult[1] var isBase64 = !!dataUriRegexResult[2] var data = dataUriRegexResult[3] data = window.decodeURIComponent(data) if (isBase64) data = window.atob(data) try { var response var responseType = (this.responseType || '').toLowerCase() switch (responseType) { case 'arraybuffer': case 'blob': var view = new Uint8Array(data.length) for (var i = 0; i < data.length; i++) { view[i] = data.charCodeAt(i) } if (responseType === 'blob') { response = new Blob([view.buffer], { type: mimeType }) } else { response = view.buffer } break case 'document': var parser = new DOMParser() response = parser.parseFromString(data, mimeType) break case 'json': response = JSON.parse(data) break default: // 'text' or other response = data break } // Wait for next browser tick like standard XMLHttpRequest event dispatching does window.setTimeout(function () { if (onLoad) onLoad(response) scope.manager.itemEnd(url) }, 0) } catch (error) { // Wait for next browser tick like standard XMLHttpRequest event dispatching does window.setTimeout(function () { if (onError) onError(error) scope.manager.itemEnd(url) scope.manager.itemError(url) }, 0) } } else { // Initialise array for duplicate requests loading[url] = [] loading[url].push({ onLoad: onLoad, onProgress: onProgress, onError: onError }) var request = new XMLHttpRequest() request.open('GET', url, true) request.addEventListener( 'load', function (event) { var response = this.response Cache.add(url, response) var callbacks = loading[url] delete loading[url] if (this.status === 200) { for (var i = 0, il = callbacks.length; i < il; i++) { var callback = callbacks[i] if (callback.onLoad) callback.onLoad(response) } scope.manager.itemEnd(url) } else if (this.status === 0) { // Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success. console.warn('THREE.FileLoader: HTTP Status 0 received.') for (var i = 0, il = callbacks.length; i < il; i++) { var callback = callbacks[i] if (callback.onLoad) callback.onLoad(response) } scope.manager.itemEnd(url) } else { for (var i = 0, il = callbacks.length; i < il; i++) { var callback = callbacks[i] if (callback.onError) callback.onError(event) } scope.manager.itemEnd(url) scope.manager.itemError(url) } }, false ) request.addEventListener( 'progress', function (event) { var callbacks = loading[url] for (var i = 0, il = callbacks.length; i < il; i++) { var callback = callbacks[i] if (callback.onProgress) callback.onProgress(event) } }, false ) request.addEventListener( 'error', function (event) { var callbacks = loading[url] delete loading[url] for (var i = 0, il = callbacks.length; i < il; i++) { var callback = callbacks[i] if (callback.onError) callback.onError(event) } scope.manager.itemEnd(url) scope.manager.itemError(url) }, false ) if (this.responseType !== undefined) request.responseType = this.responseType if (this.withCredentials !== undefined) request.withCredentials = this.withCredentials if (request.overrideMimeType) request.overrideMimeType(this.mimeType !== undefined ? this.mimeType : 'text/plain') for (var header in this.requestHeader) { request.setRequestHeader(header, this.requestHeader[header]) } request.send(null) } scope.manager.itemStart(url) return request }, setPath: function (value) { this.path = value return this }, setResponseType: function (value) { this.responseType = value return this }, setWithCredentials: function (value) { this.withCredentials = value return this }, setMimeType: function (value) { this.mimeType = value return this }, setRequestHeader: function (value) { this.requestHeader = value return this } }) /** * @author mrdoob / http://mrdoob.com/ * * Abstract Base class to block based textures loader (dds, pvr, ...) */ function CompressedTextureLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager // override in sub classes this._parser = null } Object.assign(CompressedTextureLoader.prototype, { load: function (url, onLoad, onProgress, onError) { var scope = this var images = [] var texture = new CompressedTexture() texture.image = images var loader = new FileLoader(this.manager) loader.setPath(this.path) loader.setResponseType('arraybuffer') function loadTexture(i) { loader.load( url[i], function (buffer) { var texDatas = scope._parser(buffer, true) images[i] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps } loaded += 1 if (loaded === 6) { if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter texture.format = texDatas.format texture.needsUpdate = true if (onLoad) onLoad(texture) } }, onProgress, onError ) } if (Array.isArray(url)) { var loaded = 0 for (var i = 0, il = url.length; i < il; ++i) { loadTexture(i) } } else { // compressed cubemap texture stored in a single DDS file loader.load( url, function (buffer) { var texDatas = scope._parser(buffer, true) if (texDatas.isCubemap) { var faces = texDatas.mipmaps.length / texDatas.mipmapCount for (var f = 0; f < faces; f++) { images[f] = { mipmaps: [] } for (var i = 0; i < texDatas.mipmapCount; i++) { images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]) images[f].format = texDatas.format images[f].width = texDatas.width images[f].height = texDatas.height } } } else { texture.image.width = texDatas.width texture.image.height = texDatas.height texture.mipmaps = texDatas.mipmaps } if (texDatas.mipmapCount === 1) { texture.minFilter = LinearFilter } texture.format = texDatas.format texture.needsUpdate = true if (onLoad) onLoad(texture) }, onProgress, onError ) } return texture }, setPath: function (value) { this.path = value return this } }) /** * @author Nikos M. / https://github.com/foo123/ * * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) */ function DataTextureLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager // override in sub classes this._parser = null } Object.assign(DataTextureLoader.prototype, { load: function (url, onLoad, onProgress, onError) { var scope = this var texture = new DataTexture() var loader = new FileLoader(this.manager) loader.setResponseType('arraybuffer') loader.load( url, function (buffer) { var texData = scope._parser(buffer) if (!texData) return if (undefined !== texData.image) { texture.image = texData.image } else if (undefined !== texData.data) { texture.image.width = texData.width texture.image.height = texData.height texture.image.data = texData.data } texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : ClampToEdgeWrapping texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : ClampToEdgeWrapping texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : LinearFilter texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : LinearMipMapLinearFilter texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1 if (undefined !== texData.format) { texture.format = texData.format } if (undefined !== texData.type) { texture.type = texData.type } if (undefined !== texData.mipmaps) { texture.mipmaps = texData.mipmaps } if (1 === texData.mipmapCount) { texture.minFilter = LinearFilter } texture.needsUpdate = true if (onLoad) onLoad(texture, texData) }, onProgress, onError ) return texture } }) /** * @author mrdoob / http://mrdoob.com/ */ function ImageLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager } Object.assign(ImageLoader.prototype, { crossOrigin: 'Anonymous', load: function (url, onLoad, onProgress, onError) { if (url === undefined) url = '' if (this.path !== undefined) url = this.path + url url = this.manager.resolveURL(url) var scope = this var cached = Cache.get(url) if (cached !== undefined) { scope.manager.itemStart(url) setTimeout(function () { if (onLoad) onLoad(cached) scope.manager.itemEnd(url) }, 0) return cached } var image = document.createElementNS('http://www.w3.org/1999/xhtml', 'img') image.addEventListener( 'load', function () { Cache.add(url, this) if (onLoad) onLoad(this) scope.manager.itemEnd(url) }, false ) /* image.addEventListener( 'progress', function ( event ) { if ( onProgress ) onProgress( event ); }, false ); */ image.addEventListener( 'error', function (event) { if (onError) onError(event) scope.manager.itemEnd(url) scope.manager.itemError(url) }, false ) if (url.substr(0, 5) !== 'data:') { if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin } scope.manager.itemStart(url) image.src = url return image }, setCrossOrigin: function (value) { this.crossOrigin = value return this }, setPath: function (value) { this.path = value return this } }) /** * @author mrdoob / http://mrdoob.com/ */ function CubeTextureLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager } Object.assign(CubeTextureLoader.prototype, { crossOrigin: 'Anonymous', load: function (urls, onLoad, onProgress, onError) { var texture = new CubeTexture() var loader = new ImageLoader(this.manager) loader.setCrossOrigin(this.crossOrigin) loader.setPath(this.path) var loaded = 0 function loadTexture(i) { loader.load( urls[i], function (image) { texture.images[i] = image loaded++ if (loaded === 6) { texture.needsUpdate = true if (onLoad) onLoad(texture) } }, undefined, onError ) } for (var i = 0; i < urls.length; ++i) { loadTexture(i) } return texture }, setCrossOrigin: function (value) { this.crossOrigin = value return this }, setPath: function (value) { this.path = value return this } }) /** * @author mrdoob / http://mrdoob.com/ */ function TextureLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager } Object.assign(TextureLoader.prototype, { crossOrigin: 'Anonymous', load: function (url, onLoad, onProgress, onError) { var texture = new Texture() var loader = new ImageLoader(this.manager) loader.setCrossOrigin(this.crossOrigin) loader.setPath(this.path) loader.load( url, function (image) { texture.image = image // JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB. var isJPEG = url.search(/\.(jpg|jpeg)$/) > 0 || url.search(/^data\:image\/jpeg/) === 0 texture.format = isJPEG ? RGBFormat : RGBAFormat texture.needsUpdate = true if (onLoad !== undefined) { onLoad(texture) } }, onProgress, onError ) return texture }, setCrossOrigin: function (value) { this.crossOrigin = value return this }, setPath: function (value) { this.path = value return this } }) /** * @author zz85 / http://www.lab4games.net/zz85/blog * Extensible curve object * * Some common of curve methods: * .getPoint( t, optionalTarget ), .getTangent( t ) * .getPointAt( u, optionalTarget ), .getTangentAt( u ) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/ /************************************************************** * Abstract Curve base class **************************************************************/ function Curve() { this.type = 'Curve' this.arcLengthDivisions = 200 } Object.assign(Curve.prototype, { // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint: function (/* t, optionalTarget */) { console.warn('THREE.Curve: .getPoint() not implemented.') return null }, // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt: function (u, optionalTarget) { var t = this.getUtoTmapping(u) return this.getPoint(t, optionalTarget) }, // Get sequence of points using getPoint( t ) getPoints: function (divisions) { if (divisions === undefined) divisions = 5 var points = [] for (var d = 0; d <= divisions; d++) { points.push(this.getPoint(d / divisions)) } return points }, // Get sequence of points using getPointAt( u ) getSpacedPoints: function (divisions) { if (divisions === undefined) divisions = 5 var points = [] for (var d = 0; d <= divisions; d++) { points.push(this.getPointAt(d / divisions)) } return points }, // Get total curve arc length getLength: function () { var lengths = this.getLengths() return lengths[lengths.length - 1] }, // Get list of cumulative segment lengths getLengths: function (divisions) { if (divisions === undefined) divisions = this.arcLengthDivisions if ( this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate ) { return this.cacheArcLengths } this.needsUpdate = false var cache = [] var current, last = this.getPoint(0) var p, sum = 0 cache.push(0) for (p = 1; p <= divisions; p++) { current = this.getPoint(p / divisions) sum += current.distanceTo(last) cache.push(sum) last = current } this.cacheArcLengths = cache return cache // { sums: cache, sum: sum }; Sum is in the last element. }, updateArcLengths: function () { this.needsUpdate = true this.getLengths() }, // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping: function (u, distance) { var arcLengths = this.getLengths() var i = 0, il = arcLengths.length var targetArcLength // The targeted u distance value to get if (distance) { targetArcLength = distance } else { targetArcLength = u * arcLengths[il - 1] } // binary search for the index with largest value smaller than target u distance var low = 0, high = il - 1, comparison while (low <= high) { i = Math.floor(low + (high - low) / 2) // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[i] - targetArcLength if (comparison < 0) { low = i + 1 } else if (comparison > 0) { high = i - 1 } else { high = i break // DONE } } i = high if (arcLengths[i] === targetArcLength) { return i / (il - 1) } // we could get finer grain at lengths, or use simple interpolation between two points var lengthBefore = arcLengths[i] var lengthAfter = arcLengths[i + 1] var segmentLength = lengthAfter - lengthBefore // determine where we are between the 'before' and 'after' points var segmentFraction = (targetArcLength - lengthBefore) / segmentLength // add that fractional amount to t var t = (i + segmentFraction) / (il - 1) return t }, // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent: function (t) { var delta = 0.0001 var t1 = t - delta var t2 = t + delta // Capping in case of danger if (t1 < 0) t1 = 0 if (t2 > 1) t2 = 1 var pt1 = this.getPoint(t1) var pt2 = this.getPoint(t2) var vec = pt2.clone().sub(pt1) return vec.normalize() }, getTangentAt: function (u) { var t = this.getUtoTmapping(u) return this.getTangent(t) }, computeFrenetFrames: function (segments, closed) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf var normal = new Vector3() var tangents = [] var normals = [] var binormals = [] var vec = new Vector3() var mat = new Matrix4() var i, u, theta // compute the tangent vectors for each segment on the curve for (i = 0; i <= segments; i++) { u = i / segments tangents[i] = this.getTangentAt(u) tangents[i].normalize() } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[0] = new Vector3() binormals[0] = new Vector3() var min = Number.MAX_VALUE var tx = Math.abs(tangents[0].x) var ty = Math.abs(tangents[0].y) var tz = Math.abs(tangents[0].z) if (tx <= min) { min = tx normal.set(1, 0, 0) } if (ty <= min) { min = ty normal.set(0, 1, 0) } if (tz <= min) { normal.set(0, 0, 1) } vec.crossVectors(tangents[0], normal).normalize() normals[0].crossVectors(tangents[0], vec) binormals[0].crossVectors(tangents[0], normals[0]) // compute the slowly-varying normal and binormal vectors for each segment on the curve for (i = 1; i <= segments; i++) { normals[i] = normals[i - 1].clone() binormals[i] = binormals[i - 1].clone() vec.crossVectors(tangents[i - 1], tangents[i]) if (vec.length() > Number.EPSILON) { vec.normalize() theta = Math.acos(_Math.clamp(tangents[i - 1].dot(tangents[i]), -1, 1)) // clamp for floating pt errors normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta)) } binormals[i].crossVectors(tangents[i], normals[i]) } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if (closed === true) { theta = Math.acos(_Math.clamp(normals[0].dot(normals[segments]), -1, 1)) theta /= segments if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) { theta = -theta } for (i = 1; i <= segments; i++) { // twist a little... normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i)) binormals[i].crossVectors(tangents[i], normals[i]) } } return { tangents: tangents, normals: normals, binormals: binormals } }, clone: function () { return new this.constructor().copy(this) }, copy: function (source) { this.arcLengthDivisions = source.arcLengthDivisions return this }, toJSON: function () { var data = { metadata: { version: 4.5, type: 'Curve', generator: 'Curve.toJSON' } } data.arcLengthDivisions = this.arcLengthDivisions data.type = this.type return data }, fromJSON: function (json) { this.arcLengthDivisions = json.arcLengthDivisions return this } }) function EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { Curve.call(this) this.type = 'EllipseCurve' this.aX = aX || 0 this.aY = aY || 0 this.xRadius = xRadius || 1 this.yRadius = yRadius || 1 this.aStartAngle = aStartAngle || 0 this.aEndAngle = aEndAngle || 2 * Math.PI this.aClockwise = aClockwise || false this.aRotation = aRotation || 0 } EllipseCurve.prototype = Object.create(Curve.prototype) EllipseCurve.prototype.constructor = EllipseCurve EllipseCurve.prototype.isEllipseCurve = true EllipseCurve.prototype.getPoint = function (t, optionalTarget) { var point = optionalTarget || new Vector2() var twoPi = Math.PI * 2 var deltaAngle = this.aEndAngle - this.aStartAngle var samePoints = Math.abs(deltaAngle) < Number.EPSILON // ensures that deltaAngle is 0 .. 2 PI while (deltaAngle < 0) deltaAngle += twoPi while (deltaAngle > twoPi) deltaAngle -= twoPi if (deltaAngle < Number.EPSILON) { if (samePoints) { deltaAngle = 0 } else { deltaAngle = twoPi } } if (this.aClockwise === true && !samePoints) { if (deltaAngle === twoPi) { deltaAngle = -twoPi } else { deltaAngle = deltaAngle - twoPi } } var angle = this.aStartAngle + t * deltaAngle var x = this.aX + this.xRadius * Math.cos(angle) var y = this.aY + this.yRadius * Math.sin(angle) if (this.aRotation !== 0) { var cos = Math.cos(this.aRotation) var sin = Math.sin(this.aRotation) var tx = x - this.aX var ty = y - this.aY // Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX y = tx * sin + ty * cos + this.aY } return point.set(x, y) } EllipseCurve.prototype.copy = function (source) { Curve.prototype.copy.call(this, source) this.aX = source.aX this.aY = source.aY this.xRadius = source.xRadius this.yRadius = source.yRadius this.aStartAngle = source.aStartAngle this.aEndAngle = source.aEndAngle this.aClockwise = source.aClockwise this.aRotation = source.aRotation return this } EllipseCurve.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call(this) data.aX = this.aX data.aY = this.aY data.xRadius = this.xRadius data.yRadius = this.yRadius data.aStartAngle = this.aStartAngle data.aEndAngle = this.aEndAngle data.aClockwise = this.aClockwise data.aRotation = this.aRotation return data } EllipseCurve.prototype.fromJSON = function (json) { Curve.prototype.fromJSON.call(this, json) this.aX = json.aX this.aY = json.aY this.xRadius = json.xRadius this.yRadius = json.yRadius this.aStartAngle = json.aStartAngle this.aEndAngle = json.aEndAngle this.aClockwise = json.aClockwise this.aRotation = json.aRotation return this } function ArcCurve(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { EllipseCurve.call(this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise) this.type = 'ArcCurve' } ArcCurve.prototype = Object.create(EllipseCurve.prototype) ArcCurve.prototype.constructor = ArcCurve ArcCurve.prototype.isArcCurve = true /** * @author zz85 https://github.com/zz85 * * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { var c0 = 0, c1 = 0, c2 = 0, c3 = 0 /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ function init(x0, x1, t0, t1) { c0 = x0 c1 = t0 c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1 c3 = 2 * x0 - 2 * x1 + t0 + t1 } return { initCatmullRom: function (x0, x1, x2, x3, tension) { init(x1, x2, tension * (x2 - x0), tension * (x3 - x1)) }, initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) { // compute tangents when parameterized in [t1,t2] var t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1 var t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2 // rescale tangents for parametrization in [0,1] t1 *= dt1 t2 *= dt1 init(x1, x2, t1, t2) }, calc: function (t) { var t2 = t * t var t3 = t2 * t return c0 + c1 * t + c2 * t2 + c3 * t3 } } } // var tmp = new Vector3() var px = new CubicPoly() var py = new CubicPoly() var pz = new CubicPoly() function CatmullRomCurve3(points, closed, curveType, tension) { Curve.call(this) this.type = 'CatmullRomCurve3' this.points = points || [] this.closed = closed || false this.curveType = curveType || 'centripetal' this.tension = tension || 0.5 } CatmullRomCurve3.prototype = Object.create(Curve.prototype) CatmullRomCurve3.prototype.constructor = CatmullRomCurve3 CatmullRomCurve3.prototype.isCatmullRomCurve3 = true CatmullRomCurve3.prototype.getPoint = function (t, optionalTarget) { var point = optionalTarget || new Vector3() var points = this.points var l = points.length var p = (l - (this.closed ? 0 : 1)) * t var intPoint = Math.floor(p) var weight = p - intPoint if (this.closed) { intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / points.length) + 1) * points.length } else if (weight === 0 && intPoint === l - 1) { intPoint = l - 2 weight = 1 } var p0, p1, p2, p3 // 4 points if (this.closed || intPoint > 0) { p0 = points[(intPoint - 1) % l] } else { // extrapolate first point tmp.subVectors(points[0], points[1]).add(points[0]) p0 = tmp } p1 = points[intPoint % l] p2 = points[(intPoint + 1) % l] if (this.closed || intPoint + 2 < l) { p3 = points[(intPoint + 2) % l] } else { // extrapolate last point tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]) p3 = tmp } if (this.curveType === 'centripetal' || this.curveType === 'chordal') { // init Centripetal / Chordal Catmull-Rom var pow = this.curveType === 'chordal' ? 0.5 : 0.25 var dt0 = Math.pow(p0.distanceToSquared(p1), pow) var dt1 = Math.pow(p1.distanceToSquared(p2), pow) var dt2 = Math.pow(p2.distanceToSquared(p3), pow) // safety check for repeated points if (dt1 < 1e-4) dt1 = 1.0 if (dt0 < 1e-4) dt0 = dt1 if (dt2 < 1e-4) dt2 = dt1 px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2) py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2) pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2) } else if (this.curveType === 'catmullrom') { px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension) py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension) pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension) } point.set(px.calc(weight), py.calc(weight), pz.calc(weight)) return point } CatmullRomCurve3.prototype.copy = function (source) { Curve.prototype.copy.call(this, source) this.points = [] for (var i = 0, l = source.points.length; i < l; i++) { var point = source.points[i] this.points.push(point.clone()) } this.closed = source.closed this.curveType = source.curveType this.tension = source.tension return this } CatmullRomCurve3.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call(this) data.points = [] for (var i = 0, l = this.points.length; i < l; i++) { var point = this.points[i] data.points.push(point.toArray()) } data.closed = this.closed data.curveType = this.curveType data.tension = this.tension return data } CatmullRomCurve3.prototype.fromJSON = function (json) { Curve.prototype.fromJSON.call(this, json) this.points = [] for (var i = 0, l = json.points.length; i < l; i++) { var point = json.points[i] this.points.push(new Vector3().fromArray(point)) } this.closed = json.closed this.curveType = json.curveType this.tension = json.tension return this } /** * @author zz85 / http://www.lab4games.net/zz85/blog * * Bezier Curves formulas obtained from * http://en.wikipedia.org/wiki/Bézier_curve */ function CatmullRom(t, p0, p1, p2, p3) { var v0 = (p2 - p0) * 0.5 var v1 = (p3 - p1) * 0.5 var t2 = t * t var t3 = t * t2 return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1 } // function QuadraticBezierP0(t, p) { var k = 1 - t return k * k * p } function QuadraticBezierP1(t, p) { return 2 * (1 - t) * t * p } function QuadraticBezierP2(t, p) { return t * t * p } function QuadraticBezier(t, p0, p1, p2) { return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2) } // function CubicBezierP0(t, p) { var k = 1 - t return k * k * k * p } function CubicBezierP1(t, p) { var k = 1 - t return 3 * k * k * t * p } function CubicBezierP2(t, p) { return 3 * (1 - t) * t * t * p } function CubicBezierP3(t, p) { return t * t * t * p } function CubicBezier(t, p0, p1, p2, p3) { return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3) } function CubicBezierCurve(v0, v1, v2, v3) { Curve.call(this) this.type = 'CubicBezierCurve' this.v0 = v0 || new Vector2() this.v1 = v1 || new Vector2() this.v2 = v2 || new Vector2() this.v3 = v3 || new Vector2() } CubicBezierCurve.prototype = Object.create(Curve.prototype) CubicBezierCurve.prototype.constructor = CubicBezierCurve CubicBezierCurve.prototype.isCubicBezierCurve = true CubicBezierCurve.prototype.getPoint = function (t, optionalTarget) { var point = optionalTarget || new Vector2() var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3 point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y)) return point } CubicBezierCurve.prototype.copy = function (source) { Curve.prototype.copy.call(this, source) this.v0.copy(source.v0) this.v1.copy(source.v1) this.v2.copy(source.v2) this.v3.copy(source.v3) return this } CubicBezierCurve.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call(this) data.v0 = this.v0.toArray() data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() data.v3 = this.v3.toArray() return data } CubicBezierCurve.prototype.fromJSON = function (json) { Curve.prototype.fromJSON.call(this, json) this.v0.fromArray(json.v0) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) this.v3.fromArray(json.v3) return this } function CubicBezierCurve3(v0, v1, v2, v3) { Curve.call(this) this.type = 'CubicBezierCurve3' this.v0 = v0 || new Vector3() this.v1 = v1 || new Vector3() this.v2 = v2 || new Vector3() this.v3 = v3 || new Vector3() } CubicBezierCurve3.prototype = Object.create(Curve.prototype) CubicBezierCurve3.prototype.constructor = CubicBezierCurve3 CubicBezierCurve3.prototype.isCubicBezierCurve3 = true CubicBezierCurve3.prototype.getPoint = function (t, optionalTarget) { var point = optionalTarget || new Vector3() var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3 point.set( CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z) ) return point } CubicBezierCurve3.prototype.copy = function (source) { Curve.prototype.copy.call(this, source) this.v0.copy(source.v0) this.v1.copy(source.v1) this.v2.copy(source.v2) this.v3.copy(source.v3) return this } CubicBezierCurve3.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call(this) data.v0 = this.v0.toArray() data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() data.v3 = this.v3.toArray() return data } CubicBezierCurve3.prototype.fromJSON = function (json) { Curve.prototype.fromJSON.call(this, json) this.v0.fromArray(json.v0) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) this.v3.fromArray(json.v3) return this } function LineCurve(v1, v2) { Curve.call(this) this.type = 'LineCurve' this.v1 = v1 || new Vector2() this.v2 = v2 || new Vector2() } LineCurve.prototype = Object.create(Curve.prototype) LineCurve.prototype.constructor = LineCurve LineCurve.prototype.isLineCurve = true LineCurve.prototype.getPoint = function (t, optionalTarget) { var point = optionalTarget || new Vector2() if (t === 1) { point.copy(this.v2) } else { point.copy(this.v2).sub(this.v1) point.multiplyScalar(t).add(this.v1) } return point } // Line curve is linear, so we can overwrite default getPointAt LineCurve.prototype.getPointAt = function (u, optionalTarget) { return this.getPoint(u, optionalTarget) } LineCurve.prototype.getTangent = function (/* t */) { var tangent = this.v2.clone().sub(this.v1) return tangent.normalize() } LineCurve.prototype.copy = function (source) { Curve.prototype.copy.call(this, source) this.v1.copy(source.v1) this.v2.copy(source.v2) return this } LineCurve.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call(this) data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() return data } LineCurve.prototype.fromJSON = function (json) { Curve.prototype.fromJSON.call(this, json) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) return this } function LineCurve3(v1, v2) { Curve.call(this) this.type = 'LineCurve3' this.v1 = v1 || new Vector3() this.v2 = v2 || new Vector3() } LineCurve3.prototype = Object.create(Curve.prototype) LineCurve3.prototype.constructor = LineCurve3 LineCurve3.prototype.isLineCurve3 = true LineCurve3.prototype.getPoint = function (t, optionalTarget) { var point = optionalTarget || new Vector3() if (t === 1) { point.copy(this.v2) } else { point.copy(this.v2).sub(this.v1) point.multiplyScalar(t).add(this.v1) } return point } // Line curve is linear, so we can overwrite default getPointAt LineCurve3.prototype.getPointAt = function (u, optionalTarget) { return this.getPoint(u, optionalTarget) } LineCurve3.prototype.copy = function (source) { Curve.prototype.copy.call(this, source) this.v1.copy(source.v1) this.v2.copy(source.v2) return this } LineCurve3.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call(this) data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() return data } LineCurve3.prototype.fromJSON = function (json) { Curve.prototype.fromJSON.call(this, json) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) return this } function QuadraticBezierCurve(v0, v1, v2) { Curve.call(this) this.type = 'QuadraticBezierCurve' this.v0 = v0 || new Vector2() this.v1 = v1 || new Vector2() this.v2 = v2 || new Vector2() } QuadraticBezierCurve.prototype = Object.create(Curve.prototype) QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true QuadraticBezierCurve.prototype.getPoint = function (t, optionalTarget) { var point = optionalTarget || new Vector2() var v0 = this.v0, v1 = this.v1, v2 = this.v2 point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y)) return point } QuadraticBezierCurve.prototype.copy = function (source) { Curve.prototype.copy.call(this, source) this.v0.copy(source.v0) this.v1.copy(source.v1) this.v2.copy(source.v2) return this } QuadraticBezierCurve.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call(this) data.v0 = this.v0.toArray() data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() return data } QuadraticBezierCurve.prototype.fromJSON = function (json) { Curve.prototype.fromJSON.call(this, json) this.v0.fromArray(json.v0) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) return this } function QuadraticBezierCurve3(v0, v1, v2) { Curve.call(this) this.type = 'QuadraticBezierCurve3' this.v0 = v0 || new Vector3() this.v1 = v1 || new Vector3() this.v2 = v2 || new Vector3() } QuadraticBezierCurve3.prototype = Object.create(Curve.prototype) QuadraticBezierCurve3.prototype.constructor = QuadraticBezierCurve3 QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true QuadraticBezierCurve3.prototype.getPoint = function (t, optionalTarget) { var point = optionalTarget || new Vector3() var v0 = this.v0, v1 = this.v1, v2 = this.v2 point.set( QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z) ) return point } QuadraticBezierCurve3.prototype.copy = function (source) { Curve.prototype.copy.call(this, source) this.v0.copy(source.v0) this.v1.copy(source.v1) this.v2.copy(source.v2) return this } QuadraticBezierCurve3.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call(this) data.v0 = this.v0.toArray() data.v1 = this.v1.toArray() data.v2 = this.v2.toArray() return data } QuadraticBezierCurve3.prototype.fromJSON = function (json) { Curve.prototype.fromJSON.call(this, json) this.v0.fromArray(json.v0) this.v1.fromArray(json.v1) this.v2.fromArray(json.v2) return this } function SplineCurve(points /* array of Vector2 */) { Curve.call(this) this.type = 'SplineCurve' this.points = points || [] } SplineCurve.prototype = Object.create(Curve.prototype) SplineCurve.prototype.constructor = SplineCurve SplineCurve.prototype.isSplineCurve = true SplineCurve.prototype.getPoint = function (t, optionalTarget) { var point = optionalTarget || new Vector2() var points = this.points var p = (points.length - 1) * t var intPoint = Math.floor(p) var weight = p - intPoint var p0 = points[intPoint === 0 ? intPoint : intPoint - 1] var p1 = points[intPoint] var p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1] var p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2] point.set( CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y) ) return point } SplineCurve.prototype.copy = function (source) { Curve.prototype.copy.call(this, source) this.points = [] for (var i = 0, l = source.points.length; i < l; i++) { var point = source.points[i] this.points.push(point.clone()) } return this } SplineCurve.prototype.toJSON = function () { var data = Curve.prototype.toJSON.call(this) data.points = [] for (var i = 0, l = this.points.length; i < l; i++) { var point = this.points[i] data.points.push(point.toArray()) } return data } SplineCurve.prototype.fromJSON = function (json) { Curve.prototype.fromJSON.call(this, json) this.points = [] for (var i = 0, l = json.points.length; i < l; i++) { var point = json.points[i] this.points.push(new Vector2().fromArray(point)) } return this } var Curves = Object.freeze({ ArcCurve: ArcCurve, CatmullRomCurve3: CatmullRomCurve3, CubicBezierCurve: CubicBezierCurve, CubicBezierCurve3: CubicBezierCurve3, EllipseCurve: EllipseCurve, LineCurve: LineCurve, LineCurve3: LineCurve3, QuadraticBezierCurve: QuadraticBezierCurve, QuadraticBezierCurve3: QuadraticBezierCurve3, SplineCurve: SplineCurve }) /** * @author zz85 / http://www.lab4games.net/zz85/blog * **/ /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ function CurvePath() { Curve.call(this) this.type = 'CurvePath' this.curves = [] this.autoClose = false // Automatically closes the path } CurvePath.prototype = Object.assign(Object.create(Curve.prototype), { constructor: CurvePath, add: function (curve) { this.curves.push(curve) }, closePath: function () { // Add a line curve if start and end of lines are not connected var startPoint = this.curves[0].getPoint(0) var endPoint = this.curves[this.curves.length - 1].getPoint(1) if (!startPoint.equals(endPoint)) { this.curves.push(new LineCurve(endPoint, startPoint)) } }, // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') getPoint: function (t) { var d = t * this.getLength() var curveLengths = this.getCurveLengths() var i = 0 // To think about boundaries points. while (i < curveLengths.length) { if (curveLengths[i] >= d) { var diff = curveLengths[i] - d var curve = this.curves[i] var segmentLength = curve.getLength() var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength return curve.getPointAt(u) } i++ } return null // loop where sum != 0, sum > d , sum+1 1 && !points[points.length - 1].equals(points[0])) { points.push(points[0]) } return points }, copy: function (source) { Curve.prototype.copy.call(this, source) this.curves = [] for (var i = 0, l = source.curves.length; i < l; i++) { var curve = source.curves[i] this.curves.push(curve.clone()) } this.autoClose = source.autoClose return this }, toJSON: function () { var data = Curve.prototype.toJSON.call(this) data.autoClose = this.autoClose data.curves = [] for (var i = 0, l = this.curves.length; i < l; i++) { var curve = this.curves[i] data.curves.push(curve.toJSON()) } return data }, fromJSON: function (json) { Curve.prototype.fromJSON.call(this, json) this.autoClose = json.autoClose this.curves = [] for (var i = 0, l = json.curves.length; i < l; i++) { var curve = json.curves[i] this.curves.push(new Curves[curve.type]().fromJSON(curve)) } return this } }) /** * @author zz85 / http://www.lab4games.net/zz85/blog * Creates free form 2d path using series of points, lines or curves. **/ function Path(points) { CurvePath.call(this) this.type = 'Path' this.currentPoint = new Vector2() if (points) { this.setFromPoints(points) } } Path.prototype = Object.assign(Object.create(CurvePath.prototype), { constructor: Path, setFromPoints: function (points) { this.moveTo(points[0].x, points[0].y) for (var i = 1, l = points.length; i < l; i++) { this.lineTo(points[i].x, points[i].y) } }, moveTo: function (x, y) { this.currentPoint.set(x, y) // TODO consider referencing vectors instead of copying? }, lineTo: function (x, y) { var curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y)) this.curves.push(curve) this.currentPoint.set(x, y) }, quadraticCurveTo: function (aCPx, aCPy, aX, aY) { var curve = new QuadraticBezierCurve( this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY) ) this.curves.push(curve) this.currentPoint.set(aX, aY) }, bezierCurveTo: function (aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { var curve = new CubicBezierCurve( this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY) ) this.curves.push(curve) this.currentPoint.set(aX, aY) }, splineThru: function (pts /*Array of Vector*/) { var npts = [this.currentPoint.clone()].concat(pts) var curve = new SplineCurve(npts) this.curves.push(curve) this.currentPoint.copy(pts[pts.length - 1]) }, arc: function (aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { var x0 = this.currentPoint.x var y0 = this.currentPoint.y this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise) }, absarc: function (aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) { this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise) }, ellipse: function (aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { var x0 = this.currentPoint.x var y0 = this.currentPoint.y this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) }, absellipse: function (aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) { var curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) if (this.curves.length > 0) { // if a previous curve is present, attempt to join var firstPoint = curve.getPoint(0) if (!firstPoint.equals(this.currentPoint)) { this.lineTo(firstPoint.x, firstPoint.y) } } this.curves.push(curve) var lastPoint = curve.getPoint(1) this.currentPoint.copy(lastPoint) }, copy: function (source) { CurvePath.prototype.copy.call(this, source) this.currentPoint.copy(source.currentPoint) return this }, toJSON: function () { var data = CurvePath.prototype.toJSON.call(this) data.currentPoint = this.currentPoint.toArray() return data }, fromJSON: function (json) { CurvePath.prototype.fromJSON.call(this, json) this.currentPoint.fromArray(json.currentPoint) return this } }) /** * @author zz85 / http://www.lab4games.net/zz85/blog * Defines a 2d shape plane using paths. **/ // STEP 1 Create a path. // STEP 2 Turn path into shape. // STEP 3 ExtrudeGeometry takes in Shape/Shapes // STEP 3a - Extract points from each shape, turn to vertices // STEP 3b - Triangulate each shape, add faces. function Shape(points) { Path.call(this, points) this.uuid = _Math.generateUUID() this.type = 'Shape' this.holes = [] } Shape.prototype = Object.assign(Object.create(Path.prototype), { constructor: Shape, getPointsHoles: function (divisions) { var holesPts = [] for (var i = 0, l = this.holes.length; i < l; i++) { holesPts[i] = this.holes[i].getPoints(divisions) } return holesPts }, // get points of shape and holes (keypoints based on segments parameter) extractPoints: function (divisions) { return { shape: this.getPoints(divisions), holes: this.getPointsHoles(divisions) } }, copy: function (source) { Path.prototype.copy.call(this, source) this.holes = [] for (var i = 0, l = source.holes.length; i < l; i++) { var hole = source.holes[i] this.holes.push(hole.clone()) } return this }, toJSON: function () { var data = Path.prototype.toJSON.call(this) data.uuid = this.uuid data.holes = [] for (var i = 0, l = this.holes.length; i < l; i++) { var hole = this.holes[i] data.holes.push(hole.toJSON()) } return data }, fromJSON: function (json) { Path.prototype.fromJSON.call(this, json) this.uuid = json.uuid this.holes = [] for (var i = 0, l = json.holes.length; i < l; i++) { var hole = json.holes[i] this.holes.push(new Path().fromJSON(hole)) } return this } }) /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function Light(color, intensity) { Object3D.call(this) this.type = 'Light' this.color = new Color(color) this.intensity = intensity !== undefined ? intensity : 1 this.receiveShadow = undefined } Light.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: Light, isLight: true, copy: function (source) { Object3D.prototype.copy.call(this, source) this.color.copy(source.color) this.intensity = source.intensity return this }, toJSON: function (meta) { var data = Object3D.prototype.toJSON.call(this, meta) data.object.color = this.color.getHex() data.object.intensity = this.intensity if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex() if (this.distance !== undefined) data.object.distance = this.distance if (this.angle !== undefined) data.object.angle = this.angle if (this.decay !== undefined) data.object.decay = this.decay if (this.penumbra !== undefined) data.object.penumbra = this.penumbra if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON() return data } }) /** * @author alteredq / http://alteredqualia.com/ */ function HemisphereLight(skyColor, groundColor, intensity) { Light.call(this, skyColor, intensity) this.type = 'HemisphereLight' this.castShadow = undefined this.position.copy(Object3D.DefaultUp) this.updateMatrix() this.groundColor = new Color(groundColor) } HemisphereLight.prototype = Object.assign(Object.create(Light.prototype), { constructor: HemisphereLight, isHemisphereLight: true, copy: function (source) { Light.prototype.copy.call(this, source) this.groundColor.copy(source.groundColor) return this } }) /** * @author mrdoob / http://mrdoob.com/ */ function LightShadow(camera) { this.camera = camera this.bias = 0 this.radius = 1 this.mapSize = new Vector2(512, 512) this.map = null this.matrix = new Matrix4() } Object.assign(LightShadow.prototype, { copy: function (source) { this.camera = source.camera.clone() this.bias = source.bias this.radius = source.radius this.mapSize.copy(source.mapSize) return this }, clone: function () { return new this.constructor().copy(this) }, toJSON: function () { var object = {} if (this.bias !== 0) object.bias = this.bias if (this.radius !== 1) object.radius = this.radius if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray() object.camera = this.camera.toJSON(false).object delete object.camera.matrix return object } }) /** * @author mrdoob / http://mrdoob.com/ */ function SpotLightShadow() { LightShadow.call(this, new PerspectiveCamera(50, 1, 0.5, 500)) } SpotLightShadow.prototype = Object.assign(Object.create(LightShadow.prototype), { constructor: SpotLightShadow, isSpotLightShadow: true, update: function (light) { var camera = this.camera var fov = _Math.RAD2DEG * 2 * light.angle var aspect = this.mapSize.width / this.mapSize.height var far = light.distance || camera.far if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) { camera.fov = fov camera.aspect = aspect camera.far = far camera.updateProjectionMatrix() } } }) /** * @author alteredq / http://alteredqualia.com/ */ function SpotLight(color, intensity, distance, angle, penumbra, decay) { Light.call(this, color, intensity) this.type = 'SpotLight' this.position.copy(Object3D.DefaultUp) this.updateMatrix() this.target = new Object3D() Object.defineProperty(this, 'power', { get: function () { // intensity = power per solid angle. // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf return this.intensity * Math.PI }, set: function (power) { // intensity = power per solid angle. // ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf this.intensity = power / Math.PI } }) this.distance = distance !== undefined ? distance : 0 this.angle = angle !== undefined ? angle : Math.PI / 3 this.penumbra = penumbra !== undefined ? penumbra : 0 this.decay = decay !== undefined ? decay : 1 // for physically correct lights, should be 2. this.shadow = new SpotLightShadow() } SpotLight.prototype = Object.assign(Object.create(Light.prototype), { constructor: SpotLight, isSpotLight: true, copy: function (source) { Light.prototype.copy.call(this, source) this.distance = source.distance this.angle = source.angle this.penumbra = source.penumbra this.decay = source.decay this.target = source.target.clone() this.shadow = source.shadow.clone() return this } }) /** * @author mrdoob / http://mrdoob.com/ */ function PointLight(color, intensity, distance, decay) { Light.call(this, color, intensity) this.type = 'PointLight' Object.defineProperty(this, 'power', { get: function () { // intensity = power per solid angle. // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf return this.intensity * 4 * Math.PI }, set: function (power) { // intensity = power per solid angle. // ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf this.intensity = power / (4 * Math.PI) } }) this.distance = distance !== undefined ? distance : 0 this.decay = decay !== undefined ? decay : 1 // for physically correct lights, should be 2. this.shadow = new LightShadow(new PerspectiveCamera(90, 1, 0.5, 500)) } PointLight.prototype = Object.assign(Object.create(Light.prototype), { constructor: PointLight, isPointLight: true, copy: function (source) { Light.prototype.copy.call(this, source) this.distance = source.distance this.decay = source.decay this.shadow = source.shadow.clone() return this } }) /** * @author mrdoob / http://mrdoob.com/ */ function DirectionalLightShadow() { LightShadow.call(this, new OrthographicCamera(-5, 5, 5, -5, 0.5, 500)) } DirectionalLightShadow.prototype = Object.assign(Object.create(LightShadow.prototype), { constructor: DirectionalLightShadow }) /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function DirectionalLight(color, intensity) { Light.call(this, color, intensity) this.type = 'DirectionalLight' this.position.copy(Object3D.DefaultUp) this.updateMatrix() this.target = new Object3D() this.shadow = new DirectionalLightShadow() } DirectionalLight.prototype = Object.assign(Object.create(Light.prototype), { constructor: DirectionalLight, isDirectionalLight: true, copy: function (source) { Light.prototype.copy.call(this, source) this.target = source.target.clone() this.shadow = source.shadow.clone() return this } }) /** * @author mrdoob / http://mrdoob.com/ */ function AmbientLight(color, intensity) { Light.call(this, color, intensity) this.type = 'AmbientLight' this.castShadow = undefined } AmbientLight.prototype = Object.assign(Object.create(Light.prototype), { constructor: AmbientLight, isAmbientLight: true }) /** * @author abelnation / http://github.com/abelnation */ function RectAreaLight(color, intensity, width, height) { Light.call(this, color, intensity) this.type = 'RectAreaLight' this.width = width !== undefined ? width : 10 this.height = height !== undefined ? height : 10 } RectAreaLight.prototype = Object.assign(Object.create(Light.prototype), { constructor: RectAreaLight, isRectAreaLight: true, copy: function (source) { Light.prototype.copy.call(this, source) this.width = source.width this.height = source.height return this }, toJSON: function (meta) { var data = Light.prototype.toJSON.call(this, meta) data.object.width = this.width data.object.height = this.height return data } }) /** * * A Track that interpolates Strings * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function StringKeyframeTrack(name, times, values, interpolation) { KeyframeTrack.call(this, name, times, values, interpolation) } StringKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), { constructor: StringKeyframeTrack, ValueTypeName: 'string', ValueBufferType: Array, DefaultInterpolation: InterpolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined }) /** * * A Track of Boolean keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function BooleanKeyframeTrack(name, times, values) { KeyframeTrack.call(this, name, times, values) } BooleanKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), { constructor: BooleanKeyframeTrack, ValueTypeName: 'bool', ValueBufferType: Array, DefaultInterpolation: InterpolateDiscrete, InterpolantFactoryMethodLinear: undefined, InterpolantFactoryMethodSmooth: undefined // Note: Actually this track could have a optimized / compressed // representation of a single value and a custom interpolant that // computes "firstValue ^ isOdd( index )". }) /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * * @author tschw */ function Interpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) { this.parameterPositions = parameterPositions this._cachedIndex = 0 this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize) this.sampleValues = sampleValues this.valueSize = sampleSize } Object.assign(Interpolant.prototype, { evaluate: function (t) { var pp = this.parameterPositions, i1 = this._cachedIndex, t1 = pp[i1], t0 = pp[i1 - 1] validate_interval: { seek: { var right linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if (!(t < t1)) { for (var giveUpAt = i1 + 2; ; ) { if (t1 === undefined) { if (t < t0) break forward_scan // after end i1 = pp.length this._cachedIndex = i1 return this.afterEnd_(i1 - 1, t, t0) } if (i1 === giveUpAt) break // this loop t0 = t1 t1 = pp[++i1] if (t < t1) { // we have arrived at the sought interval break seek } } // prepare binary search on the right side of the index right = pp.length break linear_scan } //- slower code: //- if ( t < t0 || t0 === undefined ) { if (!(t >= t0)) { // looping? var t1global = pp[1] if (t < t1global) { i1 = 2 // + 1, using the scan for the details t0 = t1global } // linear reverse scan for (var giveUpAt = i1 - 2; ; ) { if (t0 === undefined) { // before start this._cachedIndex = 0 return this.beforeStart_(0, t, t1) } if (i1 === giveUpAt) break // this loop t1 = t0 t0 = pp[--i1 - 1] if (t >= t0) { // we have arrived at the sought interval break seek } } // prepare binary search on the left side of the index right = i1 i1 = 0 break linear_scan } // the interval is valid break validate_interval } // linear scan // binary search while (i1 < right) { var mid = (i1 + right) >>> 1 if (t < pp[mid]) { right = mid } else { i1 = mid + 1 } } t1 = pp[i1] t0 = pp[i1 - 1] // check boundary cases, again if (t0 === undefined) { this._cachedIndex = 0 return this.beforeStart_(0, t, t1) } if (t1 === undefined) { i1 = pp.length this._cachedIndex = i1 return this.afterEnd_(i1 - 1, t0, t) } } // seek this._cachedIndex = i1 this.intervalChanged_(i1, t0, t1) } // validate_interval return this.interpolate_(i1, t0, t, t1) }, settings: null, // optional, subclass-specific settings structure // Note: The indirection allows central control of many interpolants. // --- Protected interface DefaultSettings_: {}, getSettings_: function () { return this.settings || this.DefaultSettings_ }, copySampleValue_: function (index) { // copies a sample value to the result buffer var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride for (var i = 0; i !== stride; ++i) { result[i] = values[offset + i] } return result }, // Template methods for derived classes: interpolate_: function (/* i1, t0, t, t1 */) { throw new Error('call to abstract method') // implementations shall return this.resultBuffer }, intervalChanged_: function (/* i1, t0, t1 */) { // empty } }) //!\ DECLARE ALIAS AFTER assign prototype ! Object.assign(Interpolant.prototype, { //( 0, t, t0 ), returns this.resultBuffer beforeStart_: Interpolant.prototype.copySampleValue_, //( N-1, tN-1, t ), returns this.resultBuffer afterEnd_: Interpolant.prototype.copySampleValue_ }) /** * Spherical linear unit quaternion interpolant. * * @author tschw */ function QuaternionLinearInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) { Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer) } QuaternionLinearInterpolant.prototype = Object.assign(Object.create(Interpolant.prototype), { constructor: QuaternionLinearInterpolant, interpolate_: function (i1, t0, t, t1) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = i1 * stride, alpha = (t - t0) / (t1 - t0) for (var end = offset + stride; offset !== end; offset += 4) { Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha) } return result } }) /** * * A Track of quaternion keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function QuaternionKeyframeTrack(name, times, values, interpolation) { KeyframeTrack.call(this, name, times, values, interpolation) } QuaternionKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), { constructor: QuaternionKeyframeTrack, ValueTypeName: 'quaternion', // ValueBufferType is inherited DefaultInterpolation: InterpolateLinear, InterpolantFactoryMethodLinear: function (result) { return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result) }, InterpolantFactoryMethodSmooth: undefined // not yet implemented }) /** * * A Track of keyframe values that represent color. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function ColorKeyframeTrack(name, times, values, interpolation) { KeyframeTrack.call(this, name, times, values, interpolation) } ColorKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), { constructor: ColorKeyframeTrack, ValueTypeName: 'color' // ValueBufferType is inherited // DefaultInterpolation is inherited // Note: Very basic implementation and nothing special yet. // However, this is the place for color space parameterization. }) /** * * A Track of numeric keyframe values. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function NumberKeyframeTrack(name, times, values, interpolation) { KeyframeTrack.call(this, name, times, values, interpolation) } NumberKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), { constructor: NumberKeyframeTrack, ValueTypeName: 'number' // ValueBufferType is inherited // DefaultInterpolation is inherited }) /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. * * @author tschw */ function CubicInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) { Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer) this._weightPrev = -0 this._offsetPrev = -0 this._weightNext = -0 this._offsetNext = -0 } CubicInterpolant.prototype = Object.assign(Object.create(Interpolant.prototype), { constructor: CubicInterpolant, DefaultSettings_: { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }, intervalChanged_: function (i1, t0, t1) { var pp = this.parameterPositions, iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[iPrev], tNext = pp[iNext] if (tPrev === undefined) { switch (this.getSettings_().endingStart) { case ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1 tPrev = 2 * t0 - t1 break case WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2 tPrev = t0 + pp[iPrev] - pp[iPrev + 1] break default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1 tPrev = t1 } } if (tNext === undefined) { switch (this.getSettings_().endingEnd) { case ZeroSlopeEnding: // f'(tN) = 0 iNext = i1 tNext = 2 * t1 - t0 break case WrapAroundEnding: // use the other end of the curve iNext = 1 tNext = t1 + pp[1] - pp[0] break default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1 tNext = t0 } } var halfDt = (t1 - t0) * 0.5, stride = this.valueSize this._weightPrev = halfDt / (t0 - tPrev) this._weightNext = halfDt / (tNext - t1) this._offsetPrev = iPrev * stride this._offsetNext = iNext * stride }, interpolate_: function (i1, t0, t, t1) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = (t - t0) / (t1 - t0), pp = p * p, ppp = pp * p // evaluate polynomials var sP = -wP * ppp + 2 * wP * pp - wP * p var s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1 var s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p var sN = wN * ppp - wN * pp // combine data linearly for (var i = 0; i !== stride; ++i) { result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i] } return result } }) /** * @author tschw */ function LinearInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) { Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer) } LinearInterpolant.prototype = Object.assign(Object.create(Interpolant.prototype), { constructor: LinearInterpolant, interpolate_: function (i1, t0, t, t1) { var result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = (t - t0) / (t1 - t0), weight0 = 1 - weight1 for (var i = 0; i !== stride; ++i) { result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1 } return result } }) /** * * Interpolant that evaluates to the sample value at the position preceeding * the parameter. * * @author tschw */ function DiscreteInterpolant(parameterPositions, sampleValues, sampleSize, resultBuffer) { Interpolant.call(this, parameterPositions, sampleValues, sampleSize, resultBuffer) } DiscreteInterpolant.prototype = Object.assign(Object.create(Interpolant.prototype), { constructor: DiscreteInterpolant, interpolate_: function (i1 /*, t0, t, t1 */) { return this.copySampleValue_(i1 - 1) } }) /** * @author tschw * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */ var AnimationUtils = { // same as Array.prototype.slice, but also works on typed arrays arraySlice: function (array, from, to) { if (AnimationUtils.isTypedArray(array)) { // in ios9 array.subarray(from, undefined) will return empty array // but array.subarray(from) or array.subarray(from, len) is correct return new array.constructor(array.subarray(from, to !== undefined ? to : array.length)) } return array.slice(from, to) }, // converts an array to a specific type convertArray: function (array, type, forceClone) { if ( !array || // let 'undefined' and 'null' pass (!forceClone && array.constructor === type) ) return array if (typeof type.BYTES_PER_ELEMENT === 'number') { return new type(array) // create typed array } return Array.prototype.slice.call(array) // create Array }, isTypedArray: function (object) { return ArrayBuffer.isView(object) && !(object instanceof DataView) }, // returns an array by which times and values can be sorted getKeyframeOrder: function (times) { function compareTime(i, j) { return times[i] - times[j] } var n = times.length var result = new Array(n) for (var i = 0; i !== n; ++i) result[i] = i result.sort(compareTime) return result }, // uses the array previously returned by 'getKeyframeOrder' to sort data sortedArray: function (values, stride, order) { var nValues = values.length var result = new values.constructor(nValues) for (var i = 0, dstOffset = 0; dstOffset !== nValues; ++i) { var srcOffset = order[i] * stride for (var j = 0; j !== stride; ++j) { result[dstOffset++] = values[srcOffset + j] } } return result }, // function for parsing AOS keyframe formats flattenJSON: function (jsonKeys, times, values, valuePropertyName) { var i = 1, key = jsonKeys[0] while (key !== undefined && key[valuePropertyName] === undefined) { key = jsonKeys[i++] } if (key === undefined) return // no data var value = key[valuePropertyName] if (value === undefined) return // no data if (Array.isArray(value)) { do { value = key[valuePropertyName] if (value !== undefined) { times.push(key.time) values.push.apply(values, value) // push all elements } key = jsonKeys[i++] } while (key !== undefined) } else if (value.toArray !== undefined) { // ...assume THREE.Math-ish do { value = key[valuePropertyName] if (value !== undefined) { times.push(key.time) value.toArray(values, values.length) } key = jsonKeys[i++] } while (key !== undefined) } else { // otherwise push as-is do { value = key[valuePropertyName] if (value !== undefined) { times.push(key.time) values.push(value) } key = jsonKeys[i++] } while (key !== undefined) } } } /** * * A timed sequence of keyframes for a specific property. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function KeyframeTrack(name, times, values, interpolation) { if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined') if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name) this.name = name this.times = AnimationUtils.convertArray(times, this.TimeBufferType) this.values = AnimationUtils.convertArray(values, this.ValueBufferType) this.setInterpolation(interpolation || this.DefaultInterpolation) this.validate() this.optimize() } // Static methods: Object.assign(KeyframeTrack, { // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): parse: function (json) { if (json.type === undefined) { throw new Error('THREE.KeyframeTrack: track type undefined, can not parse') } var trackType = KeyframeTrack._getTrackTypeForValueTypeName(json.type) if (json.times === undefined) { var times = [], values = [] AnimationUtils.flattenJSON(json.keys, times, values, 'value') json.times = times json.values = values } // derived classes can define a static parse method if (trackType.parse !== undefined) { return trackType.parse(json) } else { // by default, we assume a constructor compatible with the base return new trackType(json.name, json.times, json.values, json.interpolation) } }, toJSON: function (track) { var trackType = track.constructor var json // derived classes can define a static toJSON method if (trackType.toJSON !== undefined) { json = trackType.toJSON(track) } else { // by default, we assume the data can be serialized as-is json = { name: track.name, times: AnimationUtils.convertArray(track.times, Array), values: AnimationUtils.convertArray(track.values, Array) } var interpolation = track.getInterpolation() if (interpolation !== track.DefaultInterpolation) { json.interpolation = interpolation } } json.type = track.ValueTypeName // mandatory return json }, _getTrackTypeForValueTypeName: function (typeName) { switch (typeName.toLowerCase()) { case 'scalar': case 'double': case 'float': case 'number': case 'integer': return NumberKeyframeTrack case 'vector': case 'vector2': case 'vector3': case 'vector4': return VectorKeyframeTrack case 'color': return ColorKeyframeTrack case 'quaternion': return QuaternionKeyframeTrack case 'bool': case 'boolean': return BooleanKeyframeTrack case 'string': return StringKeyframeTrack } throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName) } }) Object.assign(KeyframeTrack.prototype, { constructor: KeyframeTrack, TimeBufferType: Float32Array, ValueBufferType: Float32Array, DefaultInterpolation: InterpolateLinear, InterpolantFactoryMethodDiscrete: function (result) { return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result) }, InterpolantFactoryMethodLinear: function (result) { return new LinearInterpolant(this.times, this.values, this.getValueSize(), result) }, InterpolantFactoryMethodSmooth: function (result) { return new CubicInterpolant(this.times, this.values, this.getValueSize(), result) }, setInterpolation: function (interpolation) { var factoryMethod switch (interpolation) { case InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete break case InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear break case InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth break } if (factoryMethod === undefined) { var message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name if (this.createInterpolant === undefined) { // fall back to default, unless the default itself is messed up if (interpolation !== this.DefaultInterpolation) { this.setInterpolation(this.DefaultInterpolation) } else { throw new Error(message) // fatal, in this case } } console.warn('THREE.KeyframeTrack:', message) return } this.createInterpolant = factoryMethod }, getInterpolation: function () { switch (this.createInterpolant) { case this.InterpolantFactoryMethodDiscrete: return InterpolateDiscrete case this.InterpolantFactoryMethodLinear: return InterpolateLinear case this.InterpolantFactoryMethodSmooth: return InterpolateSmooth } }, getValueSize: function () { return this.values.length / this.times.length }, // move all keyframes either forwards or backwards in time shift: function (timeOffset) { if (timeOffset !== 0.0) { var times = this.times for (var i = 0, n = times.length; i !== n; ++i) { times[i] += timeOffset } } return this }, // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale: function (timeScale) { if (timeScale !== 1.0) { var times = this.times for (var i = 0, n = times.length; i !== n; ++i) { times[i] *= timeScale } } return this }, // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim: function (startTime, endTime) { var times = this.times, nKeys = times.length, from = 0, to = nKeys - 1 while (from !== nKeys && times[from] < startTime) { ++from } while (to !== -1 && times[to] > endTime) { --to } ++to // inclusive -> exclusive bound if (from !== 0 || to !== nKeys) { // empty tracks are forbidden, so keep at least one keyframe if (from >= to) (to = Math.max(to, 1)), (from = to - 1) var stride = this.getValueSize() this.times = AnimationUtils.arraySlice(times, from, to) this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride) } return this }, // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate: function () { var valid = true var valueSize = this.getValueSize() if (valueSize - Math.floor(valueSize) !== 0) { console.error('THREE.KeyframeTrack: Invalid value size in track.', this) valid = false } var times = this.times, values = this.values, nKeys = times.length if (nKeys === 0) { console.error('THREE.KeyframeTrack: Track is empty.', this) valid = false } var prevTime = null for (var i = 0; i !== nKeys; i++) { var currTime = times[i] if (typeof currTime === 'number' && isNaN(currTime)) { console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime) valid = false break } if (prevTime !== null && prevTime > currTime) { console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime) valid = false break } prevTime = currTime } if (values !== undefined) { if (AnimationUtils.isTypedArray(values)) { for (var i = 0, n = values.length; i !== n; ++i) { var value = values[i] if (isNaN(value)) { console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value) valid = false break } } } } return valid }, // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize: function () { var times = this.times, values = this.values, stride = this.getValueSize(), smoothInterpolation = this.getInterpolation() === InterpolateSmooth, writeIndex = 1, lastIndex = times.length - 1 for (var i = 1; i < lastIndex; ++i) { var keep = false var time = times[i] var timeNext = times[i + 1] // remove adjacent keyframes scheduled at the same time if (time !== timeNext && (i !== 1 || time !== time[0])) { if (!smoothInterpolation) { // remove unnecessary keyframes same as their neighbors var offset = i * stride, offsetP = offset - stride, offsetN = offset + stride for (var j = 0; j !== stride; ++j) { var value = values[offset + j] if (value !== values[offsetP + j] || value !== values[offsetN + j]) { keep = true break } } } else { keep = true } } // in-place compaction if (keep) { if (i !== writeIndex) { times[writeIndex] = times[i] var readOffset = i * stride, writeOffset = writeIndex * stride for (var j = 0; j !== stride; ++j) { values[writeOffset + j] = values[readOffset + j] } } ++writeIndex } } // flush last keyframe (compaction looks ahead) if (lastIndex > 0) { times[writeIndex] = times[lastIndex] for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j ) { values[writeOffset + j] = values[readOffset + j] } ++writeIndex } if (writeIndex !== times.length) { this.times = AnimationUtils.arraySlice(times, 0, writeIndex) this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride) } return this } }) /** * * A Track of vectored keyframe values. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function VectorKeyframeTrack(name, times, values, interpolation) { KeyframeTrack.call(this, name, times, values, interpolation) } VectorKeyframeTrack.prototype = Object.assign(Object.create(KeyframeTrack.prototype), { constructor: VectorKeyframeTrack, ValueTypeName: 'vector' // ValueBufferType is inherited // DefaultInterpolation is inherited }) /** * * Reusable set of Tracks that represent an animation. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ */ function AnimationClip(name, duration, tracks) { this.name = name this.tracks = tracks this.duration = duration !== undefined ? duration : -1 this.uuid = _Math.generateUUID() // this means it should figure out its duration by scanning the tracks if (this.duration < 0) { this.resetDuration() } this.optimize() } Object.assign(AnimationClip, { parse: function (json) { var tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / (json.fps || 1.0) for (var i = 0, n = jsonTracks.length; i !== n; ++i) { tracks.push(KeyframeTrack.parse(jsonTracks[i]).scale(frameTime)) } return new AnimationClip(json.name, json.duration, tracks) }, toJSON: function (clip) { var tracks = [], clipTracks = clip.tracks var json = { name: clip.name, duration: clip.duration, tracks: tracks } for (var i = 0, n = clipTracks.length; i !== n; ++i) { tracks.push(KeyframeTrack.toJSON(clipTracks[i])) } return json }, CreateFromMorphTargetSequence: function (name, morphTargetSequence, fps, noLoop) { var numMorphTargets = morphTargetSequence.length var tracks = [] for (var i = 0; i < numMorphTargets; i++) { var times = [] var values = [] times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets) values.push(0, 1, 0) var order = AnimationUtils.getKeyframeOrder(times) times = AnimationUtils.sortedArray(times, 1, order) values = AnimationUtils.sortedArray(values, 1, order) // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if (!noLoop && times[0] === 0) { times.push(numMorphTargets) values.push(values[0]) } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values ).scale(1.0 / fps) ) } return new AnimationClip(name, -1, tracks) }, findByName: function (objectOrClipArray, name) { var clipArray = objectOrClipArray if (!Array.isArray(objectOrClipArray)) { var o = objectOrClipArray clipArray = (o.geometry && o.geometry.animations) || o.animations } for (var i = 0; i < clipArray.length; i++) { if (clipArray[i].name === name) { return clipArray[i] } } return null }, CreateClipsFromMorphTargetSequences: function (morphTargets, fps, noLoop) { var animationToMorphTargets = {} // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 var pattern = /^([\w-]*?)([\d]+)$/ // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for (var i = 0, il = morphTargets.length; i < il; i++) { var morphTarget = morphTargets[i] var parts = morphTarget.name.match(pattern) if (parts && parts.length > 1) { var name = parts[1] var animationMorphTargets = animationToMorphTargets[name] if (!animationMorphTargets) { animationToMorphTargets[name] = animationMorphTargets = [] } animationMorphTargets.push(morphTarget) } } var clips = [] for (var name in animationToMorphTargets) { clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[name], fps, noLoop ) ) } return clips }, // parse the animation.hierarchy format parseAnimation: function (animation, bones) { if (!animation) { console.error('THREE.AnimationClip: No animation in JSONLoader data.') return null } var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) { // only return track if there are actually keys. if (animationKeys.length !== 0) { var times = [] var values = [] AnimationUtils.flattenJSON(animationKeys, times, values, propertyName) // empty keys are filtered out, so check again if (times.length !== 0) { destTracks.push(new trackType(trackName, times, values)) } } } var tracks = [] var clipName = animation.name || 'default' // automatic length determination in AnimationClip. var duration = animation.length || -1 var fps = animation.fps || 30 var hierarchyTracks = animation.hierarchy || [] for (var h = 0; h < hierarchyTracks.length; h++) { var animationKeys = hierarchyTracks[h].keys // skip empty tracks if (!animationKeys || animationKeys.length === 0) continue // process morph targets if (animationKeys[0].morphTargets) { // figure out all morph targets used in this track var morphTargetNames = {} for (var k = 0; k < animationKeys.length; k++) { if (animationKeys[k].morphTargets) { for (var m = 0; m < animationKeys[k].morphTargets.length; m++) { morphTargetNames[animationKeys[k].morphTargets[m]] = -1 } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for (var morphTargetName in morphTargetNames) { var times = [] var values = [] for (var m = 0; m !== animationKeys[k].morphTargets.length; ++m) { var animationKey = animationKeys[k] times.push(animationKey.time) values.push(animationKey.morphTarget === morphTargetName ? 1 : 0) } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ) } duration = morphTargetNames.length * (fps || 1.0) } else { // ...assume skeletal animation var boneName = '.bones[' + bones[h].name + ']' addNonemptyTrack( VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks ) addNonemptyTrack( QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks ) addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks) } } if (tracks.length === 0) { return null } var clip = new AnimationClip(clipName, duration, tracks) return clip } }) Object.assign(AnimationClip.prototype, { resetDuration: function () { var tracks = this.tracks, duration = 0 for (var i = 0, n = tracks.length; i !== n; ++i) { var track = this.tracks[i] duration = Math.max(duration, track.times[track.times.length - 1]) } this.duration = duration }, trim: function () { for (var i = 0; i < this.tracks.length; i++) { this.tracks[i].trim(0, this.duration) } return this }, optimize: function () { for (var i = 0; i < this.tracks.length; i++) { this.tracks[i].optimize() } return this } }) /** * @author mrdoob / http://mrdoob.com/ */ function MaterialLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager this.textures = {} } Object.assign(MaterialLoader.prototype, { load: function (url, onLoad, onProgress, onError) { var scope = this var loader = new FileLoader(scope.manager) loader.load( url, function (text) { onLoad(scope.parse(JSON.parse(text))) }, onProgress, onError ) }, setTextures: function (value) { this.textures = value }, parse: function (json) { var textures = this.textures function getTexture(name) { if (textures[name] === undefined) { console.warn('THREE.MaterialLoader: Undefined texture', name) } return textures[name] } var material = new Materials[json.type]() if (json.uuid !== undefined) material.uuid = json.uuid if (json.name !== undefined) material.name = json.name if (json.color !== undefined) material.color.setHex(json.color) if (json.roughness !== undefined) material.roughness = json.roughness if (json.metalness !== undefined) material.metalness = json.metalness if (json.emissive !== undefined) material.emissive.setHex(json.emissive) if (json.specular !== undefined) material.specular.setHex(json.specular) if (json.shininess !== undefined) material.shininess = json.shininess if (json.clearCoat !== undefined) material.clearCoat = json.clearCoat if (json.clearCoatRoughness !== undefined) material.clearCoatRoughness = json.clearCoatRoughness if (json.uniforms !== undefined) material.uniforms = json.uniforms if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader if (json.vertexColors !== undefined) material.vertexColors = json.vertexColors if (json.fog !== undefined) material.fog = json.fog if (json.flatShading !== undefined) material.flatShading = json.flatShading if (json.blending !== undefined) material.blending = json.blending if (json.side !== undefined) material.side = json.side if (json.opacity !== undefined) material.opacity = json.opacity if (json.transparent !== undefined) material.transparent = json.transparent if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest if (json.depthTest !== undefined) material.depthTest = json.depthTest if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite if (json.wireframe !== undefined) material.wireframe = json.wireframe if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin if (json.rotation !== undefined) material.rotation = json.rotation if (json.linewidth !== 1) material.linewidth = json.linewidth if (json.dashSize !== undefined) material.dashSize = json.dashSize if (json.gapSize !== undefined) material.gapSize = json.gapSize if (json.scale !== undefined) material.scale = json.scale if (json.skinning !== undefined) material.skinning = json.skinning if (json.morphTargets !== undefined) material.morphTargets = json.morphTargets if (json.dithering !== undefined) material.dithering = json.dithering if (json.visible !== undefined) material.visible = json.visible if (json.userData !== undefined) material.userData = json.userData // Deprecated if (json.shading !== undefined) material.flatShading = json.shading === 1 // THREE.FlatShading // for PointsMaterial if (json.size !== undefined) material.size = json.size if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation // maps if (json.map !== undefined) material.map = getTexture(json.map) if (json.alphaMap !== undefined) { material.alphaMap = getTexture(json.alphaMap) material.transparent = true } if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap) if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap) if (json.normalScale !== undefined) { var normalScale = json.normalScale if (Array.isArray(normalScale) === false) { // Blender exporter used to export a scalar. See #7459 normalScale = [normalScale, normalScale] } material.normalScale = new Vector2().fromArray(normalScale) } if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap) if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap) if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap) if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap) if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap) if (json.envMap !== undefined) material.envMap = getTexture(json.envMap) if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap) if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap) if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap) return material } }) /** * @author mrdoob / http://mrdoob.com/ */ function BufferGeometryLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager } Object.assign(BufferGeometryLoader.prototype, { load: function (url, onLoad, onProgress, onError) { var scope = this var loader = new FileLoader(scope.manager) loader.load( url, function (text) { onLoad(scope.parse(JSON.parse(text))) }, onProgress, onError ) }, parse: function (json) { var geometry = new BufferGeometry() var index = json.data.index if (index !== undefined) { var typedArray = new TYPED_ARRAYS[index.type](index.array) geometry.setIndex(new BufferAttribute(typedArray, 1)) } var attributes = json.data.attributes for (var key in attributes) { var attribute = attributes[key] var typedArray = new TYPED_ARRAYS[attribute.type](attribute.array) geometry.addAttribute( key, new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized) ) } var groups = json.data.groups || json.data.drawcalls || json.data.offsets if (groups !== undefined) { for (var i = 0, n = groups.length; i !== n; ++i) { var group = groups[i] geometry.addGroup(group.start, group.count, group.materialIndex) } } var boundingSphere = json.data.boundingSphere if (boundingSphere !== undefined) { var center = new Vector3() if (boundingSphere.center !== undefined) { center.fromArray(boundingSphere.center) } geometry.boundingSphere = new Sphere(center, boundingSphere.radius) } return geometry } }) var TYPED_ARRAYS = { Int8Array: Int8Array, Uint8Array: Uint8Array, // Workaround for IE11 pre KB2929437. See #11440 Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array, Int16Array: Int16Array, Uint16Array: Uint16Array, Int32Array: Int32Array, Uint32Array: Uint32Array, Float32Array: Float32Array, Float64Array: Float64Array } /** * @author alteredq / http://alteredqualia.com/ */ function Loader() { this.onLoadStart = function () {} this.onLoadProgress = function () {} this.onLoadComplete = function () {} } Loader.Handlers = { handlers: [], add: function (regex, loader) { this.handlers.push(regex, loader) }, get: function (file) { var handlers = this.handlers for (var i = 0, l = handlers.length; i < l; i += 2) { var regex = handlers[i] var loader = handlers[i + 1] if (regex.test(file)) { return loader } } return null } } Object.assign(Loader.prototype, { crossOrigin: undefined, initMaterials: function (materials, texturePath, crossOrigin) { var array = [] for (var i = 0; i < materials.length; ++i) { array[i] = this.createMaterial(materials[i], texturePath, crossOrigin) } return array }, createMaterial: (function () { var BlendingMode = { NoBlending: NoBlending, NormalBlending: NormalBlending, AdditiveBlending: AdditiveBlending, SubtractiveBlending: SubtractiveBlending, MultiplyBlending: MultiplyBlending, CustomBlending: CustomBlending } var color = new Color() var textureLoader = new TextureLoader() var materialLoader = new MaterialLoader() return function createMaterial(m, texturePath, crossOrigin) { // convert from old material format var textures = {} function loadTexture(path, repeat, offset, wrap, anisotropy) { var fullPath = texturePath + path var loader = Loader.Handlers.get(fullPath) var texture if (loader !== null) { texture = loader.load(fullPath) } else { textureLoader.setCrossOrigin(crossOrigin) texture = textureLoader.load(fullPath) } if (repeat !== undefined) { texture.repeat.fromArray(repeat) if (repeat[0] !== 1) texture.wrapS = RepeatWrapping if (repeat[1] !== 1) texture.wrapT = RepeatWrapping } if (offset !== undefined) { texture.offset.fromArray(offset) } if (wrap !== undefined) { if (wrap[0] === 'repeat') texture.wrapS = RepeatWrapping if (wrap[0] === 'mirror') texture.wrapS = MirroredRepeatWrapping if (wrap[1] === 'repeat') texture.wrapT = RepeatWrapping if (wrap[1] === 'mirror') texture.wrapT = MirroredRepeatWrapping } if (anisotropy !== undefined) { texture.anisotropy = anisotropy } var uuid = _Math.generateUUID() textures[uuid] = texture return uuid } // var json = { uuid: _Math.generateUUID(), type: 'MeshLambertMaterial' } for (var name in m) { var value = m[name] switch (name) { case 'DbgColor': case 'DbgIndex': case 'opticalDensity': case 'illumination': break case 'DbgName': json.name = value break case 'blending': json.blending = BlendingMode[value] break case 'colorAmbient': case 'mapAmbient': console.warn('THREE.Loader.createMaterial:', name, 'is no longer supported.') break case 'colorDiffuse': json.color = color.fromArray(value).getHex() break case 'colorSpecular': json.specular = color.fromArray(value).getHex() break case 'colorEmissive': json.emissive = color.fromArray(value).getHex() break case 'specularCoef': json.shininess = value break case 'shading': if (value.toLowerCase() === 'basic') json.type = 'MeshBasicMaterial' if (value.toLowerCase() === 'phong') json.type = 'MeshPhongMaterial' if (value.toLowerCase() === 'standard') json.type = 'MeshStandardMaterial' break case 'mapDiffuse': json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy ) break case 'mapDiffuseRepeat': case 'mapDiffuseOffset': case 'mapDiffuseWrap': case 'mapDiffuseAnisotropy': break case 'mapEmissive': json.emissiveMap = loadTexture( value, m.mapEmissiveRepeat, m.mapEmissiveOffset, m.mapEmissiveWrap, m.mapEmissiveAnisotropy ) break case 'mapEmissiveRepeat': case 'mapEmissiveOffset': case 'mapEmissiveWrap': case 'mapEmissiveAnisotropy': break case 'mapLight': json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy ) break case 'mapLightRepeat': case 'mapLightOffset': case 'mapLightWrap': case 'mapLightAnisotropy': break case 'mapAO': json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy ) break case 'mapAORepeat': case 'mapAOOffset': case 'mapAOWrap': case 'mapAOAnisotropy': break case 'mapBump': json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy ) break case 'mapBumpScale': json.bumpScale = value break case 'mapBumpRepeat': case 'mapBumpOffset': case 'mapBumpWrap': case 'mapBumpAnisotropy': break case 'mapNormal': json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy ) break case 'mapNormalFactor': json.normalScale = [value, value] break case 'mapNormalRepeat': case 'mapNormalOffset': case 'mapNormalWrap': case 'mapNormalAnisotropy': break case 'mapSpecular': json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy ) break case 'mapSpecularRepeat': case 'mapSpecularOffset': case 'mapSpecularWrap': case 'mapSpecularAnisotropy': break case 'mapMetalness': json.metalnessMap = loadTexture( value, m.mapMetalnessRepeat, m.mapMetalnessOffset, m.mapMetalnessWrap, m.mapMetalnessAnisotropy ) break case 'mapMetalnessRepeat': case 'mapMetalnessOffset': case 'mapMetalnessWrap': case 'mapMetalnessAnisotropy': break case 'mapRoughness': json.roughnessMap = loadTexture( value, m.mapRoughnessRepeat, m.mapRoughnessOffset, m.mapRoughnessWrap, m.mapRoughnessAnisotropy ) break case 'mapRoughnessRepeat': case 'mapRoughnessOffset': case 'mapRoughnessWrap': case 'mapRoughnessAnisotropy': break case 'mapAlpha': json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy ) break case 'mapAlphaRepeat': case 'mapAlphaOffset': case 'mapAlphaWrap': case 'mapAlphaAnisotropy': break case 'flipSided': json.side = BackSide break case 'doubleSided': json.side = DoubleSide break case 'transparency': console.warn('THREE.Loader.createMaterial: transparency has been renamed to opacity') json.opacity = value break case 'depthTest': case 'depthWrite': case 'colorWrite': case 'opacity': case 'reflectivity': case 'transparent': case 'visible': case 'wireframe': json[name] = value break case 'vertexColors': if (value === true) json.vertexColors = VertexColors if (value === 'face') json.vertexColors = FaceColors break default: console.error('THREE.Loader.createMaterial: Unsupported', name, value) break } } if (json.type === 'MeshBasicMaterial') delete json.emissive if (json.type !== 'MeshPhongMaterial') delete json.specular if (json.opacity < 1) json.transparent = true materialLoader.setTextures(textures) return materialLoader.parse(json) } })() }) /** * @author Don McCurdy / https://www.donmccurdy.com */ var LoaderUtils = { decodeText: function (array) { if (typeof TextDecoder !== 'undefined') { return new TextDecoder().decode(array) } // Avoid the String.fromCharCode.apply(null, array) shortcut, which // throws a "maximum call stack size exceeded" error for large arrays. var s = '' for (var i = 0, il = array.length; i < il; i++) { // Implicitly assumes little-endian. s += String.fromCharCode(array[i]) } // Merges multi-byte utf-8 characters. return decodeURIComponent(escape(s)) }, extractUrlBase: function (url) { var parts = url.split('/') if (parts.length === 1) return './' parts.pop() return parts.join('/') + '/' } } /** * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ */ function JSONLoader(manager) { if (typeof manager === 'boolean') { console.warn('THREE.JSONLoader: showStatus parameter has been removed from constructor.') manager = undefined } this.manager = manager !== undefined ? manager : DefaultLoadingManager this.withCredentials = false } Object.assign(JSONLoader.prototype, { load: function (url, onLoad, onProgress, onError) { var scope = this var texturePath = this.texturePath && typeof this.texturePath === 'string' ? this.texturePath : LoaderUtils.extractUrlBase(url) var loader = new FileLoader(this.manager) loader.setWithCredentials(this.withCredentials) loader.load( url, function (text) { var json = JSON.parse(text) var metadata = json.metadata if (metadata !== undefined) { var type = metadata.type if (type !== undefined) { if (type.toLowerCase() === 'object') { console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' ) return } if (type.toLowerCase() === 'scene') { console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.SceneLoader instead.' ) return } } } var object = scope.parse(json, texturePath) onLoad(object.geometry, object.materials) }, onProgress, onError ) }, setTexturePath: function (value) { this.texturePath = value }, parse: (function () { function parseModel(json, geometry) { function isBitSet(value, position) { return value & (1 << position) } var i, j, fi, offset, zLength, colorIndex, normalIndex, uvIndex, materialIndex, type, isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor, vertex, face, faceA, faceB, hex, normal, uvLayer, uv, u, v, faces = json.faces, vertices = json.vertices, normals = json.normals, colors = json.colors, scale = json.scale, nUvLayers = 0 if (json.uvs !== undefined) { // disregard empty arrays for (i = 0; i < json.uvs.length; i++) { if (json.uvs[i].length) nUvLayers++ } for (i = 0; i < nUvLayers; i++) { geometry.faceVertexUvs[i] = [] } } offset = 0 zLength = vertices.length while (offset < zLength) { vertex = new Vector3() vertex.x = vertices[offset++] * scale vertex.y = vertices[offset++] * scale vertex.z = vertices[offset++] * scale geometry.vertices.push(vertex) } offset = 0 zLength = faces.length while (offset < zLength) { type = faces[offset++] isQuad = isBitSet(type, 0) hasMaterial = isBitSet(type, 1) hasFaceVertexUv = isBitSet(type, 3) hasFaceNormal = isBitSet(type, 4) hasFaceVertexNormal = isBitSet(type, 5) hasFaceColor = isBitSet(type, 6) hasFaceVertexColor = isBitSet(type, 7) // console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor); if (isQuad) { faceA = new Face3() faceA.a = faces[offset] faceA.b = faces[offset + 1] faceA.c = faces[offset + 3] faceB = new Face3() faceB.a = faces[offset + 1] faceB.b = faces[offset + 2] faceB.c = faces[offset + 3] offset += 4 if (hasMaterial) { materialIndex = faces[offset++] faceA.materialIndex = materialIndex faceB.materialIndex = materialIndex } // to get face <=> uv index correspondence fi = geometry.faces.length if (hasFaceVertexUv) { for (i = 0; i < nUvLayers; i++) { uvLayer = json.uvs[i] geometry.faceVertexUvs[i][fi] = [] geometry.faceVertexUvs[i][fi + 1] = [] for (j = 0; j < 4; j++) { uvIndex = faces[offset++] u = uvLayer[uvIndex * 2] v = uvLayer[uvIndex * 2 + 1] uv = new Vector2(u, v) if (j !== 2) geometry.faceVertexUvs[i][fi].push(uv) if (j !== 0) geometry.faceVertexUvs[i][fi + 1].push(uv) } } } if (hasFaceNormal) { normalIndex = faces[offset++] * 3 faceA.normal.set(normals[normalIndex++], normals[normalIndex++], normals[normalIndex]) faceB.normal.copy(faceA.normal) } if (hasFaceVertexNormal) { for (i = 0; i < 4; i++) { normalIndex = faces[offset++] * 3 normal = new Vector3( normals[normalIndex++], normals[normalIndex++], normals[normalIndex] ) if (i !== 2) faceA.vertexNormals.push(normal) if (i !== 0) faceB.vertexNormals.push(normal) } } if (hasFaceColor) { colorIndex = faces[offset++] hex = colors[colorIndex] faceA.color.setHex(hex) faceB.color.setHex(hex) } if (hasFaceVertexColor) { for (i = 0; i < 4; i++) { colorIndex = faces[offset++] hex = colors[colorIndex] if (i !== 2) faceA.vertexColors.push(new Color(hex)) if (i !== 0) faceB.vertexColors.push(new Color(hex)) } } geometry.faces.push(faceA) geometry.faces.push(faceB) } else { face = new Face3() face.a = faces[offset++] face.b = faces[offset++] face.c = faces[offset++] if (hasMaterial) { materialIndex = faces[offset++] face.materialIndex = materialIndex } // to get face <=> uv index correspondence fi = geometry.faces.length if (hasFaceVertexUv) { for (i = 0; i < nUvLayers; i++) { uvLayer = json.uvs[i] geometry.faceVertexUvs[i][fi] = [] for (j = 0; j < 3; j++) { uvIndex = faces[offset++] u = uvLayer[uvIndex * 2] v = uvLayer[uvIndex * 2 + 1] uv = new Vector2(u, v) geometry.faceVertexUvs[i][fi].push(uv) } } } if (hasFaceNormal) { normalIndex = faces[offset++] * 3 face.normal.set(normals[normalIndex++], normals[normalIndex++], normals[normalIndex]) } if (hasFaceVertexNormal) { for (i = 0; i < 3; i++) { normalIndex = faces[offset++] * 3 normal = new Vector3( normals[normalIndex++], normals[normalIndex++], normals[normalIndex] ) face.vertexNormals.push(normal) } } if (hasFaceColor) { colorIndex = faces[offset++] face.color.setHex(colors[colorIndex]) } if (hasFaceVertexColor) { for (i = 0; i < 3; i++) { colorIndex = faces[offset++] face.vertexColors.push(new Color(colors[colorIndex])) } } geometry.faces.push(face) } } } function parseSkin(json, geometry) { var influencesPerVertex = json.influencesPerVertex !== undefined ? json.influencesPerVertex : 2 if (json.skinWeights) { for (var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex) { var x = json.skinWeights[i] var y = influencesPerVertex > 1 ? json.skinWeights[i + 1] : 0 var z = influencesPerVertex > 2 ? json.skinWeights[i + 2] : 0 var w = influencesPerVertex > 3 ? json.skinWeights[i + 3] : 0 geometry.skinWeights.push(new Vector4(x, y, z, w)) } } if (json.skinIndices) { for (var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex) { var a = json.skinIndices[i] var b = influencesPerVertex > 1 ? json.skinIndices[i + 1] : 0 var c = influencesPerVertex > 2 ? json.skinIndices[i + 2] : 0 var d = influencesPerVertex > 3 ? json.skinIndices[i + 3] : 0 geometry.skinIndices.push(new Vector4(a, b, c, d)) } } geometry.bones = json.bones if ( geometry.bones && geometry.bones.length > 0 && (geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length) ) { console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' + geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' ) } } function parseMorphing(json, geometry) { var scale = json.scale if (json.morphTargets !== undefined) { for (var i = 0, l = json.morphTargets.length; i < l; i++) { geometry.morphTargets[i] = {} geometry.morphTargets[i].name = json.morphTargets[i].name geometry.morphTargets[i].vertices = [] var dstVertices = geometry.morphTargets[i].vertices var srcVertices = json.morphTargets[i].vertices for (var v = 0, vl = srcVertices.length; v < vl; v += 3) { var vertex = new Vector3() vertex.x = srcVertices[v] * scale vertex.y = srcVertices[v + 1] * scale vertex.z = srcVertices[v + 2] * scale dstVertices.push(vertex) } } } if (json.morphColors !== undefined && json.morphColors.length > 0) { console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' ) var faces = geometry.faces var morphColors = json.morphColors[0].colors for (var i = 0, l = faces.length; i < l; i++) { faces[i].color.fromArray(morphColors, i * 3) } } } function parseAnimations(json, geometry) { var outputAnimations = [] // parse old style Bone/Hierarchy animations var animations = [] if (json.animation !== undefined) { animations.push(json.animation) } if (json.animations !== undefined) { if (json.animations.length) { animations = animations.concat(json.animations) } else { animations.push(json.animations) } } for (var i = 0; i < animations.length; i++) { var clip = AnimationClip.parseAnimation(animations[i], geometry.bones) if (clip) outputAnimations.push(clip) } // parse implicit morph animations if (geometry.morphTargets) { // TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary. var morphAnimationClips = AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 ) outputAnimations = outputAnimations.concat(morphAnimationClips) } if (outputAnimations.length > 0) geometry.animations = outputAnimations } return function parse(json, texturePath) { if (json.data !== undefined) { // Geometry 4.0 spec json = json.data } if (json.scale !== undefined) { json.scale = 1.0 / json.scale } else { json.scale = 1.0 } var geometry = new Geometry() parseModel(json, geometry) parseSkin(json, geometry) parseMorphing(json, geometry) parseAnimations(json, geometry) geometry.computeFaceNormals() geometry.computeBoundingSphere() if (json.materials === undefined || json.materials.length === 0) { return { geometry: geometry } } else { var materials = Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin ) return { geometry: geometry, materials: materials } } } })() }) /** * @author mrdoob / http://mrdoob.com/ */ function ObjectLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager this.texturePath = '' } Object.assign(ObjectLoader.prototype, { load: function (url, onLoad, onProgress, onError) { if (this.texturePath === '') { this.texturePath = url.substring(0, url.lastIndexOf('/') + 1) } var scope = this var loader = new FileLoader(scope.manager) loader.load( url, function (text) { var json = null try { json = JSON.parse(text) } catch (error) { if (onError !== undefined) onError(error) console.error("THREE:ObjectLoader: Can't parse " + url + '.', error.message) return } var metadata = json.metadata if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) { console.error( "THREE.ObjectLoader: Can't load " + url + '. Use THREE.JSONLoader instead.' ) return } scope.parse(json, onLoad) }, onProgress, onError ) }, setTexturePath: function (value) { this.texturePath = value }, setCrossOrigin: function (value) { this.crossOrigin = value }, parse: function (json, onLoad) { var shapes = this.parseShape(json.shapes) var geometries = this.parseGeometries(json.geometries, shapes) var images = this.parseImages(json.images, function () { if (onLoad !== undefined) onLoad(object) }) var textures = this.parseTextures(json.textures, images) var materials = this.parseMaterials(json.materials, textures) var object = this.parseObject(json.object, geometries, materials) if (json.animations) { object.animations = this.parseAnimations(json.animations) } if (json.images === undefined || json.images.length === 0) { if (onLoad !== undefined) onLoad(object) } return object }, parseShape: function (json) { var shapes = {} if (json !== undefined) { for (var i = 0, l = json.length; i < l; i++) { var shape = new Shape().fromJSON(json[i]) shapes[shape.uuid] = shape } } return shapes }, parseGeometries: function (json, shapes) { var geometries = {} if (json !== undefined) { var geometryLoader = new JSONLoader() var bufferGeometryLoader = new BufferGeometryLoader() for (var i = 0, l = json.length; i < l; i++) { var geometry var data = json[i] switch (data.type) { case 'PlaneGeometry': case 'PlaneBufferGeometry': geometry = new Geometries[data.type]( data.width, data.height, data.widthSegments, data.heightSegments ) break case 'BoxGeometry': case 'BoxBufferGeometry': case 'CubeGeometry': // backwards compatible geometry = new Geometries[data.type]( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ) break case 'CircleGeometry': case 'CircleBufferGeometry': geometry = new Geometries[data.type]( data.radius, data.segments, data.thetaStart, data.thetaLength ) break case 'CylinderGeometry': case 'CylinderBufferGeometry': geometry = new Geometries[data.type]( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ) break case 'ConeGeometry': case 'ConeBufferGeometry': geometry = new Geometries[data.type]( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ) break case 'SphereGeometry': case 'SphereBufferGeometry': geometry = new Geometries[data.type]( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ) break case 'DodecahedronGeometry': case 'DodecahedronBufferGeometry': case 'IcosahedronGeometry': case 'IcosahedronBufferGeometry': case 'OctahedronGeometry': case 'OctahedronBufferGeometry': case 'TetrahedronGeometry': case 'TetrahedronBufferGeometry': geometry = new Geometries[data.type](data.radius, data.detail) break case 'RingGeometry': case 'RingBufferGeometry': geometry = new Geometries[data.type]( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength ) break case 'TorusGeometry': case 'TorusBufferGeometry': geometry = new Geometries[data.type]( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc ) break case 'TorusKnotGeometry': case 'TorusKnotBufferGeometry': geometry = new Geometries[data.type]( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q ) break case 'LatheGeometry': case 'LatheBufferGeometry': geometry = new Geometries[data.type]( data.points, data.segments, data.phiStart, data.phiLength ) break case 'PolyhedronGeometry': case 'PolyhedronBufferGeometry': geometry = new Geometries[data.type]( data.vertices, data.indices, data.radius, data.details ) break case 'ShapeGeometry': case 'ShapeBufferGeometry': var geometryShapes = [] for (var i = 0, l = data.shapes.length; i < l; i++) { var shape = shapes[data.shapes[i]] geometryShapes.push(shape) } geometry = new Geometries[data.type](geometryShapes, data.curveSegments) break case 'BufferGeometry': geometry = bufferGeometryLoader.parse(data) break case 'Geometry': geometry = geometryLoader.parse(data, this.texturePath).geometry break default: console.warn('THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"') continue } geometry.uuid = data.uuid if (data.name !== undefined) geometry.name = data.name geometries[data.uuid] = geometry } } return geometries }, parseMaterials: function (json, textures) { var materials = {} if (json !== undefined) { var loader = new MaterialLoader() loader.setTextures(textures) for (var i = 0, l = json.length; i < l; i++) { var data = json[i] if (data.type === 'MultiMaterial') { // Deprecated var array = [] for (var j = 0; j < data.materials.length; j++) { array.push(loader.parse(data.materials[j])) } materials[data.uuid] = array } else { materials[data.uuid] = loader.parse(data) } } } return materials }, parseAnimations: function (json) { var animations = [] for (var i = 0; i < json.length; i++) { var clip = AnimationClip.parse(json[i]) animations.push(clip) } return animations }, parseImages: function (json, onLoad) { var scope = this var images = {} function loadImage(url) { scope.manager.itemStart(url) return loader.load( url, function () { scope.manager.itemEnd(url) }, undefined, function () { scope.manager.itemEnd(url) scope.manager.itemError(url) } ) } if (json !== undefined && json.length > 0) { var manager = new LoadingManager(onLoad) var loader = new ImageLoader(manager) loader.setCrossOrigin(this.crossOrigin) for (var i = 0, l = json.length; i < l; i++) { var image = json[i] var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(image.url) ? image.url : scope.texturePath + image.url images[image.uuid] = loadImage(path) } } return images }, parseTextures: function (json, images) { function parseConstant(value, type) { if (typeof value === 'number') return value console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value) return type[value] } var textures = {} if (json !== undefined) { for (var i = 0, l = json.length; i < l; i++) { var data = json[i] if (data.image === undefined) { console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid) } if (images[data.image] === undefined) { console.warn('THREE.ObjectLoader: Undefined image', data.image) } var texture = new Texture(images[data.image]) texture.needsUpdate = true texture.uuid = data.uuid if (data.name !== undefined) texture.name = data.name if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING) if (data.offset !== undefined) texture.offset.fromArray(data.offset) if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat) if (data.center !== undefined) texture.center.fromArray(data.center) if (data.rotation !== undefined) texture.rotation = data.rotation if (data.wrap !== undefined) { texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING) texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING) } if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER) if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER) if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy if (data.flipY !== undefined) texture.flipY = data.flipY textures[data.uuid] = texture } } return textures }, parseObject: function (data, geometries, materials) { var object function getGeometry(name) { if (geometries[name] === undefined) { console.warn('THREE.ObjectLoader: Undefined geometry', name) } return geometries[name] } function getMaterial(name) { if (name === undefined) return undefined if (Array.isArray(name)) { var array = [] for (var i = 0, l = name.length; i < l; i++) { var uuid = name[i] if (materials[uuid] === undefined) { console.warn('THREE.ObjectLoader: Undefined material', uuid) } array.push(materials[uuid]) } return array } if (materials[name] === undefined) { console.warn('THREE.ObjectLoader: Undefined material', name) } return materials[name] } switch (data.type) { case 'Scene': object = new Scene() if (data.background !== undefined) { if (Number.isInteger(data.background)) { object.background = new Color(data.background) } } if (data.fog !== undefined) { if (data.fog.type === 'Fog') { object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far) } else if (data.fog.type === 'FogExp2') { object.fog = new FogExp2(data.fog.color, data.fog.density) } } break case 'PerspectiveCamera': object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far) if (data.focus !== undefined) object.focus = data.focus if (data.zoom !== undefined) object.zoom = data.zoom if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset if (data.view !== undefined) object.view = Object.assign({}, data.view) break case 'OrthographicCamera': object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ) break case 'AmbientLight': object = new AmbientLight(data.color, data.intensity) break case 'DirectionalLight': object = new DirectionalLight(data.color, data.intensity) break case 'PointLight': object = new PointLight(data.color, data.intensity, data.distance, data.decay) break case 'RectAreaLight': object = new RectAreaLight(data.color, data.intensity, data.width, data.height) break case 'SpotLight': object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay ) break case 'HemisphereLight': object = new HemisphereLight(data.color, data.groundColor, data.intensity) break case 'SkinnedMesh': console.warn('THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.') case 'Mesh': var geometry = getGeometry(data.geometry) var material = getMaterial(data.material) if (geometry.bones && geometry.bones.length > 0) { object = new SkinnedMesh(geometry, material) } else { object = new Mesh(geometry, material) } break case 'LOD': object = new LOD() break case 'Line': object = new Line(getGeometry(data.geometry), getMaterial(data.material), data.mode) break case 'LineLoop': object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material)) break case 'LineSegments': object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material)) break case 'PointCloud': case 'Points': object = new Points(getGeometry(data.geometry), getMaterial(data.material)) break case 'Sprite': object = new Sprite(getMaterial(data.material)) break case 'Group': object = new Group() break default: object = new Object3D() } object.uuid = data.uuid if (data.name !== undefined) object.name = data.name if (data.matrix !== undefined) { object.matrix.fromArray(data.matrix) object.matrix.decompose(object.position, object.quaternion, object.scale) } else { if (data.position !== undefined) object.position.fromArray(data.position) if (data.rotation !== undefined) object.rotation.fromArray(data.rotation) if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion) if (data.scale !== undefined) object.scale.fromArray(data.scale) } if (data.castShadow !== undefined) object.castShadow = data.castShadow if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow if (data.shadow) { if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize) if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera) } if (data.visible !== undefined) object.visible = data.visible if (data.userData !== undefined) object.userData = data.userData if (data.children !== undefined) { var children = data.children for (var i = 0; i < children.length; i++) { object.add(this.parseObject(children[i], geometries, materials)) } } if (data.type === 'LOD') { var levels = data.levels for (var l = 0; l < levels.length; l++) { var level = levels[l] var child = object.getObjectByProperty('uuid', level.object) if (child !== undefined) { object.addLevel(child, level.distance) } } } return object } }) var TEXTURE_MAPPING = { UVMapping: UVMapping, CubeReflectionMapping: CubeReflectionMapping, CubeRefractionMapping: CubeRefractionMapping, EquirectangularReflectionMapping: EquirectangularReflectionMapping, EquirectangularRefractionMapping: EquirectangularRefractionMapping, SphericalReflectionMapping: SphericalReflectionMapping, CubeUVReflectionMapping: CubeUVReflectionMapping, CubeUVRefractionMapping: CubeUVRefractionMapping } var TEXTURE_WRAPPING = { RepeatWrapping: RepeatWrapping, ClampToEdgeWrapping: ClampToEdgeWrapping, MirroredRepeatWrapping: MirroredRepeatWrapping } var TEXTURE_FILTER = { NearestFilter: NearestFilter, NearestMipMapNearestFilter: NearestMipMapNearestFilter, NearestMipMapLinearFilter: NearestMipMapLinearFilter, LinearFilter: LinearFilter, LinearMipMapNearestFilter: LinearMipMapNearestFilter, LinearMipMapLinearFilter: LinearMipMapLinearFilter } /** * @author thespite / http://clicktorelease.com/ */ function ImageBitmapLoader(manager) { if (typeof createImageBitmap === 'undefined') { console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.') } if (typeof fetch === 'undefined') { console.warn('THREE.ImageBitmapLoader: fetch() not supported.') } this.manager = manager !== undefined ? manager : DefaultLoadingManager this.options = undefined } ImageBitmapLoader.prototype = { constructor: ImageBitmapLoader, setOptions: function setOptions(options) { this.options = options return this }, load: function load(url, onLoad, onProgress, onError) { if (url === undefined) url = '' if (this.path !== undefined) url = this.path + url var scope = this var cached = Cache.get(url) if (cached !== undefined) { scope.manager.itemStart(url) setTimeout(function () { if (onLoad) onLoad(cached) scope.manager.itemEnd(url) }, 0) return cached } fetch(url) .then(function (res) { return res.blob() }) .then(function (blob) { return createImageBitmap(blob, scope.options) }) .then(function (imageBitmap) { Cache.add(url, imageBitmap) if (onLoad) onLoad(imageBitmap) scope.manager.itemEnd(url) }) .catch(function (e) { if (onError) onError(e) scope.manager.itemEnd(url) scope.manager.itemError(url) }) }, setCrossOrigin: function (/* value */) { return this }, setPath: function (value) { this.path = value return this } } /** * @author zz85 / http://www.lab4games.net/zz85/blog * minimal class for proxing functions to Path. Replaces old "extractSubpaths()" **/ function ShapePath() { this.type = 'ShapePath' this.subPaths = [] this.currentPath = null } Object.assign(ShapePath.prototype, { moveTo: function (x, y) { this.currentPath = new Path() this.subPaths.push(this.currentPath) this.currentPath.moveTo(x, y) }, lineTo: function (x, y) { this.currentPath.lineTo(x, y) }, quadraticCurveTo: function (aCPx, aCPy, aX, aY) { this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY) }, bezierCurveTo: function (aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) { this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) }, splineThru: function (pts) { this.currentPath.splineThru(pts) }, toShapes: function (isCCW, noHoles) { function toShapesNoHoles(inSubpaths) { var shapes = [] for (var i = 0, l = inSubpaths.length; i < l; i++) { var tmpPath = inSubpaths[i] var tmpShape = new Shape() tmpShape.curves = tmpPath.curves shapes.push(tmpShape) } return shapes } function isPointInsidePolygon(inPt, inPolygon) { var polyLen = inPolygon.length // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line var inside = false for (var p = polyLen - 1, q = 0; q < polyLen; p = q++) { var edgeLowPt = inPolygon[p] var edgeHighPt = inPolygon[q] var edgeDx = edgeHighPt.x - edgeLowPt.x var edgeDy = edgeHighPt.y - edgeLowPt.y if (Math.abs(edgeDy) > Number.EPSILON) { // not parallel if (edgeDy < 0) { edgeLowPt = inPolygon[q] edgeDx = -edgeDx edgeHighPt = inPolygon[p] edgeDy = -edgeDy } if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue if (inPt.y === edgeLowPt.y) { if (inPt.x === edgeLowPt.x) return true // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { var perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y) if (perpEdge === 0) return true // inPt is on contour ? if (perpEdge < 0) continue inside = !inside // true intersection left of inPt } } else { // parallel or collinear if (inPt.y !== edgeLowPt.y) continue // parallel // edge lies on the same horizontal line as inPt if ( (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x) || (edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) ) return true // inPt: Point on contour ! // continue; } } return inside } var isClockWise = ShapeUtils.isClockWise var subPaths = this.subPaths if (subPaths.length === 0) return [] if (noHoles === true) return toShapesNoHoles(subPaths) var solid, tmpPath, tmpShape, shapes = [] if (subPaths.length === 1) { tmpPath = subPaths[0] tmpShape = new Shape() tmpShape.curves = tmpPath.curves shapes.push(tmpShape) return shapes } var holesFirst = !isClockWise(subPaths[0].getPoints()) holesFirst = isCCW ? !holesFirst : holesFirst // console.log("Holes first", holesFirst); var betterShapeHoles = [] var newShapes = [] var newShapeHoles = [] var mainIdx = 0 var tmpPoints newShapes[mainIdx] = undefined newShapeHoles[mainIdx] = [] for (var i = 0, l = subPaths.length; i < l; i++) { tmpPath = subPaths[i] tmpPoints = tmpPath.getPoints() solid = isClockWise(tmpPoints) solid = isCCW ? !solid : solid if (solid) { if (!holesFirst && newShapes[mainIdx]) mainIdx++ newShapes[mainIdx] = { s: new Shape(), p: tmpPoints } newShapes[mainIdx].s.curves = tmpPath.curves if (holesFirst) mainIdx++ newShapeHoles[mainIdx] = [] //console.log('cw', i); } else { newShapeHoles[mainIdx].push({ h: tmpPath, p: tmpPoints[0] }) //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if (!newShapes[0]) return toShapesNoHoles(subPaths) if (newShapes.length > 1) { var ambiguous = false var toChange = [] for (var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { betterShapeHoles[sIdx] = [] } for (var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) { var sho = newShapeHoles[sIdx] for (var hIdx = 0; hIdx < sho.length; hIdx++) { var ho = sho[hIdx] var hole_unassigned = true for (var s2Idx = 0; s2Idx < newShapes.length; s2Idx++) { if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) { if (sIdx !== s2Idx) toChange.push({ froms: sIdx, tos: s2Idx, hole: hIdx }) if (hole_unassigned) { hole_unassigned = false betterShapeHoles[s2Idx].push(ho) } else { ambiguous = true } } } if (hole_unassigned) { betterShapeHoles[sIdx].push(ho) } } } // console.log("ambiguous: ", ambiguous); if (toChange.length > 0) { // console.log("to change: ", toChange); if (!ambiguous) newShapeHoles = betterShapeHoles } } var tmpHoles for (var i = 0, il = newShapes.length; i < il; i++) { tmpShape = newShapes[i].s shapes.push(tmpShape) tmpHoles = newShapeHoles[i] for (var j = 0, jl = tmpHoles.length; j < jl; j++) { tmpShape.holes.push(tmpHoles[j].h) } } //console.log("shape", shapes); return shapes } }) /** * @author zz85 / http://www.lab4games.net/zz85/blog * @author mrdoob / http://mrdoob.com/ */ function Font(data) { this.type = 'Font' this.data = data } Object.assign(Font.prototype, { isFont: true, generateShapes: function (text, size, divisions) { if (size === undefined) size = 100 if (divisions === undefined) divisions = 4 var shapes = [] var paths = createPaths(text, size, divisions, this.data) for (var p = 0, pl = paths.length; p < pl; p++) { Array.prototype.push.apply(shapes, paths[p].toShapes()) } return shapes } }) function createPaths(text, size, divisions, data) { var chars = String(text).split('') var scale = size / data.resolution var line_height = (data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness) * scale var paths = [] var offsetX = 0, offsetY = 0 for (var i = 0; i < chars.length; i++) { var char = chars[i] if (char === '\n') { offsetX = 0 offsetY -= line_height } else { var ret = createPath(char, divisions, scale, offsetX, offsetY, data) offsetX += ret.offsetX paths.push(ret.path) } } return paths } function createPath(char, divisions, scale, offsetX, offsetY, data) { var glyph = data.glyphs[char] || data.glyphs['?'] if (!glyph) return var path = new ShapePath() var x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2 if (glyph.o) { var outline = glyph._cachedOutline || (glyph._cachedOutline = glyph.o.split(' ')) for (var i = 0, l = outline.length; i < l; ) { var action = outline[i++] switch (action) { case 'm': // moveTo x = outline[i++] * scale + offsetX y = outline[i++] * scale + offsetY path.moveTo(x, y) break case 'l': // lineTo x = outline[i++] * scale + offsetX y = outline[i++] * scale + offsetY path.lineTo(x, y) break case 'q': // quadraticCurveTo cpx = outline[i++] * scale + offsetX cpy = outline[i++] * scale + offsetY cpx1 = outline[i++] * scale + offsetX cpy1 = outline[i++] * scale + offsetY path.quadraticCurveTo(cpx1, cpy1, cpx, cpy) break case 'b': // bezierCurveTo cpx = outline[i++] * scale + offsetX cpy = outline[i++] * scale + offsetY cpx1 = outline[i++] * scale + offsetX cpy1 = outline[i++] * scale + offsetY cpx2 = outline[i++] * scale + offsetX cpy2 = outline[i++] * scale + offsetY path.bezierCurveTo(cpx1, cpy1, cpx2, cpy2, cpx, cpy) break } } } return { offsetX: glyph.ha * scale, path: path } } /** * @author mrdoob / http://mrdoob.com/ */ function FontLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager } Object.assign(FontLoader.prototype, { load: function (url, onLoad, onProgress, onError) { var scope = this var loader = new FileLoader(this.manager) loader.setPath(this.path) loader.load( url, function (text) { var json try { json = JSON.parse(text) } catch (e) { console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' ) json = JSON.parse(text.substring(65, text.length - 2)) } var font = scope.parse(json) if (onLoad) onLoad(font) }, onProgress, onError ) }, parse: function (json) { return new Font(json) }, setPath: function (value) { this.path = value return this } }) /** * @author mrdoob / http://mrdoob.com/ */ var context var AudioContext = { getContext: function () { if (context === undefined) { context = new (window.AudioContext || window.webkitAudioContext)() } return context }, setContext: function (value) { context = value } } /** * @author Reece Aaron Lecrivain / http://reecenotes.com/ */ function AudioLoader(manager) { this.manager = manager !== undefined ? manager : DefaultLoadingManager } Object.assign(AudioLoader.prototype, { load: function (url, onLoad, onProgress, onError) { var loader = new FileLoader(this.manager) loader.setResponseType('arraybuffer') loader.load( url, function (buffer) { var context = AudioContext.getContext() context.decodeAudioData(buffer, function (audioBuffer) { onLoad(audioBuffer) }) }, onProgress, onError ) } }) /** * @author mrdoob / http://mrdoob.com/ */ function StereoCamera() { this.type = 'StereoCamera' this.aspect = 1 this.eyeSep = 0.064 this.cameraL = new PerspectiveCamera() this.cameraL.layers.enable(1) this.cameraL.matrixAutoUpdate = false this.cameraR = new PerspectiveCamera() this.cameraR.layers.enable(2) this.cameraR.matrixAutoUpdate = false } Object.assign(StereoCamera.prototype, { update: (function () { var instance, focus, fov, aspect, near, far, zoom, eyeSep var eyeRight = new Matrix4() var eyeLeft = new Matrix4() return function update(camera) { var needsUpdate = instance !== this || focus !== camera.focus || fov !== camera.fov || aspect !== camera.aspect * this.aspect || near !== camera.near || far !== camera.far || zoom !== camera.zoom || eyeSep !== this.eyeSep if (needsUpdate) { instance = this focus = camera.focus fov = camera.fov aspect = camera.aspect * this.aspect near = camera.near far = camera.far zoom = camera.zoom // Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/ var projectionMatrix = camera.projectionMatrix.clone() eyeSep = this.eyeSep / 2 var eyeSepOnProjection = (eyeSep * near) / focus var ymax = (near * Math.tan(_Math.DEG2RAD * fov * 0.5)) / zoom var xmin, xmax // translate xOffset eyeLeft.elements[12] = -eyeSep eyeRight.elements[12] = eyeSep // for left eye xmin = -ymax * aspect + eyeSepOnProjection xmax = ymax * aspect + eyeSepOnProjection projectionMatrix.elements[0] = (2 * near) / (xmax - xmin) projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin) this.cameraL.projectionMatrix.copy(projectionMatrix) // for right eye xmin = -ymax * aspect - eyeSepOnProjection xmax = ymax * aspect - eyeSepOnProjection projectionMatrix.elements[0] = (2 * near) / (xmax - xmin) projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin) this.cameraR.projectionMatrix.copy(projectionMatrix) } this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(eyeLeft) this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(eyeRight) } })() }) /** * Camera for rendering cube maps * - renders scene into axis-aligned cube * * @author alteredq / http://alteredqualia.com/ */ function CubeCamera(near, far, cubeResolution) { Object3D.call(this) this.type = 'CubeCamera' var fov = 90, aspect = 1 var cameraPX = new PerspectiveCamera(fov, aspect, near, far) cameraPX.up.set(0, -1, 0) cameraPX.lookAt(new Vector3(1, 0, 0)) this.add(cameraPX) var cameraNX = new PerspectiveCamera(fov, aspect, near, far) cameraNX.up.set(0, -1, 0) cameraNX.lookAt(new Vector3(-1, 0, 0)) this.add(cameraNX) var cameraPY = new PerspectiveCamera(fov, aspect, near, far) cameraPY.up.set(0, 0, 1) cameraPY.lookAt(new Vector3(0, 1, 0)) this.add(cameraPY) var cameraNY = new PerspectiveCamera(fov, aspect, near, far) cameraNY.up.set(0, 0, -1) cameraNY.lookAt(new Vector3(0, -1, 0)) this.add(cameraNY) var cameraPZ = new PerspectiveCamera(fov, aspect, near, far) cameraPZ.up.set(0, -1, 0) cameraPZ.lookAt(new Vector3(0, 0, 1)) this.add(cameraPZ) var cameraNZ = new PerspectiveCamera(fov, aspect, near, far) cameraNZ.up.set(0, -1, 0) cameraNZ.lookAt(new Vector3(0, 0, -1)) this.add(cameraNZ) var options = { format: RGBFormat, magFilter: LinearFilter, minFilter: LinearFilter } this.renderTarget = new WebGLRenderTargetCube(cubeResolution, cubeResolution, options) this.renderTarget.texture.name = 'CubeCamera' this.update = function (renderer, scene) { if (this.parent === null) this.updateMatrixWorld() var renderTarget = this.renderTarget var generateMipmaps = renderTarget.texture.generateMipmaps renderTarget.texture.generateMipmaps = false renderTarget.activeCubeFace = 0 renderer.render(scene, cameraPX, renderTarget) renderTarget.activeCubeFace = 1 renderer.render(scene, cameraNX, renderTarget) renderTarget.activeCubeFace = 2 renderer.render(scene, cameraPY, renderTarget) renderTarget.activeCubeFace = 3 renderer.render(scene, cameraNY, renderTarget) renderTarget.activeCubeFace = 4 renderer.render(scene, cameraPZ, renderTarget) renderTarget.texture.generateMipmaps = generateMipmaps renderTarget.activeCubeFace = 5 renderer.render(scene, cameraNZ, renderTarget) renderer.setRenderTarget(null) } this.clear = function (renderer, color, depth, stencil) { var renderTarget = this.renderTarget for (var i = 0; i < 6; i++) { renderTarget.activeCubeFace = i renderer.setRenderTarget(renderTarget) renderer.clear(color, depth, stencil) } renderer.setRenderTarget(null) } } CubeCamera.prototype = Object.create(Object3D.prototype) CubeCamera.prototype.constructor = CubeCamera /** * @author mrdoob / http://mrdoob.com/ */ function AudioListener() { Object3D.call(this) this.type = 'AudioListener' this.context = AudioContext.getContext() this.gain = this.context.createGain() this.gain.connect(this.context.destination) this.filter = null } AudioListener.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: AudioListener, getInput: function () { return this.gain }, removeFilter: function () { if (this.filter !== null) { this.gain.disconnect(this.filter) this.filter.disconnect(this.context.destination) this.gain.connect(this.context.destination) this.filter = null } }, getFilter: function () { return this.filter }, setFilter: function (value) { if (this.filter !== null) { this.gain.disconnect(this.filter) this.filter.disconnect(this.context.destination) } else { this.gain.disconnect(this.context.destination) } this.filter = value this.gain.connect(this.filter) this.filter.connect(this.context.destination) }, getMasterVolume: function () { return this.gain.gain.value }, setMasterVolume: function (value) { this.gain.gain.value = value }, updateMatrixWorld: (function () { var position = new Vector3() var quaternion = new Quaternion() var scale = new Vector3() var orientation = new Vector3() return function updateMatrixWorld(force) { Object3D.prototype.updateMatrixWorld.call(this, force) var listener = this.context.listener var up = this.up this.matrixWorld.decompose(position, quaternion, scale) orientation.set(0, 0, -1).applyQuaternion(quaternion) if (listener.positionX) { listener.positionX.setValueAtTime(position.x, this.context.currentTime) listener.positionY.setValueAtTime(position.y, this.context.currentTime) listener.positionZ.setValueAtTime(position.z, this.context.currentTime) listener.forwardX.setValueAtTime(orientation.x, this.context.currentTime) listener.forwardY.setValueAtTime(orientation.y, this.context.currentTime) listener.forwardZ.setValueAtTime(orientation.z, this.context.currentTime) listener.upX.setValueAtTime(up.x, this.context.currentTime) listener.upY.setValueAtTime(up.y, this.context.currentTime) listener.upZ.setValueAtTime(up.z, this.context.currentTime) } else { listener.setPosition(position.x, position.y, position.z) listener.setOrientation(orientation.x, orientation.y, orientation.z, up.x, up.y, up.z) } } })() }) /** * @author mrdoob / http://mrdoob.com/ * @author Reece Aaron Lecrivain / http://reecenotes.com/ */ function Audio(listener) { Object3D.call(this) this.type = 'Audio' this.context = listener.context this.gain = this.context.createGain() this.gain.connect(listener.getInput()) this.autoplay = false this.buffer = null this.loop = false this.startTime = 0 this.offset = 0 this.playbackRate = 1 this.isPlaying = false this.hasPlaybackControl = true this.sourceType = 'empty' this.filters = [] } Audio.prototype = Object.assign(Object.create(Object3D.prototype), { constructor: Audio, getOutput: function () { return this.gain }, setNodeSource: function (audioNode) { this.hasPlaybackControl = false this.sourceType = 'audioNode' this.source = audioNode this.connect() return this }, setBuffer: function (audioBuffer) { this.buffer = audioBuffer this.sourceType = 'buffer' if (this.autoplay) this.play() return this }, play: function () { if (this.isPlaying === true) { console.warn('THREE.Audio: Audio is already playing.') return } if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return } var source = this.context.createBufferSource() source.buffer = this.buffer source.loop = this.loop source.onended = this.onEnded.bind(this) source.playbackRate.setValueAtTime(this.playbackRate, this.startTime) this.startTime = this.context.currentTime source.start(this.startTime, this.offset) this.isPlaying = true this.source = source return this.connect() }, pause: function () { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return } if (this.isPlaying === true) { this.source.stop() this.offset += (this.context.currentTime - this.startTime) * this.playbackRate this.isPlaying = false } return this }, stop: function () { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return } this.source.stop() this.offset = 0 this.isPlaying = false return this }, connect: function () { if (this.filters.length > 0) { this.source.connect(this.filters[0]) for (var i = 1, l = this.filters.length; i < l; i++) { this.filters[i - 1].connect(this.filters[i]) } this.filters[this.filters.length - 1].connect(this.getOutput()) } else { this.source.connect(this.getOutput()) } return this }, disconnect: function () { if (this.filters.length > 0) { this.source.disconnect(this.filters[0]) for (var i = 1, l = this.filters.length; i < l; i++) { this.filters[i - 1].disconnect(this.filters[i]) } this.filters[this.filters.length - 1].disconnect(this.getOutput()) } else { this.source.disconnect(this.getOutput()) } return this }, getFilters: function () { return this.filters }, setFilters: function (value) { if (!value) value = [] if (this.isPlaying === true) { this.disconnect() this.filters = value this.connect() } else { this.filters = value } return this }, getFilter: function () { return this.getFilters()[0] }, setFilter: function (filter) { return this.setFilters(filter ? [filter] : []) }, setPlaybackRate: function (value) { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return } this.playbackRate = value if (this.isPlaying === true) { this.source.playbackRate.setValueAtTime(this.playbackRate, this.context.currentTime) } return this }, getPlaybackRate: function () { return this.playbackRate }, onEnded: function () { this.isPlaying = false }, getLoop: function () { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return false } return this.loop }, setLoop: function (value) { if (this.hasPlaybackControl === false) { console.warn('THREE.Audio: this Audio has no playback control.') return } this.loop = value if (this.isPlaying === true) { this.source.loop = this.loop } return this }, getVolume: function () { return this.gain.gain.value }, setVolume: function (value) { this.gain.gain.value = value return this } }) /** * @author mrdoob / http://mrdoob.com/ */ function PositionalAudio(listener) { Audio.call(this, listener) this.panner = this.context.createPanner() this.panner.connect(this.gain) } PositionalAudio.prototype = Object.assign(Object.create(Audio.prototype), { constructor: PositionalAudio, getOutput: function () { return this.panner }, getRefDistance: function () { return this.panner.refDistance }, setRefDistance: function (value) { this.panner.refDistance = value }, getRolloffFactor: function () { return this.panner.rolloffFactor }, setRolloffFactor: function (value) { this.panner.rolloffFactor = value }, getDistanceModel: function () { return this.panner.distanceModel }, setDistanceModel: function (value) { this.panner.distanceModel = value }, getMaxDistance: function () { return this.panner.maxDistance }, setMaxDistance: function (value) { this.panner.maxDistance = value }, updateMatrixWorld: (function () { var position = new Vector3() return function updateMatrixWorld(force) { Object3D.prototype.updateMatrixWorld.call(this, force) position.setFromMatrixPosition(this.matrixWorld) this.panner.setPosition(position.x, position.y, position.z) } })() }) /** * @author mrdoob / http://mrdoob.com/ */ function AudioAnalyser(audio, fftSize) { this.analyser = audio.context.createAnalyser() this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048 this.data = new Uint8Array(this.analyser.frequencyBinCount) audio.getOutput().connect(this.analyser) } Object.assign(AudioAnalyser.prototype, { getFrequencyData: function () { this.analyser.getByteFrequencyData(this.data) return this.data }, getAverageFrequency: function () { var value = 0, data = this.getFrequencyData() for (var i = 0; i < data.length; i++) { value += data[i] } return value / data.length } }) /** * * Buffered scene graph property that allows weighted accumulation. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function PropertyMixer(binding, typeName, valueSize) { this.binding = binding this.valueSize = valueSize var bufferType = Float64Array, mixFunction switch (typeName) { case 'quaternion': mixFunction = this._slerp break case 'string': case 'bool': bufferType = Array mixFunction = this._select break default: mixFunction = this._lerp } this.buffer = new bufferType(valueSize * 4) // layout: [ incoming | accu0 | accu1 | orig ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property this._mixBufferRegion = mixFunction this.cumulativeWeight = 0 this.useCount = 0 this.referenceCount = 0 } Object.assign(PropertyMixer.prototype, { // accumulate data in the 'incoming' region into 'accu' accumulate: function (accuIndex, weight) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place var buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride, currentWeight = this.cumulativeWeight if (currentWeight === 0) { // accuN := incoming * weight for (var i = 0; i !== stride; ++i) { buffer[offset + i] = buffer[i] } currentWeight = weight } else { // accuN := accuN + incoming * weight currentWeight += weight var mix = weight / currentWeight this._mixBufferRegion(buffer, offset, 0, mix, stride) } this.cumulativeWeight = currentWeight }, // apply the state of 'accu' to the binding when accus differ apply: function (accuIndex) { var stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, binding = this.binding this.cumulativeWeight = 0 if (weight < 1) { // accuN := accuN + original * ( 1 - cumulativeWeight ) var originalValueOffset = stride * 3 this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride) } for (var i = stride, e = stride + stride; i !== e; ++i) { if (buffer[i] !== buffer[i + stride]) { // value has changed -> update scene graph binding.setValue(buffer, offset) break } } }, // remember the state of the bound property and copy it to both accus saveOriginalState: function () { var binding = this.binding var buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * 3 binding.getValue(buffer, originalValueOffset) // accu[0..1] := orig -- initially detect changes against the original for (var i = stride, e = originalValueOffset; i !== e; ++i) { buffer[i] = buffer[originalValueOffset + (i % stride)] } this.cumulativeWeight = 0 }, // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState: function () { var originalValueOffset = this.valueSize * 3 this.binding.setValue(this.buffer, originalValueOffset) }, // mix functions _select: function (buffer, dstOffset, srcOffset, t, stride) { if (t >= 0.5) { for (var i = 0; i !== stride; ++i) { buffer[dstOffset + i] = buffer[srcOffset + i] } } }, _slerp: function (buffer, dstOffset, srcOffset, t) { Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t) }, _lerp: function (buffer, dstOffset, srcOffset, t, stride) { var s = 1 - t for (var i = 0; i !== stride; ++i) { var j = dstOffset + i buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t } } }) /** * * A reference to a real property in the scene graph. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ // Characters [].:/ are reserved for track binding syntax. var RESERVED_CHARS_RE = '\\[\\]\\.:\\/' function Composite(targetGroup, path, optionalParsedPath) { var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path) this._targetGroup = targetGroup this._bindings = targetGroup.subscribe_(path, parsedPath) } Object.assign(Composite.prototype, { getValue: function (array, offset) { this.bind() // bind all binding var firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[firstValidIndex] // and only call .getValue on the first if (binding !== undefined) binding.getValue(array, offset) }, setValue: function (array, offset) { var bindings = this._bindings for (var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].setValue(array, offset) } }, bind: function () { var bindings = this._bindings for (var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].bind() } }, unbind: function () { var bindings = this._bindings for (var i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) { bindings[i].unbind() } } }) function PropertyBinding(rootNode, path, parsedPath) { this.path = path this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path) this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode this.rootNode = rootNode } Object.assign(PropertyBinding, { Composite: Composite, create: function (root, path, parsedPath) { if (!(root && root.isAnimationObjectGroup)) { return new PropertyBinding(root, path, parsedPath) } else { return new PropertyBinding.Composite(root, path, parsedPath) } }, /** * Replaces spaces with underscores and removes unsupported characters from * node names, to ensure compatibility with parseTrackName(). * * @param {string} name Node name to be sanitized. * @return {string} */ sanitizeNodeName: (function () { var reservedRe = new RegExp('[' + RESERVED_CHARS_RE + ']', 'g') return function sanitizeNodeName(name) { return name.replace(/\s/g, '_').replace(reservedRe, '') } })(), parseTrackName: (function () { // Attempts to allow node names from any language. ES5's `\w` regexp matches // only latin characters, and the unicode \p{L} is not yet supported. So // instead, we exclude reserved characters and match everything else. var wordChar = '[^' + RESERVED_CHARS_RE + ']' var wordCharOrDot = '[^' + RESERVED_CHARS_RE.replace('\\.', '') + ']' // Parent directories, delimited by '/' or ':'. Currently unused, but must // be matched to parse the rest of the track name. var directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', wordChar) // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. var nodeRe = /(WCOD+)?/.source.replace('WCOD', wordCharOrDot) // Object on target node, and accessor. May not contain reserved // characters. Accessor may contain any character except closing bracket. var objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', wordChar) // Property and accessor. May not contain reserved characters. Accessor may // contain any non-bracket characters. var propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', wordChar) var trackRe = new RegExp('' + '^' + directoryRe + nodeRe + objectRe + propertyRe + '$') var supportedObjectNames = ['material', 'materials', 'bones'] return function parseTrackName(trackName) { var matches = trackRe.exec(trackName) if (!matches) { throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName) } var results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[2], objectName: matches[3], objectIndex: matches[4], propertyName: matches[5], // required propertyIndex: matches[6] } var lastDot = results.nodeName && results.nodeName.lastIndexOf('.') if (lastDot !== undefined && lastDot !== -1) { var objectName = results.nodeName.substring(lastDot + 1) // Object names must be checked against a whitelist. Otherwise, there // is no way to parse 'foo.bar.baz': 'baz' must be a property, but // 'bar' could be the objectName, or part of a nodeName (which can // include '.' characters). if (supportedObjectNames.indexOf(objectName) !== -1) { results.nodeName = results.nodeName.substring(0, lastDot) results.objectName = objectName } } if (results.propertyName === null || results.propertyName.length === 0) { throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName ) } return results } })(), findNode: function (root, nodeName) { if ( !nodeName || nodeName === '' || nodeName === 'root' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid ) { return root } // search into skeleton bones. if (root.skeleton) { var bone = root.skeleton.getBoneByName(nodeName) if (bone !== undefined) { return bone } } // search into node subtree. if (root.children) { var searchNodeSubtree = function (children) { for (var i = 0; i < children.length; i++) { var childNode = children[i] if (childNode.name === nodeName || childNode.uuid === nodeName) { return childNode } var result = searchNodeSubtree(childNode.children) if (result) return result } return null } var subTreeNode = searchNodeSubtree(root.children) if (subTreeNode) { return subTreeNode } } return null } }) Object.assign(PropertyBinding.prototype, { // prototype, continued // these are used to "bind" a nonexistent property _getValue_unavailable: function () {}, _setValue_unavailable: function () {}, BindingType: { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }, Versioning: { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }, GetterByBindingType: [ function getValue_direct(buffer, offset) { buffer[offset] = this.node[this.propertyName] }, function getValue_array(buffer, offset) { var source = this.resolvedProperty for (var i = 0, n = source.length; i !== n; ++i) { buffer[offset++] = source[i] } }, function getValue_arrayElement(buffer, offset) { buffer[offset] = this.resolvedProperty[this.propertyIndex] }, function getValue_toArray(buffer, offset) { this.resolvedProperty.toArray(buffer, offset) } ], SetterByBindingTypeAndVersioning: [ [ // Direct function setValue_direct(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset] }, function setValue_direct_setNeedsUpdate(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset] this.targetObject.needsUpdate = true }, function setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) { this.targetObject[this.propertyName] = buffer[offset] this.targetObject.matrixWorldNeedsUpdate = true } ], [ // EntireArray function setValue_array(buffer, offset) { var dest = this.resolvedProperty for (var i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++] } }, function setValue_array_setNeedsUpdate(buffer, offset) { var dest = this.resolvedProperty for (var i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++] } this.targetObject.needsUpdate = true }, function setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) { var dest = this.resolvedProperty for (var i = 0, n = dest.length; i !== n; ++i) { dest[i] = buffer[offset++] } this.targetObject.matrixWorldNeedsUpdate = true } ], [ // ArrayElement function setValue_arrayElement(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset] }, function setValue_arrayElement_setNeedsUpdate(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset] this.targetObject.needsUpdate = true }, function setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) { this.resolvedProperty[this.propertyIndex] = buffer[offset] this.targetObject.matrixWorldNeedsUpdate = true } ], [ // HasToFromArray function setValue_fromArray(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset) }, function setValue_fromArray_setNeedsUpdate(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset) this.targetObject.needsUpdate = true }, function setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) { this.resolvedProperty.fromArray(buffer, offset) this.targetObject.matrixWorldNeedsUpdate = true } ] ], getValue: function getValue_unbound(targetArray, offset) { this.bind() this.getValue(targetArray, offset) // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. }, setValue: function getValue_unbound(sourceArray, offset) { this.bind() this.setValue(sourceArray, offset) }, // create getter / setter pair for a property in the scene graph bind: function () { var targetObject = this.node, parsedPath = this.parsedPath, objectName = parsedPath.objectName, propertyName = parsedPath.propertyName, propertyIndex = parsedPath.propertyIndex if (!targetObject) { targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode this.node = targetObject } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable this.setValue = this._setValue_unavailable // ensure there is a value node if (!targetObject) { console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + " but it wasn't found." ) return } if (objectName) { var objectIndex = parsedPath.objectIndex // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch (objectName) { case 'materials': if (!targetObject.material) { console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ) return } if (!targetObject.material.materials) { console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this ) return } targetObject = targetObject.material.materials break case 'bones': if (!targetObject.skeleton) { console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this ) return } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones // support resolving morphTarget names into indices. for (var i = 0; i < targetObject.length; i++) { if (targetObject[i].name === objectIndex) { objectIndex = i break } } break default: if (targetObject[objectName] === undefined) { console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this ) return } targetObject = targetObject[objectName] } if (objectIndex !== undefined) { if (targetObject[objectIndex] === undefined) { console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject ) return } targetObject = targetObject[objectIndex] } } // resolve property var nodeProperty = targetObject[propertyName] if (nodeProperty === undefined) { var nodeName = parsedPath.nodeName console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + " but it wasn't found.", targetObject ) return } // determine versioning scheme var versioning = this.Versioning.None if (targetObject.needsUpdate !== undefined) { // material versioning = this.Versioning.NeedsUpdate this.targetObject = targetObject } else if (targetObject.matrixWorldNeedsUpdate !== undefined) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate this.targetObject = targetObject } // determine how the property gets bound var bindingType = this.BindingType.Direct if (propertyIndex !== undefined) { // access a sub element of the property array (only primitives are supported right now) if (propertyName === 'morphTargetInfluences') { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if (!targetObject.geometry) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this ) return } if (targetObject.geometry.isBufferGeometry) { if (!targetObject.geometry.morphAttributes) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this ) return } for (var i = 0; i < this.node.geometry.morphAttributes.position.length; i++) { if (targetObject.geometry.morphAttributes.position[i].name === propertyIndex) { propertyIndex = i break } } } else { if (!targetObject.geometry.morphTargets) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphTargets.', this ) return } for (var i = 0; i < this.node.geometry.morphTargets.length; i++) { if (targetObject.geometry.morphTargets[i].name === propertyIndex) { propertyIndex = i break } } } } bindingType = this.BindingType.ArrayElement this.resolvedProperty = nodeProperty this.propertyIndex = propertyIndex } else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray this.resolvedProperty = nodeProperty } else if (Array.isArray(nodeProperty)) { bindingType = this.BindingType.EntireArray this.resolvedProperty = nodeProperty } else { this.propertyName = propertyName } // select getter / setter this.getValue = this.GetterByBindingType[bindingType] this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning] }, unbind: function () { this.node = null // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound this.setValue = this._setValue_unbound } }) //!\ DECLARE ALIAS AFTER assign prototype ! Object.assign(PropertyBinding.prototype, { // initial state of these methods that calls 'bind' _getValue_unbound: PropertyBinding.prototype.getValue, _setValue_unbound: PropertyBinding.prototype.setValue }) /** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. * * @author tschw */ function AnimationObjectGroup() { this.uuid = _Math.generateUUID() // cached objects followed by the active ones this._objects = Array.prototype.slice.call(arguments) this.nCachedObjects_ = 0 // threshold // note: read by PropertyBinding.Composite var indices = {} this._indicesByUUID = indices // for bookkeeping for (var i = 0, n = arguments.length; i !== n; ++i) { indices[arguments[i].uuid] = i } this._paths = [] // inside: string this._parsedPaths = [] // inside: { we don't care, here } this._bindings = [] // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {} // inside: indices in these arrays var scope = this this.stats = { objects: { get total() { return scope._objects.length }, get inUse() { return this.total - scope.nCachedObjects_ } }, get bindingsPerObject() { return scope._bindings.length } } } Object.assign(AnimationObjectGroup.prototype, { isAnimationObjectGroup: true, add: function () { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length, knownObject = undefined for (var i = 0, n = arguments.length; i !== n; ++i) { var object = arguments[i], uuid = object.uuid, index = indicesByUUID[uuid] if (index === undefined) { // unknown object -> add it to the ACTIVE region index = nObjects++ indicesByUUID[uuid] = index objects.push(object) // accounting is done, now do the same for all bindings for (var j = 0, m = nBindings; j !== m; ++j) { bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j])) } } else if (index < nCachedObjects) { knownObject = objects[index] // move existing object to the ACTIVE region var firstActiveIndex = --nCachedObjects, lastCachedObject = objects[firstActiveIndex] indicesByUUID[lastCachedObject.uuid] = index objects[index] = lastCachedObject indicesByUUID[uuid] = firstActiveIndex objects[firstActiveIndex] = object // accounting is done, now do the same for all bindings for (var j = 0, m = nBindings; j !== m; ++j) { var bindingsForPath = bindings[j], lastCached = bindingsForPath[firstActiveIndex], binding = bindingsForPath[index] bindingsForPath[index] = lastCached if (binding === undefined) { // since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist binding = new PropertyBinding(object, paths[j], parsedPaths[j]) } bindingsForPath[firstActiveIndex] = binding } } else if (objects[index] !== knownObject) { console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.' ) } // else the object is already where we want it to be } // for arguments this.nCachedObjects_ = nCachedObjects }, remove: function () { var objects = this._objects, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length for (var i = 0, n = arguments.length; i !== n; ++i) { var object = arguments[i], uuid = object.uuid, index = indicesByUUID[uuid] if (index !== undefined && index >= nCachedObjects) { // move existing object into the CACHED region var lastCachedIndex = nCachedObjects++, firstActiveObject = objects[lastCachedIndex] indicesByUUID[firstActiveObject.uuid] = index objects[index] = firstActiveObject indicesByUUID[uuid] = lastCachedIndex objects[lastCachedIndex] = object // accounting is done, now do the same for all bindings for (var j = 0, m = nBindings; j !== m; ++j) { var bindingsForPath = bindings[j], firstActive = bindingsForPath[lastCachedIndex], binding = bindingsForPath[index] bindingsForPath[index] = firstActive bindingsForPath[lastCachedIndex] = binding } } } // for arguments this.nCachedObjects_ = nCachedObjects }, // remove & forget uncache: function () { var objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length for (var i = 0, n = arguments.length; i !== n; ++i) { var object = arguments[i], uuid = object.uuid, index = indicesByUUID[uuid] if (index !== undefined) { delete indicesByUUID[uuid] if (index < nCachedObjects) { // object is cached, shrink the CACHED region var firstActiveIndex = --nCachedObjects, lastCachedObject = objects[firstActiveIndex], lastIndex = --nObjects, lastObject = objects[lastIndex] // last cached object takes this object's place indicesByUUID[lastCachedObject.uuid] = index objects[index] = lastCachedObject // last object goes to the activated slot and pop indicesByUUID[lastObject.uuid] = firstActiveIndex objects[firstActiveIndex] = lastObject objects.pop() // accounting is done, now do the same for all bindings for (var j = 0, m = nBindings; j !== m; ++j) { var bindingsForPath = bindings[j], lastCached = bindingsForPath[firstActiveIndex], last = bindingsForPath[lastIndex] bindingsForPath[index] = lastCached bindingsForPath[firstActiveIndex] = last bindingsForPath.pop() } } else { // object is active, just swap with the last and pop var lastIndex = --nObjects, lastObject = objects[lastIndex] indicesByUUID[lastObject.uuid] = index objects[index] = lastObject objects.pop() // accounting is done, now do the same for all bindings for (var j = 0, m = nBindings; j !== m; ++j) { var bindingsForPath = bindings[j] bindingsForPath[index] = bindingsForPath[lastIndex] bindingsForPath.pop() } } // cached or active } // if object is known } // for arguments this.nCachedObjects_ = nCachedObjects }, // Internal interface used by befriended PropertyBinding.Composite: subscribe_: function (path, parsedPath) { // returns an array of bindings for the given path that is changed // according to the contained objects in the group var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[path], bindings = this._bindings if (index !== undefined) return bindings[index] var paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array(nObjects) index = bindings.length indicesByPath[path] = index paths.push(path) parsedPaths.push(parsedPath) bindings.push(bindingsForPath) for (var i = nCachedObjects, n = objects.length; i !== n; ++i) { var object = objects[i] bindingsForPath[i] = new PropertyBinding(object, path, parsedPath) } return bindingsForPath }, unsubscribe_: function (path) { // tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_' var indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[path] if (index !== undefined) { var paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[lastBindingsIndex], lastBindingsPath = path[lastBindingsIndex] indicesByPath[lastBindingsPath] = index bindings[index] = lastBindings bindings.pop() parsedPaths[index] = parsedPaths[lastBindingsIndex] parsedPaths.pop() paths[index] = paths[lastBindingsIndex] paths.pop() } } }) /** * * Action provided by AnimationMixer for scheduling clip playback on specific * objects. * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw * */ function AnimationAction(mixer, clip, localRoot) { this._mixer = mixer this._clip = clip this._localRoot = localRoot || null var tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array(nTracks) var interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding } for (var i = 0; i !== nTracks; ++i) { var interpolant = tracks[i].createInterpolant(null) interpolants[i] = interpolant interpolant.settings = interpolantSettings } this._interpolantSettings = interpolantSettings this._interpolants = interpolants // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array(nTracks) this._cacheIndex = null // for the memory manager this._byClipCacheIndex = null // for the memory manager this._timeScaleInterpolant = null this._weightInterpolant = null this.loop = LoopRepeat this._loopCount = -1 // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0 this.timeScale = 1 this._effectiveTimeScale = 1 this.weight = 1 this._effectiveWeight = 1 this.repetitions = Infinity // no. of repetitions when looping this.paused = false // true -> zero effective time scale this.enabled = true // false -> zero effective weight this.clampWhenFinished = false // keep feeding the last frame? this.zeroSlopeAtStart = true // for smooth interpolation w/o separate this.zeroSlopeAtEnd = true // clips for start, loop and end } Object.assign(AnimationAction.prototype, { // State & Scheduling play: function () { this._mixer._activateAction(this) return this }, stop: function () { this._mixer._deactivateAction(this) return this.reset() }, reset: function () { this.paused = false this.enabled = true this.time = 0 // restart clip this._loopCount = -1 // forget previous loops this._startTime = null // forget scheduling return this.stopFading().stopWarping() }, isRunning: function () { return ( this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this) ) }, // return true when play has been called isScheduled: function () { return this._mixer._isActiveAction(this) }, startAt: function (time) { this._startTime = time return this }, setLoop: function (mode, repetitions) { this.loop = mode this.repetitions = repetitions return this }, // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight: function (weight) { this.weight = weight // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0 return this.stopFading() }, // return the weight considering fading and .enabled getEffectiveWeight: function () { return this._effectiveWeight }, fadeIn: function (duration) { return this._scheduleFading(duration, 0, 1) }, fadeOut: function (duration) { return this._scheduleFading(duration, 1, 0) }, crossFadeFrom: function (fadeOutAction, duration, warp) { fadeOutAction.fadeOut(duration) this.fadeIn(duration) if (warp) { var fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration fadeOutAction.warp(1.0, startEndRatio, duration) this.warp(endStartRatio, 1.0, duration) } return this }, crossFadeTo: function (fadeInAction, duration, warp) { return fadeInAction.crossFadeFrom(this, duration, warp) }, stopFading: function () { var weightInterpolant = this._weightInterpolant if (weightInterpolant !== null) { this._weightInterpolant = null this._mixer._takeBackControlInterpolant(weightInterpolant) } return this }, // Time Scale Control // set the time scale stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale: function (timeScale) { this.timeScale = timeScale this._effectiveTimeScale = this.paused ? 0 : timeScale return this.stopWarping() }, // return the time scale considering warping and .paused getEffectiveTimeScale: function () { return this._effectiveTimeScale }, setDuration: function (duration) { this.timeScale = this._clip.duration / duration return this.stopWarping() }, syncWith: function (action) { this.time = action.time this.timeScale = action.timeScale return this.stopWarping() }, halt: function (duration) { return this.warp(this._effectiveTimeScale, 0, duration) }, warp: function (startTimeScale, endTimeScale, duration) { var mixer = this._mixer, now = mixer.time, interpolant = this._timeScaleInterpolant, timeScale = this.timeScale if (interpolant === null) { interpolant = mixer._lendControlInterpolant() this._timeScaleInterpolant = interpolant } var times = interpolant.parameterPositions, values = interpolant.sampleValues times[0] = now times[1] = now + duration values[0] = startTimeScale / timeScale values[1] = endTimeScale / timeScale return this }, stopWarping: function () { var timeScaleInterpolant = this._timeScaleInterpolant if (timeScaleInterpolant !== null) { this._timeScaleInterpolant = null this._mixer._takeBackControlInterpolant(timeScaleInterpolant) } return this }, // Object Accessors getMixer: function () { return this._mixer }, getClip: function () { return this._clip }, getRoot: function () { return this._localRoot || this._mixer._root }, // Interna _update: function (time, deltaTime, timeDirection, accuIndex) { // called by the mixer if (!this.enabled) { // call ._updateWeight() to update ._effectiveWeight this._updateWeight(time) return } var startTime = this._startTime if (startTime !== null) { // check for scheduled start of action var timeRunning = (time - startTime) * timeDirection if (timeRunning < 0 || timeDirection === 0) { return // yet to come / don't decide when delta = 0 } // start this._startTime = null // unschedule deltaTime = timeDirection * timeRunning } // apply time scale and advance time deltaTime *= this._updateTimeScale(time) var clipTime = this._updateTime(deltaTime) // note: _updateTime may disable the action resulting in // an effective weight of 0 var weight = this._updateWeight(time) if (weight > 0) { var interpolants = this._interpolants var propertyMixers = this._propertyBindings for (var j = 0, m = interpolants.length; j !== m; ++j) { interpolants[j].evaluate(clipTime) propertyMixers[j].accumulate(accuIndex, weight) } } }, _updateWeight: function (time) { var weight = 0 if (this.enabled) { weight = this.weight var interpolant = this._weightInterpolant if (interpolant !== null) { var interpolantValue = interpolant.evaluate(time)[0] weight *= interpolantValue if (time > interpolant.parameterPositions[1]) { this.stopFading() if (interpolantValue === 0) { // faded out, disable this.enabled = false } } } } this._effectiveWeight = weight return weight }, _updateTimeScale: function (time) { var timeScale = 0 if (!this.paused) { timeScale = this.timeScale var interpolant = this._timeScaleInterpolant if (interpolant !== null) { var interpolantValue = interpolant.evaluate(time)[0] timeScale *= interpolantValue if (time > interpolant.parameterPositions[1]) { this.stopWarping() if (timeScale === 0) { // motion has halted, pause this.paused = true } else { // warp done - apply final time scale this.timeScale = timeScale } } } } this._effectiveTimeScale = timeScale return timeScale }, _updateTime: function (deltaTime) { var time = this.time + deltaTime if (deltaTime === 0) return time var duration = this._clip.duration, loop = this.loop, loopCount = this._loopCount if (loop === LoopOnce) { if (loopCount === -1) { // just started this._loopCount = 0 this._setEndings(true, true, false) } handle_stop: { if (time >= duration) { time = duration } else if (time < 0) { time = 0 } else break handle_stop if (this.clampWhenFinished) this.paused = true else this.enabled = false this._mixer.dispatchEvent({ type: 'finished', action: this, direction: deltaTime < 0 ? -1 : 1 }) } } else { // repetitive Repeat or PingPong var pingPong = loop === LoopPingPong if (loopCount === -1) { // just started if (deltaTime >= 0) { loopCount = 0 this._setEndings(true, this.repetitions === 0, pingPong) } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings(this.repetitions === 0, true, pingPong) } } if (time >= duration || time < 0) { // wrap around var loopDelta = Math.floor(time / duration) // signed time -= duration * loopDelta loopCount += Math.abs(loopDelta) var pending = this.repetitions - loopCount if (pending < 0) { // have to stop (switch state, clamp time, fire event) if (this.clampWhenFinished) this.paused = true else this.enabled = false time = deltaTime > 0 ? duration : 0 this._mixer.dispatchEvent({ type: 'finished', action: this, direction: deltaTime > 0 ? 1 : -1 }) } else { // keep running if (pending === 0) { // entering the last round var atStart = deltaTime < 0 this._setEndings(atStart, !atStart, pingPong) } else { this._setEndings(false, false, pingPong) } this._loopCount = loopCount this._mixer.dispatchEvent({ type: 'loop', action: this, loopDelta: loopDelta }) } } if (pingPong && (loopCount & 1) === 1) { // invert time for the "pong round" this.time = time return duration - time } } this.time = time return time }, _setEndings: function (atStart, atEnd, pingPong) { var settings = this._interpolantSettings if (pingPong) { settings.endingStart = ZeroSlopeEnding settings.endingEnd = ZeroSlopeEnding } else { // assuming for LoopOnce atStart == atEnd == true if (atStart) { settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding } else { settings.endingStart = WrapAroundEnding } if (atEnd) { settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding } else { settings.endingEnd = WrapAroundEnding } } }, _scheduleFading: function (duration, weightNow, weightThen) { var mixer = this._mixer, now = mixer.time, interpolant = this._weightInterpolant if (interpolant === null) { interpolant = mixer._lendControlInterpolant() this._weightInterpolant = interpolant } var times = interpolant.parameterPositions, values = interpolant.sampleValues times[0] = now values[0] = weightNow times[1] = now + duration values[1] = weightThen return this } }) /** * * Player for AnimationClips. * * * @author Ben Houston / http://clara.io/ * @author David Sarno / http://lighthaus.us/ * @author tschw */ function AnimationMixer(root) { this._root = root this._initMemoryManager() this._accuIndex = 0 this.time = 0 this.timeScale = 1.0 } AnimationMixer.prototype = Object.assign(Object.create(EventDispatcher.prototype), { constructor: AnimationMixer, _bindAction: function (action, prototypeAction) { var root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName, bindingsByName = bindingsByRoot[rootUuid] if (bindingsByName === undefined) { bindingsByName = {} bindingsByRoot[rootUuid] = bindingsByName } for (var i = 0; i !== nTracks; ++i) { var track = tracks[i], trackName = track.name, binding = bindingsByName[trackName] if (binding !== undefined) { bindings[i] = binding } else { binding = bindings[i] if (binding !== undefined) { // existing binding, make sure the cache knows if (binding._cacheIndex === null) { ++binding.referenceCount this._addInactiveBinding(binding, rootUuid, trackName) } continue } var path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath binding = new PropertyMixer( PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize() ) ++binding.referenceCount this._addInactiveBinding(binding, rootUuid, trackName) bindings[i] = binding } interpolants[i].resultBuffer = binding.buffer } }, _activateAction: function (action) { if (!this._isActiveAction(action)) { if (action._cacheIndex === null) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind var rootUuid = (action._localRoot || this._root).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[clipUuid] this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]) this._addInactiveAction(action, clipUuid, rootUuid) } var bindings = action._propertyBindings // increment reference counts / sort out state for (var i = 0, n = bindings.length; i !== n; ++i) { var binding = bindings[i] if (binding.useCount++ === 0) { this._lendBinding(binding) binding.saveOriginalState() } } this._lendAction(action) } }, _deactivateAction: function (action) { if (this._isActiveAction(action)) { var bindings = action._propertyBindings // decrement reference counts / sort out state for (var i = 0, n = bindings.length; i !== n; ++i) { var binding = bindings[i] if (--binding.useCount === 0) { binding.restoreOriginalState() this._takeBackBinding(binding) } } this._takeBackAction(action) } }, // Memory manager _initMemoryManager: function () { this._actions = [] // 'nActiveActions' followed by inactive ones this._nActiveActions = 0 this._actionsByClip = {} // inside: // { // knownActions: Array< AnimationAction > - used as prototypes // actionByRoot: AnimationAction - lookup // } this._bindings = [] // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0 this._bindingsByRootAndName = {} // inside: Map< name, PropertyMixer > this._controlInterpolants = [] // same game as above this._nActiveControlInterpolants = 0 var scope = this this.stats = { actions: { get total() { return scope._actions.length }, get inUse() { return scope._nActiveActions } }, bindings: { get total() { return scope._bindings.length }, get inUse() { return scope._nActiveBindings } }, controlInterpolants: { get total() { return scope._controlInterpolants.length }, get inUse() { return scope._nActiveControlInterpolants } } } }, // Memory management for AnimationAction objects _isActiveAction: function (action) { var index = action._cacheIndex return index !== null && index < this._nActiveActions }, _addInactiveAction: function (action, clipUuid, rootUuid) { var actions = this._actions, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[clipUuid] if (actionsForClip === undefined) { actionsForClip = { knownActions: [action], actionByRoot: {} } action._byClipCacheIndex = 0 actionsByClip[clipUuid] = actionsForClip } else { var knownActions = actionsForClip.knownActions action._byClipCacheIndex = knownActions.length knownActions.push(action) } action._cacheIndex = actions.length actions.push(action) actionsForClip.actionByRoot[rootUuid] = action }, _removeInactiveAction: function (action) { var actions = this._actions, lastInactiveAction = actions[actions.length - 1], cacheIndex = action._cacheIndex lastInactiveAction._cacheIndex = cacheIndex actions[cacheIndex] = lastInactiveAction actions.pop() action._cacheIndex = null var clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[clipUuid], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1], byClipCacheIndex = action._byClipCacheIndex lastKnownAction._byClipCacheIndex = byClipCacheIndex knownActionsForClip[byClipCacheIndex] = lastKnownAction knownActionsForClip.pop() action._byClipCacheIndex = null var actionByRoot = actionsForClip.actionByRoot, rootUuid = (action._localRoot || this._root).uuid delete actionByRoot[rootUuid] if (knownActionsForClip.length === 0) { delete actionsByClip[clipUuid] } this._removeInactiveBindingsForAction(action) }, _removeInactiveBindingsForAction: function (action) { var bindings = action._propertyBindings for (var i = 0, n = bindings.length; i !== n; ++i) { var binding = bindings[i] if (--binding.referenceCount === 0) { this._removeInactiveBinding(binding) } } }, _lendAction: function (action) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s var actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions++, firstInactiveAction = actions[lastActiveIndex] action._cacheIndex = lastActiveIndex actions[lastActiveIndex] = action firstInactiveAction._cacheIndex = prevIndex actions[prevIndex] = firstInactiveAction }, _takeBackAction: function (action) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a var actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = --this._nActiveActions, lastActiveAction = actions[firstInactiveIndex] action._cacheIndex = firstInactiveIndex actions[firstInactiveIndex] = action lastActiveAction._cacheIndex = prevIndex actions[prevIndex] = lastActiveAction }, // Memory management for PropertyMixer objects _addInactiveBinding: function (binding, rootUuid, trackName) { var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[rootUuid], bindings = this._bindings if (bindingByName === undefined) { bindingByName = {} bindingsByRoot[rootUuid] = bindingByName } bindingByName[trackName] = binding binding._cacheIndex = bindings.length bindings.push(binding) }, _removeInactiveBinding: function (binding) { var bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[rootUuid], lastInactiveBinding = bindings[bindings.length - 1], cacheIndex = binding._cacheIndex lastInactiveBinding._cacheIndex = cacheIndex bindings[cacheIndex] = lastInactiveBinding bindings.pop() delete bindingByName[trackName] remove_empty_map: { for (var _ in bindingByName) break remove_empty_map // eslint-disable-line no-unused-vars delete bindingsByRoot[rootUuid] } }, _lendBinding: function (binding) { var bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings++, firstInactiveBinding = bindings[lastActiveIndex] binding._cacheIndex = lastActiveIndex bindings[lastActiveIndex] = binding firstInactiveBinding._cacheIndex = prevIndex bindings[prevIndex] = firstInactiveBinding }, _takeBackBinding: function (binding) { var bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = --this._nActiveBindings, lastActiveBinding = bindings[firstInactiveIndex] binding._cacheIndex = firstInactiveIndex bindings[firstInactiveIndex] = binding lastActiveBinding._cacheIndex = prevIndex bindings[prevIndex] = lastActiveBinding }, // Memory management of Interpolants for weight and time scale _lendControlInterpolant: function () { var interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants++, interpolant = interpolants[lastActiveIndex] if (interpolant === undefined) { interpolant = new LinearInterpolant( new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer ) interpolant.__cacheIndex = lastActiveIndex interpolants[lastActiveIndex] = interpolant } return interpolant }, _takeBackControlInterpolant: function (interpolant) { var interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = --this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[firstInactiveIndex] interpolant.__cacheIndex = firstInactiveIndex interpolants[firstInactiveIndex] = interpolant lastActiveInterpolant.__cacheIndex = prevIndex interpolants[prevIndex] = lastActiveInterpolant }, _controlInterpolantsResultBuffer: new Float32Array(1), // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction: function (clip, optionalRoot) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip, clipUuid = clipObject !== null ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[clipUuid], prototypeAction = null if (actionsForClip !== undefined) { var existingAction = actionsForClip.actionByRoot[rootUuid] if (existingAction !== undefined) { return existingAction } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[0] // also, take the clip from the prototype action if (clipObject === null) clipObject = prototypeAction._clip } // clip must be known when specified via string if (clipObject === null) return null // allocate all resources required to run it var newAction = new AnimationAction(this, clipObject, optionalRoot) this._bindAction(newAction, prototypeAction) // and make the action known to the memory manager this._addInactiveAction(newAction, clipUuid, rootUuid) return newAction }, // get an existing action existingAction: function (clip, optionalRoot) { var root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip, clipUuid = clipObject ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[clipUuid] if (actionsForClip !== undefined) { return actionsForClip.actionByRoot[rootUuid] || null } return null }, // deactivates all previously scheduled actions stopAllAction: function () { var actions = this._actions, nActions = this._nActiveActions, bindings = this._bindings, nBindings = this._nActiveBindings this._nActiveActions = 0 this._nActiveBindings = 0 for (var i = 0; i !== nActions; ++i) { actions[i].reset() } for (var i = 0; i !== nBindings; ++i) { bindings[i].useCount = 0 } return this }, // advance the time and update apply the animation update: function (deltaTime) { deltaTime *= this.timeScale var actions = this._actions, nActions = this._nActiveActions, time = (this.time += deltaTime), timeDirection = Math.sign(deltaTime), accuIndex = (this._accuIndex ^= 1) // run active actions for (var i = 0; i !== nActions; ++i) { var action = actions[i] action._update(time, deltaTime, timeDirection, accuIndex) } // update scene graph var bindings = this._bindings, nBindings = this._nActiveBindings for (var i = 0; i !== nBindings; ++i) { bindings[i].apply(accuIndex) } return this }, // return this mixer's root target object getRoot: function () { return this._root }, // free all resources specific to a particular clip uncacheClip: function (clip) { var actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[clipUuid] if (actionsForClip !== undefined) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away var actionsToRemove = actionsForClip.knownActions for (var i = 0, n = actionsToRemove.length; i !== n; ++i) { var action = actionsToRemove[i] this._deactivateAction(action) var cacheIndex = action._cacheIndex, lastInactiveAction = actions[actions.length - 1] action._cacheIndex = null action._byClipCacheIndex = null lastInactiveAction._cacheIndex = cacheIndex actions[cacheIndex] = lastInactiveAction actions.pop() this._removeInactiveBindingsForAction(action) } delete actionsByClip[clipUuid] } }, // free all resources specific to a particular root target object uncacheRoot: function (root) { var rootUuid = root.uuid, actionsByClip = this._actionsByClip for (var clipUuid in actionsByClip) { var actionByRoot = actionsByClip[clipUuid].actionByRoot, action = actionByRoot[rootUuid] if (action !== undefined) { this._deactivateAction(action) this._removeInactiveAction(action) } } var bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[rootUuid] if (bindingByName !== undefined) { for (var trackName in bindingByName) { var binding = bindingByName[trackName] binding.restoreOriginalState() this._removeInactiveBinding(binding) } } }, // remove a targeted clip from the cache uncacheAction: function (clip, optionalRoot) { var action = this.existingAction(clip, optionalRoot) if (action !== null) { this._deactivateAction(action) this._removeInactiveAction(action) } } }) /** * @author mrdoob / http://mrdoob.com/ */ function Uniform(value) { if (typeof value === 'string') { console.warn('THREE.Uniform: Type parameter is no longer needed.') value = arguments[1] } this.value = value } Uniform.prototype.clone = function () { return new Uniform(this.value.clone === undefined ? this.value : this.value.clone()) } /** * @author benaadams / https://twitter.com/ben_a_adams */ function InstancedBufferGeometry() { BufferGeometry.call(this) this.type = 'InstancedBufferGeometry' this.maxInstancedCount = undefined } InstancedBufferGeometry.prototype = Object.assign(Object.create(BufferGeometry.prototype), { constructor: InstancedBufferGeometry, isInstancedBufferGeometry: true, copy: function (source) { BufferGeometry.prototype.copy.call(this, source) this.maxInstancedCount = source.maxInstancedCount return this }, clone: function () { return new this.constructor().copy(this) } }) /** * @author benaadams / https://twitter.com/ben_a_adams */ function InterleavedBufferAttribute(interleavedBuffer, itemSize, offset, normalized) { this.uuid = _Math.generateUUID() this.data = interleavedBuffer this.itemSize = itemSize this.offset = offset this.normalized = normalized === true } Object.defineProperties(InterleavedBufferAttribute.prototype, { count: { get: function () { return this.data.count } }, array: { get: function () { return this.data.array } } }) Object.assign(InterleavedBufferAttribute.prototype, { isInterleavedBufferAttribute: true, setX: function (index, x) { this.data.array[index * this.data.stride + this.offset] = x return this }, setY: function (index, y) { this.data.array[index * this.data.stride + this.offset + 1] = y return this }, setZ: function (index, z) { this.data.array[index * this.data.stride + this.offset + 2] = z return this }, setW: function (index, w) { this.data.array[index * this.data.stride + this.offset + 3] = w return this }, getX: function (index) { return this.data.array[index * this.data.stride + this.offset] }, getY: function (index) { return this.data.array[index * this.data.stride + this.offset + 1] }, getZ: function (index) { return this.data.array[index * this.data.stride + this.offset + 2] }, getW: function (index) { return this.data.array[index * this.data.stride + this.offset + 3] }, setXY: function (index, x, y) { index = index * this.data.stride + this.offset this.data.array[index + 0] = x this.data.array[index + 1] = y return this }, setXYZ: function (index, x, y, z) { index = index * this.data.stride + this.offset this.data.array[index + 0] = x this.data.array[index + 1] = y this.data.array[index + 2] = z return this }, setXYZW: function (index, x, y, z, w) { index = index * this.data.stride + this.offset this.data.array[index + 0] = x this.data.array[index + 1] = y this.data.array[index + 2] = z this.data.array[index + 3] = w return this } }) /** * @author benaadams / https://twitter.com/ben_a_adams */ function InterleavedBuffer(array, stride) { this.uuid = _Math.generateUUID() this.array = array this.stride = stride this.count = array !== undefined ? array.length / stride : 0 this.dynamic = false this.updateRange = { offset: 0, count: -1 } this.onUploadCallback = function () {} this.version = 0 } Object.defineProperty(InterleavedBuffer.prototype, 'needsUpdate', { set: function (value) { if (value === true) this.version++ } }) Object.assign(InterleavedBuffer.prototype, { isInterleavedBuffer: true, setArray: function (array) { if (Array.isArray(array)) { throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.') } this.count = array !== undefined ? array.length / this.stride : 0 this.array = array }, setDynamic: function (value) { this.dynamic = value return this }, copy: function (source) { this.array = new source.array.constructor(source.array) this.count = source.count this.stride = source.stride this.dynamic = source.dynamic return this }, copyAt: function (index1, attribute, index2) { index1 *= this.stride index2 *= attribute.stride for (var i = 0, l = this.stride; i < l; i++) { this.array[index1 + i] = attribute.array[index2 + i] } return this }, set: function (value, offset) { if (offset === undefined) offset = 0 this.array.set(value, offset) return this }, clone: function () { return new this.constructor().copy(this) }, onUpload: function (callback) { this.onUploadCallback = callback return this } }) /** * @author benaadams / https://twitter.com/ben_a_adams */ function InstancedInterleavedBuffer(array, stride, meshPerAttribute) { InterleavedBuffer.call(this, array, stride) this.meshPerAttribute = meshPerAttribute || 1 } InstancedInterleavedBuffer.prototype = Object.assign(Object.create(InterleavedBuffer.prototype), { constructor: InstancedInterleavedBuffer, isInstancedInterleavedBuffer: true, copy: function (source) { InterleavedBuffer.prototype.copy.call(this, source) this.meshPerAttribute = source.meshPerAttribute return this } }) /** * @author benaadams / https://twitter.com/ben_a_adams */ function InstancedBufferAttribute(array, itemSize, meshPerAttribute) { BufferAttribute.call(this, array, itemSize) this.meshPerAttribute = meshPerAttribute || 1 } InstancedBufferAttribute.prototype = Object.assign(Object.create(BufferAttribute.prototype), { constructor: InstancedBufferAttribute, isInstancedBufferAttribute: true, copy: function (source) { BufferAttribute.prototype.copy.call(this, source) this.meshPerAttribute = source.meshPerAttribute return this } }) /** * @author mrdoob / http://mrdoob.com/ * @author bhouston / http://clara.io/ * @author stephomi / http://stephaneginier.com/ */ function Raycaster(origin, direction, near, far) { this.ray = new Ray(origin, direction) // direction is assumed to be normalized (for accurate distance calculations) this.near = near || 0 this.far = far || Infinity this.params = { Mesh: {}, Line: {}, LOD: {}, Points: { threshold: 1 }, Sprite: {} } Object.defineProperties(this.params, { PointCloud: { get: function () { console.warn('THREE.Raycaster: params.PointCloud has been renamed to params.Points.') return this.Points } } }) } function ascSort(a, b) { return a.distance - b.distance } function intersectObject(object, raycaster, intersects, recursive) { if (object.visible === false) return object.raycast(raycaster, intersects) if (recursive === true) { var children = object.children for (var i = 0, l = children.length; i < l; i++) { intersectObject(children[i], raycaster, intersects, true) } } } Object.assign(Raycaster.prototype, { linePrecision: 1, set: function (origin, direction) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set(origin, direction) }, setFromCamera: function (coords, camera) { if (camera && camera.isPerspectiveCamera) { this.ray.origin.setFromMatrixPosition(camera.matrixWorld) this.ray.direction .set(coords.x, coords.y, 0.5) .unproject(camera) .sub(this.ray.origin) .normalize() } else if (camera && camera.isOrthographicCamera) { this.ray.origin .set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)) .unproject(camera) // set origin in plane of camera this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld) } else { console.error('THREE.Raycaster: Unsupported camera type.') } }, intersectObject: function (object, recursive) { var intersects = [] intersectObject(object, this, intersects, recursive) intersects.sort(ascSort) return intersects }, intersectObjects: function (objects, recursive) { var intersects = [] if (Array.isArray(objects) === false) { console.warn('THREE.Raycaster.intersectObjects: objects is not an Array.') return intersects } for (var i = 0, l = objects.length; i < l; i++) { intersectObject(objects[i], this, intersects, recursive) } intersects.sort(ascSort) return intersects } }) /** * @author alteredq / http://alteredqualia.com/ */ function Clock(autoStart) { this.autoStart = autoStart !== undefined ? autoStart : true this.startTime = 0 this.oldTime = 0 this.elapsedTime = 0 this.running = false } Object.assign(Clock.prototype, { start: function () { this.startTime = (typeof performance === 'undefined' ? Date : performance).now() // see #10732 this.oldTime = this.startTime this.elapsedTime = 0 this.running = true }, stop: function () { this.getElapsedTime() this.running = false this.autoStart = false }, getElapsedTime: function () { this.getDelta() return this.elapsedTime }, getDelta: function () { var diff = 0 if (this.autoStart && !this.running) { this.start() return 0 } if (this.running) { var newTime = (typeof performance === 'undefined' ? Date : performance).now() diff = (newTime - this.oldTime) / 1000 this.oldTime = newTime this.elapsedTime += diff } return diff } }) /** * @author bhouston / http://clara.io * @author WestLangley / http://github.com/WestLangley * * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * The poles (phi) are at the positive and negative y axis. * The equator starts at positive z. */ function Spherical(radius, phi, theta) { this.radius = radius !== undefined ? radius : 1.0 this.phi = phi !== undefined ? phi : 0 // up / down towards top and bottom pole this.theta = theta !== undefined ? theta : 0 // around the equator of the sphere return this } Object.assign(Spherical.prototype, { set: function (radius, phi, theta) { this.radius = radius this.phi = phi this.theta = theta return this }, clone: function () { return new this.constructor().copy(this) }, copy: function (other) { this.radius = other.radius this.phi = other.phi this.theta = other.theta return this }, // restrict phi to be betwee EPS and PI-EPS makeSafe: function () { var EPS = 0.000001 this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi)) return this }, setFromVector3: function (vec3) { this.radius = vec3.length() if (this.radius === 0) { this.theta = 0 this.phi = 0 } else { this.theta = Math.atan2(vec3.x, vec3.z) // equator angle around y-up axis this.phi = Math.acos(_Math.clamp(vec3.y / this.radius, -1, 1)) // polar angle } return this } }) /** * @author Mugen87 / https://github.com/Mugen87 * * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system * */ function Cylindrical(radius, theta, y) { this.radius = radius !== undefined ? radius : 1.0 // distance from the origin to a point in the x-z plane this.theta = theta !== undefined ? theta : 0 // counterclockwise angle in the x-z plane measured in radians from the positive z-axis this.y = y !== undefined ? y : 0 // height above the x-z plane return this } Object.assign(Cylindrical.prototype, { set: function (radius, theta, y) { this.radius = radius this.theta = theta this.y = y return this }, clone: function () { return new this.constructor().copy(this) }, copy: function (other) { this.radius = other.radius this.theta = other.theta this.y = other.y return this }, setFromVector3: function (vec3) { this.radius = Math.sqrt(vec3.x * vec3.x + vec3.z * vec3.z) this.theta = Math.atan2(vec3.x, vec3.z) this.y = vec3.y return this } }) /** * @author bhouston / http://clara.io */ function Box2(min, max) { this.min = min !== undefined ? min : new Vector2(+Infinity, +Infinity) this.max = max !== undefined ? max : new Vector2(-Infinity, -Infinity) } Object.assign(Box2.prototype, { set: function (min, max) { this.min.copy(min) this.max.copy(max) return this }, setFromPoints: function (points) { this.makeEmpty() for (var i = 0, il = points.length; i < il; i++) { this.expandByPoint(points[i]) } return this }, setFromCenterAndSize: (function () { var v1 = new Vector2() return function setFromCenterAndSize(center, size) { var halfSize = v1.copy(size).multiplyScalar(0.5) this.min.copy(center).sub(halfSize) this.max.copy(center).add(halfSize) return this } })(), clone: function () { return new this.constructor().copy(this) }, copy: function (box) { this.min.copy(box.min) this.max.copy(box.max) return this }, makeEmpty: function () { this.min.x = this.min.y = +Infinity this.max.x = this.max.y = -Infinity return this }, isEmpty: function () { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return this.max.x < this.min.x || this.max.y < this.min.y }, getCenter: function (optionalTarget) { var result = optionalTarget || new Vector2() return this.isEmpty() ? result.set(0, 0) : result.addVectors(this.min, this.max).multiplyScalar(0.5) }, getSize: function (optionalTarget) { var result = optionalTarget || new Vector2() return this.isEmpty() ? result.set(0, 0) : result.subVectors(this.max, this.min) }, expandByPoint: function (point) { this.min.min(point) this.max.max(point) return this }, expandByVector: function (vector) { this.min.sub(vector) this.max.add(vector) return this }, expandByScalar: function (scalar) { this.min.addScalar(-scalar) this.max.addScalar(scalar) return this }, containsPoint: function (point) { return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true }, containsBox: function (box) { return ( this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y ) }, getParameter: function (point, optionalTarget) { // This can potentially have a divide by zero if the box // has a size dimension of 0. var result = optionalTarget || new Vector2() return result.set( (point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y) ) }, intersectsBox: function (box) { // using 4 splitting planes to rule out intersections return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true }, clampPoint: function (point, optionalTarget) { var result = optionalTarget || new Vector2() return result.copy(point).clamp(this.min, this.max) }, distanceToPoint: (function () { var v1 = new Vector2() return function distanceToPoint(point) { var clampedPoint = v1.copy(point).clamp(this.min, this.max) return clampedPoint.sub(point).length() } })(), intersect: function (box) { this.min.max(box.min) this.max.min(box.max) return this }, union: function (box) { this.min.min(box.min) this.max.max(box.max) return this }, translate: function (offset) { this.min.add(offset) this.max.add(offset) return this }, equals: function (box) { return box.min.equals(this.min) && box.max.equals(this.max) } }) /** * @author alteredq / http://alteredqualia.com/ */ function ImmediateRenderObject(material) { Object3D.call(this) this.material = material this.render = function (/* renderCallback */) {} } ImmediateRenderObject.prototype = Object.create(Object3D.prototype) ImmediateRenderObject.prototype.constructor = ImmediateRenderObject ImmediateRenderObject.prototype.isImmediateRenderObject = true /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ function VertexNormalsHelper(object, size, hex, linewidth) { this.object = object this.size = size !== undefined ? size : 1 var color = hex !== undefined ? hex : 0xff0000 var width = linewidth !== undefined ? linewidth : 1 // var nNormals = 0 var objGeometry = this.object.geometry if (objGeometry && objGeometry.isGeometry) { nNormals = objGeometry.faces.length * 3 } else if (objGeometry && objGeometry.isBufferGeometry) { nNormals = objGeometry.attributes.normal.count } // var geometry = new BufferGeometry() var positions = new Float32BufferAttribute(nNormals * 2 * 3, 3) geometry.addAttribute('position', positions) LineSegments.call(this, geometry, new LineBasicMaterial({ color: color, linewidth: width })) // this.matrixAutoUpdate = false this.update() } VertexNormalsHelper.prototype = Object.create(LineSegments.prototype) VertexNormalsHelper.prototype.constructor = VertexNormalsHelper VertexNormalsHelper.prototype.update = (function () { var v1 = new Vector3() var v2 = new Vector3() var normalMatrix = new Matrix3() return function update() { var keys = ['a', 'b', 'c'] this.object.updateMatrixWorld(true) normalMatrix.getNormalMatrix(this.object.matrixWorld) var matrixWorld = this.object.matrixWorld var position = this.geometry.attributes.position // var objGeometry = this.object.geometry if (objGeometry && objGeometry.isGeometry) { var vertices = objGeometry.vertices var faces = objGeometry.faces var idx = 0 for (var i = 0, l = faces.length; i < l; i++) { var face = faces[i] for (var j = 0, jl = face.vertexNormals.length; j < jl; j++) { var vertex = vertices[face[keys[j]]] var normal = face.vertexNormals[j] v1.copy(vertex).applyMatrix4(matrixWorld) v2.copy(normal).applyMatrix3(normalMatrix).normalize().multiplyScalar(this.size).add(v1) position.setXYZ(idx, v1.x, v1.y, v1.z) idx = idx + 1 position.setXYZ(idx, v2.x, v2.y, v2.z) idx = idx + 1 } } } else if (objGeometry && objGeometry.isBufferGeometry) { var objPos = objGeometry.attributes.position var objNorm = objGeometry.attributes.normal var idx = 0 // for simplicity, ignore index and drawcalls, and render every normal for (var j = 0, jl = objPos.count; j < jl; j++) { v1.set(objPos.getX(j), objPos.getY(j), objPos.getZ(j)).applyMatrix4(matrixWorld) v2.set(objNorm.getX(j), objNorm.getY(j), objNorm.getZ(j)) v2.applyMatrix3(normalMatrix).normalize().multiplyScalar(this.size).add(v1) position.setXYZ(idx, v1.x, v1.y, v1.z) idx = idx + 1 position.setXYZ(idx, v2.x, v2.y, v2.z) idx = idx + 1 } } position.needsUpdate = true } })() /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ function SpotLightHelper(light, color) { Object3D.call(this) this.light = light this.light.updateMatrixWorld() this.matrix = light.matrixWorld this.matrixAutoUpdate = false this.color = color var geometry = new BufferGeometry() var positions = [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1 ] for (var i = 0, j = 1, l = 32; i < l; i++, j++) { var p1 = (i / l) * Math.PI * 2 var p2 = (j / l) * Math.PI * 2 positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1) } geometry.addAttribute('position', new Float32BufferAttribute(positions, 3)) var material = new LineBasicMaterial({ fog: false }) this.cone = new LineSegments(geometry, material) this.add(this.cone) this.update() } SpotLightHelper.prototype = Object.create(Object3D.prototype) SpotLightHelper.prototype.constructor = SpotLightHelper SpotLightHelper.prototype.dispose = function () { this.cone.geometry.dispose() this.cone.material.dispose() } SpotLightHelper.prototype.update = (function () { var vector = new Vector3() var vector2 = new Vector3() return function update() { this.light.updateMatrixWorld() var coneLength = this.light.distance ? this.light.distance : 1000 var coneWidth = coneLength * Math.tan(this.light.angle) this.cone.scale.set(coneWidth, coneWidth, coneLength) vector.setFromMatrixPosition(this.light.matrixWorld) vector2.setFromMatrixPosition(this.light.target.matrixWorld) this.cone.lookAt(vector2.sub(vector)) if (this.color !== undefined) { this.cone.material.color.set(this.color) } else { this.cone.material.color.copy(this.light.color) } } })() /** * @author Sean Griffin / http://twitter.com/sgrif * @author Michael Guerrero / http://realitymeltdown.com * @author mrdoob / http://mrdoob.com/ * @author ikerr / http://verold.com * @author Mugen87 / https://github.com/Mugen87 */ function getBoneList(object) { var boneList = [] if (object && object.isBone) { boneList.push(object) } for (var i = 0; i < object.children.length; i++) { boneList.push.apply(boneList, getBoneList(object.children[i])) } return boneList } function SkeletonHelper(object) { var bones = getBoneList(object) var geometry = new BufferGeometry() var vertices = [] var colors = [] var color1 = new Color(0, 0, 1) var color2 = new Color(0, 1, 0) for (var i = 0; i < bones.length; i++) { var bone = bones[i] if (bone.parent && bone.parent.isBone) { vertices.push(0, 0, 0) vertices.push(0, 0, 0) colors.push(color1.r, color1.g, color1.b) colors.push(color2.r, color2.g, color2.b) } } geometry.addAttribute('position', new Float32BufferAttribute(vertices, 3)) geometry.addAttribute('color', new Float32BufferAttribute(colors, 3)) var material = new LineBasicMaterial({ vertexColors: VertexColors, depthTest: false, depthWrite: false, transparent: true }) LineSegments.call(this, geometry, material) this.root = object this.bones = bones this.matrix = object.matrixWorld this.matrixAutoUpdate = false } SkeletonHelper.prototype = Object.create(LineSegments.prototype) SkeletonHelper.prototype.constructor = SkeletonHelper SkeletonHelper.prototype.updateMatrixWorld = (function () { var vector = new Vector3() var boneMatrix = new Matrix4() var matrixWorldInv = new Matrix4() return function updateMatrixWorld(force) { var bones = this.bones var geometry = this.geometry var position = geometry.getAttribute('position') matrixWorldInv.getInverse(this.root.matrixWorld) for (var i = 0, j = 0; i < bones.length; i++) { var bone = bones[i] if (bone.parent && bone.parent.isBone) { boneMatrix.multiplyMatrices(matrixWorldInv, bone.matrixWorld) vector.setFromMatrixPosition(boneMatrix) position.setXYZ(j, vector.x, vector.y, vector.z) boneMatrix.multiplyMatrices(matrixWorldInv, bone.parent.matrixWorld) vector.setFromMatrixPosition(boneMatrix) position.setXYZ(j + 1, vector.x, vector.y, vector.z) j += 2 } } geometry.getAttribute('position').needsUpdate = true Object3D.prototype.updateMatrixWorld.call(this, force) } })() /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ */ function PointLightHelper(light, sphereSize, color) { this.light = light this.light.updateMatrixWorld() this.color = color var geometry = new SphereBufferGeometry(sphereSize, 4, 2) var material = new MeshBasicMaterial({ wireframe: true, fog: false }) Mesh.call(this, geometry, material) this.matrix = this.light.matrixWorld this.matrixAutoUpdate = false this.update() /* var distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 ); var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); var d = light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.scale.set( d, d, d ); } this.add( this.lightDistance ); */ } PointLightHelper.prototype = Object.create(Mesh.prototype) PointLightHelper.prototype.constructor = PointLightHelper PointLightHelper.prototype.dispose = function () { this.geometry.dispose() this.material.dispose() } PointLightHelper.prototype.update = function () { if (this.color !== undefined) { this.material.color.set(this.color) } else { this.material.color.copy(this.light.color) } /* var d = this.light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d ); } */ } /** * @author abelnation / http://github.com/abelnation * @author Mugen87 / http://github.com/Mugen87 * @author WestLangley / http://github.com/WestLangley */ function RectAreaLightHelper(light, color) { Object3D.call(this) this.light = light this.light.updateMatrixWorld() this.matrix = light.matrixWorld this.matrixAutoUpdate = false this.color = color var material = new LineBasicMaterial({ fog: false }) var geometry = new BufferGeometry() geometry.addAttribute('position', new BufferAttribute(new Float32Array(5 * 3), 3)) this.line = new Line(geometry, material) this.add(this.line) this.update() } RectAreaLightHelper.prototype = Object.create(Object3D.prototype) RectAreaLightHelper.prototype.constructor = RectAreaLightHelper RectAreaLightHelper.prototype.dispose = function () { this.children[0].geometry.dispose() this.children[0].material.dispose() } RectAreaLightHelper.prototype.update = function () { // calculate new dimensions of the helper var hx = this.light.width * 0.5 var hy = this.light.height * 0.5 var position = this.line.geometry.attributes.position var array = position.array // update vertices array[0] = hx array[1] = -hy array[2] = 0 array[3] = hx array[4] = hy array[5] = 0 array[6] = -hx array[7] = hy array[8] = 0 array[9] = -hx array[10] = -hy array[11] = 0 array[12] = hx array[13] = -hy array[14] = 0 position.needsUpdate = true if (this.color !== undefined) { this.line.material.color.set(this.color) } else { this.line.material.color.copy(this.light.color) } } /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / https://github.com/Mugen87 */ function HemisphereLightHelper(light, size, color) { Object3D.call(this) this.light = light this.light.updateMatrixWorld() this.matrix = light.matrixWorld this.matrixAutoUpdate = false this.color = color var geometry = new OctahedronBufferGeometry(size) geometry.rotateY(Math.PI * 0.5) this.material = new MeshBasicMaterial({ wireframe: true, fog: false }) if (this.color === undefined) this.material.vertexColors = VertexColors var position = geometry.getAttribute('position') var colors = new Float32Array(position.count * 3) geometry.addAttribute('color', new BufferAttribute(colors, 3)) this.add(new Mesh(geometry, this.material)) this.update() } HemisphereLightHelper.prototype = Object.create(Object3D.prototype) HemisphereLightHelper.prototype.constructor = HemisphereLightHelper HemisphereLightHelper.prototype.dispose = function () { this.children[0].geometry.dispose() this.children[0].material.dispose() } HemisphereLightHelper.prototype.update = (function () { var vector = new Vector3() var color1 = new Color() var color2 = new Color() return function update() { var mesh = this.children[0] if (this.color !== undefined) { this.material.color.set(this.color) } else { var colors = mesh.geometry.getAttribute('color') color1.copy(this.light.color) color2.copy(this.light.groundColor) for (var i = 0, l = colors.count; i < l; i++) { var color = i < l / 2 ? color1 : color2 colors.setXYZ(i, color.r, color.g, color.b) } colors.needsUpdate = true } mesh.lookAt(vector.setFromMatrixPosition(this.light.matrixWorld).negate()) } })() /** * @author mrdoob / http://mrdoob.com/ */ function GridHelper(size, divisions, color1, color2) { size = size || 10 divisions = divisions || 10 color1 = new Color(color1 !== undefined ? color1 : 0x444444) color2 = new Color(color2 !== undefined ? color2 : 0x888888) var center = divisions / 2 var step = size / divisions var halfSize = size / 2 var vertices = [], colors = [] for (var i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) { vertices.push(-halfSize, 0, k, halfSize, 0, k) vertices.push(k, 0, -halfSize, k, 0, halfSize) var color = i === center ? color1 : color2 color.toArray(colors, j) j += 3 color.toArray(colors, j) j += 3 color.toArray(colors, j) j += 3 color.toArray(colors, j) j += 3 } var geometry = new BufferGeometry() geometry.addAttribute('position', new Float32BufferAttribute(vertices, 3)) geometry.addAttribute('color', new Float32BufferAttribute(colors, 3)) var material = new LineBasicMaterial({ vertexColors: VertexColors }) LineSegments.call(this, geometry, material) } GridHelper.prototype = Object.create(LineSegments.prototype) GridHelper.prototype.constructor = GridHelper /** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / http://github.com/Mugen87 * @author Hectate / http://www.github.com/Hectate */ function PolarGridHelper(radius, radials, circles, divisions, color1, color2) { radius = radius || 10 radials = radials || 16 circles = circles || 8 divisions = divisions || 64 color1 = new Color(color1 !== undefined ? color1 : 0x444444) color2 = new Color(color2 !== undefined ? color2 : 0x888888) var vertices = [] var colors = [] var x, z var v, i, j, r, color // create the radials for (i = 0; i <= radials; i++) { v = (i / radials) * (Math.PI * 2) x = Math.sin(v) * radius z = Math.cos(v) * radius vertices.push(0, 0, 0) vertices.push(x, 0, z) color = i & 1 ? color1 : color2 colors.push(color.r, color.g, color.b) colors.push(color.r, color.g, color.b) } // create the circles for (i = 0; i <= circles; i++) { color = i & 1 ? color1 : color2 r = radius - (radius / circles) * i for (j = 0; j < divisions; j++) { // first vertex v = (j / divisions) * (Math.PI * 2) x = Math.sin(v) * r z = Math.cos(v) * r vertices.push(x, 0, z) colors.push(color.r, color.g, color.b) // second vertex v = ((j + 1) / divisions) * (Math.PI * 2) x = Math.sin(v) * r z = Math.cos(v) * r vertices.push(x, 0, z) colors.push(color.r, color.g, color.b) } } var geometry = new BufferGeometry() geometry.addAttribute('position', new Float32BufferAttribute(vertices, 3)) geometry.addAttribute('color', new Float32BufferAttribute(colors, 3)) var material = new LineBasicMaterial({ vertexColors: VertexColors }) LineSegments.call(this, geometry, material) } PolarGridHelper.prototype = Object.create(LineSegments.prototype) PolarGridHelper.prototype.constructor = PolarGridHelper /** * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ function FaceNormalsHelper(object, size, hex, linewidth) { // FaceNormalsHelper only supports THREE.Geometry this.object = object this.size = size !== undefined ? size : 1 var color = hex !== undefined ? hex : 0xffff00 var width = linewidth !== undefined ? linewidth : 1 // var nNormals = 0 var objGeometry = this.object.geometry if (objGeometry && objGeometry.isGeometry) { nNormals = objGeometry.faces.length } else { console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' ) } // var geometry = new BufferGeometry() var positions = new Float32BufferAttribute(nNormals * 2 * 3, 3) geometry.addAttribute('position', positions) LineSegments.call(this, geometry, new LineBasicMaterial({ color: color, linewidth: width })) // this.matrixAutoUpdate = false this.update() } FaceNormalsHelper.prototype = Object.create(LineSegments.prototype) FaceNormalsHelper.prototype.constructor = FaceNormalsHelper FaceNormalsHelper.prototype.update = (function () { var v1 = new Vector3() var v2 = new Vector3() var normalMatrix = new Matrix3() return function update() { this.object.updateMatrixWorld(true) normalMatrix.getNormalMatrix(this.object.matrixWorld) var matrixWorld = this.object.matrixWorld var position = this.geometry.attributes.position // var objGeometry = this.object.geometry var vertices = objGeometry.vertices var faces = objGeometry.faces var idx = 0 for (var i = 0, l = faces.length; i < l; i++) { var face = faces[i] var normal = face.normal v1.copy(vertices[face.a]) .add(vertices[face.b]) .add(vertices[face.c]) .divideScalar(3) .applyMatrix4(matrixWorld) v2.copy(normal).applyMatrix3(normalMatrix).normalize().multiplyScalar(this.size).add(v1) position.setXYZ(idx, v1.x, v1.y, v1.z) idx = idx + 1 position.setXYZ(idx, v2.x, v2.y, v2.z) idx = idx + 1 } position.needsUpdate = true } })() /** * @author alteredq / http://alteredqualia.com/ * @author mrdoob / http://mrdoob.com/ * @author WestLangley / http://github.com/WestLangley */ function DirectionalLightHelper(light, size, color) { Object3D.call(this) this.light = light this.light.updateMatrixWorld() this.matrix = light.matrixWorld this.matrixAutoUpdate = false this.color = color if (size === undefined) size = 1 var geometry = new BufferGeometry() geometry.addAttribute( 'position', new Float32BufferAttribute( [-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3 ) ) var material = new LineBasicMaterial({ fog: false }) this.lightPlane = new Line(geometry, material) this.add(this.lightPlane) geometry = new BufferGeometry() geometry.addAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3)) this.targetLine = new Line(geometry, material) this.add(this.targetLine) this.update() } DirectionalLightHelper.prototype = Object.create(Object3D.prototype) DirectionalLightHelper.prototype.constructor = DirectionalLightHelper DirectionalLightHelper.prototype.dispose = function () { this.lightPlane.geometry.dispose() this.lightPlane.material.dispose() this.targetLine.geometry.dispose() this.targetLine.material.dispose() } DirectionalLightHelper.prototype.update = (function () { var v1 = new Vector3() var v2 = new Vector3() var v3 = new Vector3() return function update() { v1.setFromMatrixPosition(this.light.matrixWorld) v2.setFromMatrixPosition(this.light.target.matrixWorld) v3.subVectors(v2, v1) this.lightPlane.lookAt(v3) if (this.color !== undefined) { this.lightPlane.material.color.set(this.color) this.targetLine.material.color.set(this.color) } else { this.lightPlane.material.color.copy(this.light.color) this.targetLine.material.color.copy(this.light.color) } this.targetLine.lookAt(v3) this.targetLine.scale.z = v3.length() } })() /** * @author alteredq / http://alteredqualia.com/ * @author Mugen87 / https://github.com/Mugen87 * * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * http://evanw.github.com/lightgl.js/tests/shadowmap.html */ function CameraHelper(camera) { var geometry = new BufferGeometry() var material = new LineBasicMaterial({ color: 0xffffff, vertexColors: FaceColors }) var vertices = [] var colors = [] var pointMap = {} // colors var colorFrustum = new Color(0xffaa00) var colorCone = new Color(0xff0000) var colorUp = new Color(0x00aaff) var colorTarget = new Color(0xffffff) var colorCross = new Color(0x333333) // near addLine('n1', 'n2', colorFrustum) addLine('n2', 'n4', colorFrustum) addLine('n4', 'n3', colorFrustum) addLine('n3', 'n1', colorFrustum) // far addLine('f1', 'f2', colorFrustum) addLine('f2', 'f4', colorFrustum) addLine('f4', 'f3', colorFrustum) addLine('f3', 'f1', colorFrustum) // sides addLine('n1', 'f1', colorFrustum) addLine('n2', 'f2', colorFrustum) addLine('n3', 'f3', colorFrustum) addLine('n4', 'f4', colorFrustum) // cone addLine('p', 'n1', colorCone) addLine('p', 'n2', colorCone) addLine('p', 'n3', colorCone) addLine('p', 'n4', colorCone) // up addLine('u1', 'u2', colorUp) addLine('u2', 'u3', colorUp) addLine('u3', 'u1', colorUp) // target addLine('c', 't', colorTarget) addLine('p', 'c', colorCross) // cross addLine('cn1', 'cn2', colorCross) addLine('cn3', 'cn4', colorCross) addLine('cf1', 'cf2', colorCross) addLine('cf3', 'cf4', colorCross) function addLine(a, b, color) { addPoint(a, color) addPoint(b, color) } function addPoint(id, color) { vertices.push(0, 0, 0) colors.push(color.r, color.g, color.b) if (pointMap[id] === undefined) { pointMap[id] = [] } pointMap[id].push(vertices.length / 3 - 1) } geometry.addAttribute('position', new Float32BufferAttribute(vertices, 3)) geometry.addAttribute('color', new Float32BufferAttribute(colors, 3)) LineSegments.call(this, geometry, material) this.camera = camera if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix() this.matrix = camera.matrixWorld this.matrixAutoUpdate = false this.pointMap = pointMap this.update() } CameraHelper.prototype = Object.create(LineSegments.prototype) CameraHelper.prototype.constructor = CameraHelper CameraHelper.prototype.update = (function () { var geometry, pointMap var vector = new Vector3() var camera = new Camera() function setPoint(point, x, y, z) { vector.set(x, y, z).unproject(camera) var points = pointMap[point] if (points !== undefined) { var position = geometry.getAttribute('position') for (var i = 0, l = points.length; i < l; i++) { position.setXYZ(points[i], vector.x, vector.y, vector.z) } } } return function update() { geometry = this.geometry pointMap = this.pointMap var w = 1, h = 1 // we need just camera projection matrix // world matrix must be identity camera.projectionMatrix.copy(this.camera.projectionMatrix) // center / target setPoint('c', 0, 0, -1) setPoint('t', 0, 0, 1) // near setPoint('n1', -w, -h, -1) setPoint('n2', w, -h, -1) setPoint('n3', -w, h, -1) setPoint('n4', w, h, -1) // far setPoint('f1', -w, -h, 1) setPoint('f2', w, -h, 1) setPoint('f3', -w, h, 1) setPoint('f4', w, h, 1) // up setPoint('u1', w * 0.7, h * 1.1, -1) setPoint('u2', -w * 0.7, h * 1.1, -1) setPoint('u3', 0, h * 2, -1) // cross setPoint('cf1', -w, 0, 1) setPoint('cf2', w, 0, 1) setPoint('cf3', 0, -h, 1) setPoint('cf4', 0, h, 1) setPoint('cn1', -w, 0, -1) setPoint('cn2', w, 0, -1) setPoint('cn3', 0, -h, -1) setPoint('cn4', 0, h, -1) geometry.getAttribute('position').needsUpdate = true } })() /** * @author mrdoob / http://mrdoob.com/ * @author Mugen87 / http://github.com/Mugen87 */ function BoxHelper(object, color) { this.object = object if (color === undefined) color = 0xffff00 var indices = new Uint16Array([ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ]) var positions = new Float32Array(8 * 3) var geometry = new BufferGeometry() geometry.setIndex(new BufferAttribute(indices, 1)) geometry.addAttribute('position', new BufferAttribute(positions, 3)) LineSegments.call(this, geometry, new LineBasicMaterial({ color: color })) this.matrixAutoUpdate = false this.update() } BoxHelper.prototype = Object.create(LineSegments.prototype) BoxHelper.prototype.constructor = BoxHelper BoxHelper.prototype.update = (function () { var box = new Box3() return function update(object) { if (object !== undefined) { console.warn('THREE.BoxHelper: .update() has no longer arguments.') } if (this.object !== undefined) { box.setFromObject(this.object) } if (box.isEmpty()) return var min = box.min var max = box.max /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ var position = this.geometry.attributes.position var array = position.array array[0] = max.x array[1] = max.y array[2] = max.z array[3] = min.x array[4] = max.y array[5] = max.z array[6] = min.x array[7] = min.y array[8] = max.z array[9] = max.x array[10] = min.y array[11] = max.z array[12] = max.x array[13] = max.y array[14] = min.z array[15] = min.x array[16] = max.y array[17] = min.z array[18] = min.x array[19] = min.y array[20] = min.z array[21] = max.x array[22] = min.y array[23] = min.z position.needsUpdate = true this.geometry.computeBoundingSphere() } })() BoxHelper.prototype.setFromObject = function (object) { this.object = object this.update() return this } /** * @author WestLangley / http://github.com/WestLangley */ function Box3Helper(box, hex) { this.type = 'Box3Helper' this.box = box var color = hex !== undefined ? hex : 0xffff00 var indices = new Uint16Array([ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ]) var positions = [ 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1 ] var geometry = new BufferGeometry() geometry.setIndex(new BufferAttribute(indices, 1)) geometry.addAttribute('position', new Float32BufferAttribute(positions, 3)) LineSegments.call(this, geometry, new LineBasicMaterial({ color: color })) this.geometry.computeBoundingSphere() } Box3Helper.prototype = Object.create(LineSegments.prototype) Box3Helper.prototype.constructor = Box3Helper Box3Helper.prototype.updateMatrixWorld = function (force) { var box = this.box if (box.isEmpty()) return box.getCenter(this.position) box.getSize(this.scale) this.scale.multiplyScalar(0.5) Object3D.prototype.updateMatrixWorld.call(this, force) } /** * @author WestLangley / http://github.com/WestLangley */ function PlaneHelper(plane, size, hex) { this.type = 'PlaneHelper' this.plane = plane this.size = size === undefined ? 1 : size var color = hex !== undefined ? hex : 0xffff00 var positions = [ 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0 ] var geometry = new BufferGeometry() geometry.addAttribute('position', new Float32BufferAttribute(positions, 3)) geometry.computeBoundingSphere() Line.call(this, geometry, new LineBasicMaterial({ color: color })) // var positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1] var geometry2 = new BufferGeometry() geometry2.addAttribute('position', new Float32BufferAttribute(positions2, 3)) geometry2.computeBoundingSphere() this.add( new Mesh( geometry2, new MeshBasicMaterial({ color: color, opacity: 0.2, transparent: true, depthWrite: false }) ) ) } PlaneHelper.prototype = Object.create(Line.prototype) PlaneHelper.prototype.constructor = PlaneHelper PlaneHelper.prototype.updateMatrixWorld = function (force) { var scale = -this.plane.constant if (Math.abs(scale) < 1e-8) scale = 1e-8 // sign does not matter this.scale.set(0.5 * this.size, 0.5 * this.size, scale) this.lookAt(this.plane.normal) Object3D.prototype.updateMatrixWorld.call(this, force) } /** * @author WestLangley / http://github.com/WestLangley * @author zz85 / http://github.com/zz85 * @author bhouston / http://clara.io * * Creates an arrow for visualizing directions * * Parameters: * dir - Vector3 * origin - Vector3 * length - Number * color - color in hex value * headLength - Number * headWidth - Number */ var lineGeometry var coneGeometry function ArrowHelper(dir, origin, length, color, headLength, headWidth) { // dir is assumed to be normalized Object3D.call(this) if (color === undefined) color = 0xffff00 if (length === undefined) length = 1 if (headLength === undefined) headLength = 0.2 * length if (headWidth === undefined) headWidth = 0.2 * headLength if (lineGeometry === undefined) { lineGeometry = new BufferGeometry() lineGeometry.addAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3)) coneGeometry = new CylinderBufferGeometry(0, 0.5, 1, 5, 1) coneGeometry.translate(0, -0.5, 0) } this.position.copy(origin) this.line = new Line(lineGeometry, new LineBasicMaterial({ color: color })) this.line.matrixAutoUpdate = false this.add(this.line) this.cone = new Mesh(coneGeometry, new MeshBasicMaterial({ color: color })) this.cone.matrixAutoUpdate = false this.add(this.cone) this.setDirection(dir) this.setLength(length, headLength, headWidth) } ArrowHelper.prototype = Object.create(Object3D.prototype) ArrowHelper.prototype.constructor = ArrowHelper ArrowHelper.prototype.setDirection = (function () { var axis = new Vector3() var radians return function setDirection(dir) { // dir is assumed to be normalized if (dir.y > 0.99999) { this.quaternion.set(0, 0, 0, 1) } else if (dir.y < -0.99999) { this.quaternion.set(1, 0, 0, 0) } else { axis.set(dir.z, 0, -dir.x).normalize() radians = Math.acos(dir.y) this.quaternion.setFromAxisAngle(axis, radians) } } })() ArrowHelper.prototype.setLength = function (length, headLength, headWidth) { if (headLength === undefined) headLength = 0.2 * length if (headWidth === undefined) headWidth = 0.2 * headLength this.line.scale.set(1, Math.max(0, length - headLength), 1) this.line.updateMatrix() this.cone.scale.set(headWidth, headLength, headWidth) this.cone.position.y = length this.cone.updateMatrix() } ArrowHelper.prototype.setColor = function (color) { this.line.material.color.copy(color) this.cone.material.color.copy(color) } /** * @author sroucheray / http://sroucheray.org/ * @author mrdoob / http://mrdoob.com/ */ function AxesHelper(size) { size = size || 1 var vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size] var colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1] var geometry = new BufferGeometry() geometry.addAttribute('position', new Float32BufferAttribute(vertices, 3)) geometry.addAttribute('color', new Float32BufferAttribute(colors, 3)) var material = new LineBasicMaterial({ vertexColors: VertexColors }) LineSegments.call(this, geometry, material) } AxesHelper.prototype = Object.create(LineSegments.prototype) AxesHelper.prototype.constructor = AxesHelper /** * @author mrdoob / http://mrdoob.com/ */ function Face4(a, b, c, d, normal, color, materialIndex) { console.warn('THREE.Face4 has been removed. A THREE.Face3 will be created instead.') return new Face3(a, b, c, normal, color, materialIndex) } var LineStrip = 0 var LinePieces = 1 function MeshFaceMaterial(materials) { console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.') return materials } function MultiMaterial(materials) { if (materials === undefined) materials = [] console.warn('THREE.MultiMaterial has been removed. Use an Array instead.') materials.isMultiMaterial = true materials.materials = materials materials.clone = function () { return materials.slice() } return materials } function PointCloud(geometry, material) { console.warn('THREE.PointCloud has been renamed to THREE.Points.') return new Points(geometry, material) } function Particle(material) { console.warn('THREE.Particle has been renamed to THREE.Sprite.') return new Sprite(material) } function ParticleSystem(geometry, material) { console.warn('THREE.ParticleSystem has been renamed to THREE.Points.') return new Points(geometry, material) } function PointCloudMaterial(parameters) { console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.') return new PointsMaterial(parameters) } function ParticleBasicMaterial(parameters) { console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.') return new PointsMaterial(parameters) } function ParticleSystemMaterial(parameters) { console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.') return new PointsMaterial(parameters) } function Vertex(x, y, z) { console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.') return new Vector3(x, y, z) } // function DynamicBufferAttribute(array, itemSize) { console.warn( 'THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setDynamic( true ) instead.' ) return new BufferAttribute(array, itemSize).setDynamic(true) } function Int8Attribute(array, itemSize) { console.warn( 'THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.' ) return new Int8BufferAttribute(array, itemSize) } function Uint8Attribute(array, itemSize) { console.warn( 'THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.' ) return new Uint8BufferAttribute(array, itemSize) } function Uint8ClampedAttribute(array, itemSize) { console.warn( 'THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.' ) return new Uint8ClampedBufferAttribute(array, itemSize) } function Int16Attribute(array, itemSize) { console.warn( 'THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.' ) return new Int16BufferAttribute(array, itemSize) } function Uint16Attribute(array, itemSize) { console.warn( 'THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.' ) return new Uint16BufferAttribute(array, itemSize) } function Int32Attribute(array, itemSize) { console.warn( 'THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.' ) return new Int32BufferAttribute(array, itemSize) } function Uint32Attribute(array, itemSize) { console.warn( 'THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.' ) return new Uint32BufferAttribute(array, itemSize) } function Float32Attribute(array, itemSize) { console.warn( 'THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.' ) return new Float32BufferAttribute(array, itemSize) } function Float64Attribute(array, itemSize) { console.warn( 'THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.' ) return new Float64BufferAttribute(array, itemSize) } // Curve.create = function (construct, getPoint) { console.log('THREE.Curve.create() has been deprecated') construct.prototype = Object.create(Curve.prototype) construct.prototype.constructor = construct construct.prototype.getPoint = getPoint return construct } // Object.assign(CurvePath.prototype, { createPointsGeometry: function (divisions) { console.warn( 'THREE.CurvePath: .createPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' ) // generate geometry from path points (for Line or Points objects) var pts = this.getPoints(divisions) return this.createGeometry(pts) }, createSpacedPointsGeometry: function (divisions) { console.warn( 'THREE.CurvePath: .createSpacedPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' ) // generate geometry from equidistant sampling along the path var pts = this.getSpacedPoints(divisions) return this.createGeometry(pts) }, createGeometry: function (points) { console.warn( 'THREE.CurvePath: .createGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' ) var geometry = new Geometry() for (var i = 0, l = points.length; i < l; i++) { var point = points[i] geometry.vertices.push(new Vector3(point.x, point.y, point.z || 0)) } return geometry } }) // Object.assign(Path.prototype, { fromPoints: function (points) { console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().') this.setFromPoints(points) } }) // function ClosedSplineCurve3(points) { console.warn( 'THREE.ClosedSplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.' ) CatmullRomCurve3.call(this, points) this.type = 'catmullrom' this.closed = true } ClosedSplineCurve3.prototype = Object.create(CatmullRomCurve3.prototype) // function SplineCurve3(points) { console.warn('THREE.SplineCurve3 has been deprecated. Use THREE.CatmullRomCurve3 instead.') CatmullRomCurve3.call(this, points) this.type = 'catmullrom' } SplineCurve3.prototype = Object.create(CatmullRomCurve3.prototype) // function Spline(points) { console.warn('THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.') CatmullRomCurve3.call(this, points) this.type = 'catmullrom' } Spline.prototype = Object.create(CatmullRomCurve3.prototype) Object.assign(Spline.prototype, { initFromArray: function (/* a */) { console.error('THREE.Spline: .initFromArray() has been removed.') }, getControlPointsArray: function (/* optionalTarget */) { console.error('THREE.Spline: .getControlPointsArray() has been removed.') }, reparametrizeByArcLength: function (/* samplingCoef */) { console.error('THREE.Spline: .reparametrizeByArcLength() has been removed.') } }) // function AxisHelper(size) { console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.') return new AxesHelper(size) } function BoundingBoxHelper(object, color) { console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.') return new BoxHelper(object, color) } function EdgesHelper(object, hex) { console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.') return new LineSegments( new EdgesGeometry(object.geometry), new LineBasicMaterial({ color: hex !== undefined ? hex : 0xffffff }) ) } GridHelper.prototype.setColors = function () { console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' ) } SkeletonHelper.prototype.update = function () { console.error('THREE.SkeletonHelper: update() no longer needs to be called.') } function WireframeHelper(object, hex) { console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.') return new LineSegments( new WireframeGeometry(object.geometry), new LineBasicMaterial({ color: hex !== undefined ? hex : 0xffffff }) ) } // Object.assign(Loader.prototype, { extractUrlBase: function (url) { console.warn( 'THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.' ) return LoaderUtils.extractUrlBase(url) } }) function XHRLoader(manager) { console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.') return new FileLoader(manager) } function BinaryTextureLoader(manager) { console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.') return new DataTextureLoader(manager) } // Object.assign(Box2.prototype, { center: function (optionalTarget) { console.warn('THREE.Box2: .center() has been renamed to .getCenter().') return this.getCenter(optionalTarget) }, empty: function () { console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().') return this.isEmpty() }, isIntersectionBox: function (box) { console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().') return this.intersectsBox(box) }, size: function (optionalTarget) { console.warn('THREE.Box2: .size() has been renamed to .getSize().') return this.getSize(optionalTarget) } }) Object.assign(Box3.prototype, { center: function (optionalTarget) { console.warn('THREE.Box3: .center() has been renamed to .getCenter().') return this.getCenter(optionalTarget) }, empty: function () { console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().') return this.isEmpty() }, isIntersectionBox: function (box) { console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().') return this.intersectsBox(box) }, isIntersectionSphere: function (sphere) { console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().') return this.intersectsSphere(sphere) }, size: function (optionalTarget) { console.warn('THREE.Box3: .size() has been renamed to .getSize().') return this.getSize(optionalTarget) } }) Line3.prototype.center = function (optionalTarget) { console.warn('THREE.Line3: .center() has been renamed to .getCenter().') return this.getCenter(optionalTarget) } Object.assign(_Math, { random16: function () { console.warn('THREE.Math: .random16() has been deprecated. Use Math.random() instead.') return Math.random() }, nearestPowerOfTwo: function (value) { console.warn('THREE.Math: .nearestPowerOfTwo() has been renamed to .floorPowerOfTwo().') return _Math.floorPowerOfTwo(value) }, nextPowerOfTwo: function (value) { console.warn('THREE.Math: .nextPowerOfTwo() has been renamed to .ceilPowerOfTwo().') return _Math.ceilPowerOfTwo(value) } }) Object.assign(Matrix3.prototype, { flattenToArrayOffset: function (array, offset) { console.warn( 'THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.' ) return this.toArray(array, offset) }, multiplyVector3: function (vector) { console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' ) return vector.applyMatrix3(this) }, multiplyVector3Array: function (/* a */) { console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.') }, applyToBuffer: function (buffer /*, offset, length */) { console.warn( 'THREE.Matrix3: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' ) return this.applyToBufferAttribute(buffer) }, applyToVector3Array: function (/* array, offset, length */) { console.error('THREE.Matrix3: .applyToVector3Array() has been removed.') } }) Object.assign(Matrix4.prototype, { extractPosition: function (m) { console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().') return this.copyPosition(m) }, flattenToArrayOffset: function (array, offset) { console.warn( 'THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.' ) return this.toArray(array, offset) }, getPosition: (function () { var v1 return function getPosition() { if (v1 === undefined) v1 = new Vector3() console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' ) return v1.setFromMatrixColumn(this, 3) } })(), setRotationFromQuaternion: function (q) { console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' ) return this.makeRotationFromQuaternion(q) }, multiplyToArray: function () { console.warn('THREE.Matrix4: .multiplyToArray() has been removed.') }, multiplyVector3: function (vector) { console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' ) return vector.applyMatrix4(this) }, multiplyVector4: function (vector) { console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' ) return vector.applyMatrix4(this) }, multiplyVector3Array: function (/* a */) { console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.') }, rotateAxis: function (v) { console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' ) v.transformDirection(this) }, crossVector: function (vector) { console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' ) return vector.applyMatrix4(this) }, translate: function () { console.error('THREE.Matrix4: .translate() has been removed.') }, rotateX: function () { console.error('THREE.Matrix4: .rotateX() has been removed.') }, rotateY: function () { console.error('THREE.Matrix4: .rotateY() has been removed.') }, rotateZ: function () { console.error('THREE.Matrix4: .rotateZ() has been removed.') }, rotateByAxis: function () { console.error('THREE.Matrix4: .rotateByAxis() has been removed.') }, applyToBuffer: function (buffer /*, offset, length */) { console.warn( 'THREE.Matrix4: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' ) return this.applyToBufferAttribute(buffer) }, applyToVector3Array: function (/* array, offset, length */) { console.error('THREE.Matrix4: .applyToVector3Array() has been removed.') }, makeFrustum: function (left, right, bottom, top, near, far) { console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' ) return this.makePerspective(left, right, top, bottom, near, far) } }) Plane.prototype.isIntersectionLine = function (line) { console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().') return this.intersectsLine(line) } Quaternion.prototype.multiplyVector3 = function (vector) { console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' ) return vector.applyQuaternion(this) } Object.assign(Ray.prototype, { isIntersectionBox: function (box) { console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().') return this.intersectsBox(box) }, isIntersectionPlane: function (plane) { console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().') return this.intersectsPlane(plane) }, isIntersectionSphere: function (sphere) { console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().') return this.intersectsSphere(sphere) } }) Object.assign(Shape.prototype, { extractAllPoints: function (divisions) { console.warn( 'THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.' ) return this.extractPoints(divisions) }, extrude: function (options) { console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.') return new ExtrudeGeometry(this, options) }, makeGeometry: function (options) { console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.') return new ShapeGeometry(this, options) } }) Object.assign(Vector2.prototype, { fromAttribute: function (attribute, index, offset) { console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().') return this.fromBufferAttribute(attribute, index, offset) }, distanceToManhattan: function (v) { console.warn( 'THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' ) return this.manhattanDistanceTo(v) }, lengthManhattan: function () { console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().') return this.manhattanLength() } }) Object.assign(Vector3.prototype, { setEulerFromRotationMatrix: function () { console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' ) }, setEulerFromQuaternion: function () { console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' ) }, getPositionFromMatrix: function (m) { console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' ) return this.setFromMatrixPosition(m) }, getScaleFromMatrix: function (m) { console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' ) return this.setFromMatrixScale(m) }, getColumnFromMatrix: function (index, matrix) { console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' ) return this.setFromMatrixColumn(matrix, index) }, applyProjection: function (m) { console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' ) return this.applyMatrix4(m) }, fromAttribute: function (attribute, index, offset) { console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().') return this.fromBufferAttribute(attribute, index, offset) }, distanceToManhattan: function (v) { console.warn( 'THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' ) return this.manhattanDistanceTo(v) }, lengthManhattan: function () { console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().') return this.manhattanLength() } }) Object.assign(Vector4.prototype, { fromAttribute: function (attribute, index, offset) { console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().') return this.fromBufferAttribute(attribute, index, offset) }, lengthManhattan: function () { console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().') return this.manhattanLength() } }) // Object.assign(Geometry.prototype, { computeTangents: function () { console.error('THREE.Geometry: .computeTangents() has been removed.') }, computeLineDistances: function () { console.error( 'THREE.Geometry: .computeLineDistances() has been removed. Use THREE.Line.computeLineDistances() instead.' ) } }) Object.assign(Object3D.prototype, { getChildByName: function (name) { console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().') return this.getObjectByName(name) }, renderDepth: function () { console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.') }, translate: function (distance, axis) { console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' ) return this.translateOnAxis(axis, distance) } }) Object.defineProperties(Object3D.prototype, { eulerOrder: { get: function () { console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.') return this.rotation.order }, set: function (value) { console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.') this.rotation.order = value } }, useQuaternion: { get: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ) }, set: function () { console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' ) } } }) Object.defineProperties(LOD.prototype, { objects: { get: function () { console.warn('THREE.LOD: .objects has been renamed to .levels.') return this.levels } } }) Object.defineProperty(Skeleton.prototype, 'useVertexTexture', { get: function () { console.warn('THREE.Skeleton: useVertexTexture has been removed.') }, set: function () { console.warn('THREE.Skeleton: useVertexTexture has been removed.') } }) Object.defineProperty(Curve.prototype, '__arcLengthDivisions', { get: function () { console.warn('THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.') return this.arcLengthDivisions }, set: function (value) { console.warn('THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.') this.arcLengthDivisions = value } }) // PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) { console.warn( 'THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.' ) if (filmGauge !== undefined) this.filmGauge = filmGauge this.setFocalLength(focalLength) } // Object.defineProperties(Light.prototype, { onlyShadow: { set: function () { console.warn('THREE.Light: .onlyShadow has been removed.') } }, shadowCameraFov: { set: function (value) { console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.') this.shadow.camera.fov = value } }, shadowCameraLeft: { set: function (value) { console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.') this.shadow.camera.left = value } }, shadowCameraRight: { set: function (value) { console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.') this.shadow.camera.right = value } }, shadowCameraTop: { set: function (value) { console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.') this.shadow.camera.top = value } }, shadowCameraBottom: { set: function (value) { console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.') this.shadow.camera.bottom = value } }, shadowCameraNear: { set: function (value) { console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.') this.shadow.camera.near = value } }, shadowCameraFar: { set: function (value) { console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.') this.shadow.camera.far = value } }, shadowCameraVisible: { set: function () { console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' ) } }, shadowBias: { set: function (value) { console.warn('THREE.Light: .shadowBias is now .shadow.bias.') this.shadow.bias = value } }, shadowDarkness: { set: function () { console.warn('THREE.Light: .shadowDarkness has been removed.') } }, shadowMapWidth: { set: function (value) { console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.') this.shadow.mapSize.width = value } }, shadowMapHeight: { set: function (value) { console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.') this.shadow.mapSize.height = value } } }) // Object.defineProperties(BufferAttribute.prototype, { length: { get: function () { console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.') return this.array.length } } }) Object.assign(BufferGeometry.prototype, { addIndex: function (index) { console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().') this.setIndex(index) }, addDrawCall: function (start, count, indexOffset) { if (indexOffset !== undefined) { console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.') } console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().') this.addGroup(start, count) }, clearDrawCalls: function () { console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().') this.clearGroups() }, computeTangents: function () { console.warn('THREE.BufferGeometry: .computeTangents() has been removed.') }, computeOffsets: function () { console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.') } }) Object.defineProperties(BufferGeometry.prototype, { drawcalls: { get: function () { console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.') return this.groups } }, offsets: { get: function () { console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.') return this.groups } } }) // Object.defineProperties(Uniform.prototype, { dynamic: { set: function () { console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' ) } }, onUpdate: { value: function () { console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' ) return this } } }) // Object.defineProperties(Material.prototype, { wrapAround: { get: function () { console.warn('THREE.Material: .wrapAround has been removed.') }, set: function () { console.warn('THREE.Material: .wrapAround has been removed.') } }, wrapRGB: { get: function () { console.warn('THREE.Material: .wrapRGB has been removed.') return new Color() } }, shading: { get: function () { console.error( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ) }, set: function (value) { console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' ) this.flatShading = value === FlatShading } } }) Object.defineProperties(MeshPhongMaterial.prototype, { metal: { get: function () { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' ) return false }, set: function () { console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' ) } } }) Object.defineProperties(ShaderMaterial.prototype, { derivatives: { get: function () { console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ) return this.extensions.derivatives }, set: function (value) { console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' ) this.extensions.derivatives = value } } }) // Object.assign(WebGLRenderer.prototype, { getCurrentRenderTarget: function () { console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().') return this.getRenderTarget() }, getMaxAnisotropy: function () { console.warn( 'THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().' ) return this.capabilities.getMaxAnisotropy() }, getPrecision: function () { console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.') return this.capabilities.precision }, resetGLState: function () { console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().') return this.state.reset() }, supportsFloatTextures: function () { console.warn( "THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( 'OES_texture_float' )." ) return this.extensions.get('OES_texture_float') }, supportsHalfFloatTextures: function () { console.warn( "THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( 'OES_texture_half_float' )." ) return this.extensions.get('OES_texture_half_float') }, supportsStandardDerivatives: function () { console.warn( "THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( 'OES_standard_derivatives' )." ) return this.extensions.get('OES_standard_derivatives') }, supportsCompressedTextureS3TC: function () { console.warn( "THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( 'WEBGL_compressed_texture_s3tc' )." ) return this.extensions.get('WEBGL_compressed_texture_s3tc') }, supportsCompressedTexturePVRTC: function () { console.warn( "THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( 'WEBGL_compressed_texture_pvrtc' )." ) return this.extensions.get('WEBGL_compressed_texture_pvrtc') }, supportsBlendMinMax: function () { console.warn( "THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( 'EXT_blend_minmax' )." ) return this.extensions.get('EXT_blend_minmax') }, supportsVertexTextures: function () { console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' ) return this.capabilities.vertexTextures }, supportsInstancedArrays: function () { console.warn( "THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( 'ANGLE_instanced_arrays' )." ) return this.extensions.get('ANGLE_instanced_arrays') }, enableScissorTest: function (boolean) { console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().') this.setScissorTest(boolean) }, initMaterial: function () { console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.') }, addPrePlugin: function () { console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.') }, addPostPlugin: function () { console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.') }, updateShadowMap: function () { console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.') }, setFaceCulling: function () { console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.') } }) Object.defineProperties(WebGLRenderer.prototype, { shadowMapEnabled: { get: function () { return this.shadowMap.enabled }, set: function (value) { console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.') this.shadowMap.enabled = value } }, shadowMapType: { get: function () { return this.shadowMap.type }, set: function (value) { console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.') this.shadowMap.type = value } }, shadowMapCullFace: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' ) return undefined }, set: function (/* value */) { console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' ) } } }) Object.defineProperties(WebGLShadowMap.prototype, { cullFace: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' ) return undefined }, set: function (/* cullFace */) { console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' ) } }, renderReverseSided: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' ) return undefined }, set: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' ) } }, renderSingleSided: { get: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' ) return undefined }, set: function () { console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' ) } } }) // Object.defineProperties(WebGLRenderTarget.prototype, { wrapS: { get: function () { console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.') return this.texture.wrapS }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.') this.texture.wrapS = value } }, wrapT: { get: function () { console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.') return this.texture.wrapT }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.') this.texture.wrapT = value } }, magFilter: { get: function () { console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.') return this.texture.magFilter }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.') this.texture.magFilter = value } }, minFilter: { get: function () { console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.') return this.texture.minFilter }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.') this.texture.minFilter = value } }, anisotropy: { get: function () { console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.') return this.texture.anisotropy }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.') this.texture.anisotropy = value } }, offset: { get: function () { console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.') return this.texture.offset }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.') this.texture.offset = value } }, repeat: { get: function () { console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.') return this.texture.repeat }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.') this.texture.repeat = value } }, format: { get: function () { console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.') return this.texture.format }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.') this.texture.format = value } }, type: { get: function () { console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.') return this.texture.type }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.') this.texture.type = value } }, generateMipmaps: { get: function () { console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.') return this.texture.generateMipmaps }, set: function (value) { console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.') this.texture.generateMipmaps = value } } }) // Object.defineProperties(WebVRManager.prototype, { standing: { set: function (/* value */) { console.warn('THREE.WebVRManager: .standing has been removed.') } } }) // Audio.prototype.load = function (file) { console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.') var scope = this var audioLoader = new AudioLoader() audioLoader.load(file, function (buffer) { scope.setBuffer(buffer) }) return this } AudioAnalyser.prototype.getData = function () { console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().') return this.getFrequencyData() } // CubeCamera.prototype.updateCubeMap = function (renderer, scene) { console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().') return this.update(renderer, scene) } // var GeometryUtils = { merge: function (geometry1, geometry2, materialIndexOffset) { console.warn( 'THREE.GeometryUtils: .merge() has been moved to Geometry. Use geometry.merge( geometry2, matrix, materialIndexOffset ) instead.' ) var matrix if (geometry2.isMesh) { geometry2.matrixAutoUpdate && geometry2.updateMatrix() matrix = geometry2.matrix geometry2 = geometry2.geometry } geometry1.merge(geometry2, matrix, materialIndexOffset) }, center: function (geometry) { console.warn( 'THREE.GeometryUtils: .center() has been moved to Geometry. Use geometry.center() instead.' ) return geometry.center() } } var ImageUtils = { crossOrigin: undefined, loadTexture: function (url, mapping, onLoad, onError) { console.warn( 'THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.' ) var loader = new TextureLoader() loader.setCrossOrigin(this.crossOrigin) var texture = loader.load(url, onLoad, undefined, onError) if (mapping) texture.mapping = mapping return texture }, loadTextureCube: function (urls, mapping, onLoad, onError) { console.warn( 'THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.' ) var loader = new CubeTextureLoader() loader.setCrossOrigin(this.crossOrigin) var texture = loader.load(urls, onLoad, undefined, onError) if (mapping) texture.mapping = mapping return texture }, loadCompressedTexture: function () { console.error( 'THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.' ) }, loadCompressedTextureCube: function () { console.error( 'THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.' ) } } // function Projector() { console.error('THREE.Projector has been moved to /examples/js/renderers/Projector.js.') this.projectVector = function (vector, camera) { console.warn('THREE.Projector: .projectVector() is now vector.project().') vector.project(camera) } this.unprojectVector = function (vector, camera) { console.warn('THREE.Projector: .unprojectVector() is now vector.unproject().') vector.unproject(camera) } this.pickingRay = function () { console.error('THREE.Projector: .pickingRay() is now raycaster.setFromCamera().') } } // function CanvasRenderer() { console.error('THREE.CanvasRenderer has been moved to /examples/js/renderers/CanvasRenderer.js') this.domElement = document.createElementNS('http://www.w3.org/1999/xhtml', 'canvas') this.clear = function () {} this.render = function () {} this.setClearColor = function () {} this.setSize = function () {} } // var SceneUtils = { createMultiMaterialObject: function (/* geometry, materials */) { console.error('THREE.SceneUtils has been moved to /examples/js/utils/SceneUtils.js') }, detach: function (/* child, parent, scene */) { console.error('THREE.SceneUtils has been moved to /examples/js/utils/SceneUtils.js') }, attach: function (/* child, scene, parent */) { console.error('THREE.SceneUtils has been moved to /examples/js/utils/SceneUtils.js') } } // function LensFlare() { console.error('THREE.LensFlare has been moved to /examples/js/objects/Lensflare.js') } exports.WebGLRenderTargetCube = WebGLRenderTargetCube exports.WebGLRenderTarget = WebGLRenderTarget exports.WebGLRenderer = WebGLRenderer exports.ShaderLib = ShaderLib exports.UniformsLib = UniformsLib exports.UniformsUtils = UniformsUtils exports.ShaderChunk = ShaderChunk exports.FogExp2 = FogExp2 exports.Fog = Fog exports.Scene = Scene exports.Sprite = Sprite exports.LOD = LOD exports.SkinnedMesh = SkinnedMesh exports.Skeleton = Skeleton exports.Bone = Bone exports.Mesh = Mesh exports.LineSegments = LineSegments exports.LineLoop = LineLoop exports.Line = Line exports.Points = Points exports.Group = Group exports.VideoTexture = VideoTexture exports.DataTexture = DataTexture exports.CompressedTexture = CompressedTexture exports.CubeTexture = CubeTexture exports.CanvasTexture = CanvasTexture exports.DepthTexture = DepthTexture exports.Texture = Texture exports.CompressedTextureLoader = CompressedTextureLoader exports.DataTextureLoader = DataTextureLoader exports.CubeTextureLoader = CubeTextureLoader exports.TextureLoader = TextureLoader exports.ObjectLoader = ObjectLoader exports.MaterialLoader = MaterialLoader exports.BufferGeometryLoader = BufferGeometryLoader exports.DefaultLoadingManager = DefaultLoadingManager exports.LoadingManager = LoadingManager exports.JSONLoader = JSONLoader exports.ImageLoader = ImageLoader exports.ImageBitmapLoader = ImageBitmapLoader exports.FontLoader = FontLoader exports.FileLoader = FileLoader exports.Loader = Loader exports.LoaderUtils = LoaderUtils exports.Cache = Cache exports.AudioLoader = AudioLoader exports.SpotLightShadow = SpotLightShadow exports.SpotLight = SpotLight exports.PointLight = PointLight exports.RectAreaLight = RectAreaLight exports.HemisphereLight = HemisphereLight exports.DirectionalLightShadow = DirectionalLightShadow exports.DirectionalLight = DirectionalLight exports.AmbientLight = AmbientLight exports.LightShadow = LightShadow exports.Light = Light exports.StereoCamera = StereoCamera exports.PerspectiveCamera = PerspectiveCamera exports.OrthographicCamera = OrthographicCamera exports.CubeCamera = CubeCamera exports.ArrayCamera = ArrayCamera exports.Camera = Camera exports.AudioListener = AudioListener exports.PositionalAudio = PositionalAudio exports.AudioContext = AudioContext exports.AudioAnalyser = AudioAnalyser exports.Audio = Audio exports.VectorKeyframeTrack = VectorKeyframeTrack exports.StringKeyframeTrack = StringKeyframeTrack exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack exports.NumberKeyframeTrack = NumberKeyframeTrack exports.ColorKeyframeTrack = ColorKeyframeTrack exports.BooleanKeyframeTrack = BooleanKeyframeTrack exports.PropertyMixer = PropertyMixer exports.PropertyBinding = PropertyBinding exports.KeyframeTrack = KeyframeTrack exports.AnimationUtils = AnimationUtils exports.AnimationObjectGroup = AnimationObjectGroup exports.AnimationMixer = AnimationMixer exports.AnimationClip = AnimationClip exports.Uniform = Uniform exports.InstancedBufferGeometry = InstancedBufferGeometry exports.BufferGeometry = BufferGeometry exports.Geometry = Geometry exports.InterleavedBufferAttribute = InterleavedBufferAttribute exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer exports.InterleavedBuffer = InterleavedBuffer exports.InstancedBufferAttribute = InstancedBufferAttribute exports.Face3 = Face3 exports.Object3D = Object3D exports.Raycaster = Raycaster exports.Layers = Layers exports.EventDispatcher = EventDispatcher exports.Clock = Clock exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant exports.LinearInterpolant = LinearInterpolant exports.DiscreteInterpolant = DiscreteInterpolant exports.CubicInterpolant = CubicInterpolant exports.Interpolant = Interpolant exports.Triangle = Triangle exports.Math = _Math exports.Spherical = Spherical exports.Cylindrical = Cylindrical exports.Plane = Plane exports.Frustum = Frustum exports.Sphere = Sphere exports.Ray = Ray exports.Matrix4 = Matrix4 exports.Matrix3 = Matrix3 exports.Box3 = Box3 exports.Box2 = Box2 exports.Line3 = Line3 exports.Euler = Euler exports.Vector4 = Vector4 exports.Vector3 = Vector3 exports.Vector2 = Vector2 exports.Quaternion = Quaternion exports.Color = Color exports.ImmediateRenderObject = ImmediateRenderObject exports.VertexNormalsHelper = VertexNormalsHelper exports.SpotLightHelper = SpotLightHelper exports.SkeletonHelper = SkeletonHelper exports.PointLightHelper = PointLightHelper exports.RectAreaLightHelper = RectAreaLightHelper exports.HemisphereLightHelper = HemisphereLightHelper exports.GridHelper = GridHelper exports.PolarGridHelper = PolarGridHelper exports.FaceNormalsHelper = FaceNormalsHelper exports.DirectionalLightHelper = DirectionalLightHelper exports.CameraHelper = CameraHelper exports.BoxHelper = BoxHelper exports.Box3Helper = Box3Helper exports.PlaneHelper = PlaneHelper exports.ArrowHelper = ArrowHelper exports.AxesHelper = AxesHelper exports.Shape = Shape exports.Path = Path exports.ShapePath = ShapePath exports.Font = Font exports.CurvePath = CurvePath exports.Curve = Curve exports.ShapeUtils = ShapeUtils exports.WebGLUtils = WebGLUtils exports.WireframeGeometry = WireframeGeometry exports.ParametricGeometry = ParametricGeometry exports.ParametricBufferGeometry = ParametricBufferGeometry exports.TetrahedronGeometry = TetrahedronGeometry exports.TetrahedronBufferGeometry = TetrahedronBufferGeometry exports.OctahedronGeometry = OctahedronGeometry exports.OctahedronBufferGeometry = OctahedronBufferGeometry exports.IcosahedronGeometry = IcosahedronGeometry exports.IcosahedronBufferGeometry = IcosahedronBufferGeometry exports.DodecahedronGeometry = DodecahedronGeometry exports.DodecahedronBufferGeometry = DodecahedronBufferGeometry exports.PolyhedronGeometry = PolyhedronGeometry exports.PolyhedronBufferGeometry = PolyhedronBufferGeometry exports.TubeGeometry = TubeGeometry exports.TubeBufferGeometry = TubeBufferGeometry exports.TorusKnotGeometry = TorusKnotGeometry exports.TorusKnotBufferGeometry = TorusKnotBufferGeometry exports.TorusGeometry = TorusGeometry exports.TorusBufferGeometry = TorusBufferGeometry exports.TextGeometry = TextGeometry exports.TextBufferGeometry = TextBufferGeometry exports.SphereGeometry = SphereGeometry exports.SphereBufferGeometry = SphereBufferGeometry exports.RingGeometry = RingGeometry exports.RingBufferGeometry = RingBufferGeometry exports.PlaneGeometry = PlaneGeometry exports.PlaneBufferGeometry = PlaneBufferGeometry exports.LatheGeometry = LatheGeometry exports.LatheBufferGeometry = LatheBufferGeometry exports.ShapeGeometry = ShapeGeometry exports.ShapeBufferGeometry = ShapeBufferGeometry exports.ExtrudeGeometry = ExtrudeGeometry exports.ExtrudeBufferGeometry = ExtrudeBufferGeometry exports.EdgesGeometry = EdgesGeometry exports.ConeGeometry = ConeGeometry exports.ConeBufferGeometry = ConeBufferGeometry exports.CylinderGeometry = CylinderGeometry exports.CylinderBufferGeometry = CylinderBufferGeometry exports.CircleGeometry = CircleGeometry exports.CircleBufferGeometry = CircleBufferGeometry exports.BoxGeometry = BoxGeometry exports.BoxBufferGeometry = BoxBufferGeometry exports.ShadowMaterial = ShadowMaterial exports.SpriteMaterial = SpriteMaterial exports.RawShaderMaterial = RawShaderMaterial exports.ShaderMaterial = ShaderMaterial exports.PointsMaterial = PointsMaterial exports.MeshPhysicalMaterial = MeshPhysicalMaterial exports.MeshStandardMaterial = MeshStandardMaterial exports.MeshPhongMaterial = MeshPhongMaterial exports.MeshToonMaterial = MeshToonMaterial exports.MeshNormalMaterial = MeshNormalMaterial exports.MeshLambertMaterial = MeshLambertMaterial exports.MeshDepthMaterial = MeshDepthMaterial exports.MeshDistanceMaterial = MeshDistanceMaterial exports.MeshBasicMaterial = MeshBasicMaterial exports.LineDashedMaterial = LineDashedMaterial exports.LineBasicMaterial = LineBasicMaterial exports.Material = Material exports.Float64BufferAttribute = Float64BufferAttribute exports.Float32BufferAttribute = Float32BufferAttribute exports.Uint32BufferAttribute = Uint32BufferAttribute exports.Int32BufferAttribute = Int32BufferAttribute exports.Uint16BufferAttribute = Uint16BufferAttribute exports.Int16BufferAttribute = Int16BufferAttribute exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute exports.Uint8BufferAttribute = Uint8BufferAttribute exports.Int8BufferAttribute = Int8BufferAttribute exports.BufferAttribute = BufferAttribute exports.ArcCurve = ArcCurve exports.CatmullRomCurve3 = CatmullRomCurve3 exports.CubicBezierCurve = CubicBezierCurve exports.CubicBezierCurve3 = CubicBezierCurve3 exports.EllipseCurve = EllipseCurve exports.LineCurve = LineCurve exports.LineCurve3 = LineCurve3 exports.QuadraticBezierCurve = QuadraticBezierCurve exports.QuadraticBezierCurve3 = QuadraticBezierCurve3 exports.SplineCurve = SplineCurve exports.REVISION = REVISION exports.MOUSE = MOUSE exports.CullFaceNone = CullFaceNone exports.CullFaceBack = CullFaceBack exports.CullFaceFront = CullFaceFront exports.CullFaceFrontBack = CullFaceFrontBack exports.FrontFaceDirectionCW = FrontFaceDirectionCW exports.FrontFaceDirectionCCW = FrontFaceDirectionCCW exports.BasicShadowMap = BasicShadowMap exports.PCFShadowMap = PCFShadowMap exports.PCFSoftShadowMap = PCFSoftShadowMap exports.FrontSide = FrontSide exports.BackSide = BackSide exports.DoubleSide = DoubleSide exports.FlatShading = FlatShading exports.SmoothShading = SmoothShading exports.NoColors = NoColors exports.FaceColors = FaceColors exports.VertexColors = VertexColors exports.NoBlending = NoBlending exports.NormalBlending = NormalBlending exports.AdditiveBlending = AdditiveBlending exports.SubtractiveBlending = SubtractiveBlending exports.MultiplyBlending = MultiplyBlending exports.CustomBlending = CustomBlending exports.AddEquation = AddEquation exports.SubtractEquation = SubtractEquation exports.ReverseSubtractEquation = ReverseSubtractEquation exports.MinEquation = MinEquation exports.MaxEquation = MaxEquation exports.ZeroFactor = ZeroFactor exports.OneFactor = OneFactor exports.SrcColorFactor = SrcColorFactor exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor exports.SrcAlphaFactor = SrcAlphaFactor exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor exports.DstAlphaFactor = DstAlphaFactor exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor exports.DstColorFactor = DstColorFactor exports.OneMinusDstColorFactor = OneMinusDstColorFactor exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor exports.NeverDepth = NeverDepth exports.AlwaysDepth = AlwaysDepth exports.LessDepth = LessDepth exports.LessEqualDepth = LessEqualDepth exports.EqualDepth = EqualDepth exports.GreaterEqualDepth = GreaterEqualDepth exports.GreaterDepth = GreaterDepth exports.NotEqualDepth = NotEqualDepth exports.MultiplyOperation = MultiplyOperation exports.MixOperation = MixOperation exports.AddOperation = AddOperation exports.NoToneMapping = NoToneMapping exports.LinearToneMapping = LinearToneMapping exports.ReinhardToneMapping = ReinhardToneMapping exports.Uncharted2ToneMapping = Uncharted2ToneMapping exports.CineonToneMapping = CineonToneMapping exports.UVMapping = UVMapping exports.CubeReflectionMapping = CubeReflectionMapping exports.CubeRefractionMapping = CubeRefractionMapping exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping exports.SphericalReflectionMapping = SphericalReflectionMapping exports.CubeUVReflectionMapping = CubeUVReflectionMapping exports.CubeUVRefractionMapping = CubeUVRefractionMapping exports.RepeatWrapping = RepeatWrapping exports.ClampToEdgeWrapping = ClampToEdgeWrapping exports.MirroredRepeatWrapping = MirroredRepeatWrapping exports.NearestFilter = NearestFilter exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter exports.LinearFilter = LinearFilter exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter exports.UnsignedByteType = UnsignedByteType exports.ByteType = ByteType exports.ShortType = ShortType exports.UnsignedShortType = UnsignedShortType exports.IntType = IntType exports.UnsignedIntType = UnsignedIntType exports.FloatType = FloatType exports.HalfFloatType = HalfFloatType exports.UnsignedShort4444Type = UnsignedShort4444Type exports.UnsignedShort5551Type = UnsignedShort5551Type exports.UnsignedShort565Type = UnsignedShort565Type exports.UnsignedInt248Type = UnsignedInt248Type exports.AlphaFormat = AlphaFormat exports.RGBFormat = RGBFormat exports.RGBAFormat = RGBAFormat exports.LuminanceFormat = LuminanceFormat exports.LuminanceAlphaFormat = LuminanceAlphaFormat exports.RGBEFormat = RGBEFormat exports.DepthFormat = DepthFormat exports.DepthStencilFormat = DepthStencilFormat exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format exports.RGB_ETC1_Format = RGB_ETC1_Format exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format exports.LoopOnce = LoopOnce exports.LoopRepeat = LoopRepeat exports.LoopPingPong = LoopPingPong exports.InterpolateDiscrete = InterpolateDiscrete exports.InterpolateLinear = InterpolateLinear exports.InterpolateSmooth = InterpolateSmooth exports.ZeroCurvatureEnding = ZeroCurvatureEnding exports.ZeroSlopeEnding = ZeroSlopeEnding exports.WrapAroundEnding = WrapAroundEnding exports.TrianglesDrawMode = TrianglesDrawMode exports.TriangleStripDrawMode = TriangleStripDrawMode exports.TriangleFanDrawMode = TriangleFanDrawMode exports.LinearEncoding = LinearEncoding exports.sRGBEncoding = sRGBEncoding exports.GammaEncoding = GammaEncoding exports.RGBEEncoding = RGBEEncoding exports.LogLuvEncoding = LogLuvEncoding exports.RGBM7Encoding = RGBM7Encoding exports.RGBM16Encoding = RGBM16Encoding exports.RGBDEncoding = RGBDEncoding exports.BasicDepthPacking = BasicDepthPacking exports.RGBADepthPacking = RGBADepthPacking exports.CubeGeometry = BoxGeometry exports.Face4 = Face4 exports.LineStrip = LineStrip exports.LinePieces = LinePieces exports.MeshFaceMaterial = MeshFaceMaterial exports.MultiMaterial = MultiMaterial exports.PointCloud = PointCloud exports.Particle = Particle exports.ParticleSystem = ParticleSystem exports.PointCloudMaterial = PointCloudMaterial exports.ParticleBasicMaterial = ParticleBasicMaterial exports.ParticleSystemMaterial = ParticleSystemMaterial exports.Vertex = Vertex exports.DynamicBufferAttribute = DynamicBufferAttribute exports.Int8Attribute = Int8Attribute exports.Uint8Attribute = Uint8Attribute exports.Uint8ClampedAttribute = Uint8ClampedAttribute exports.Int16Attribute = Int16Attribute exports.Uint16Attribute = Uint16Attribute exports.Int32Attribute = Int32Attribute exports.Uint32Attribute = Uint32Attribute exports.Float32Attribute = Float32Attribute exports.Float64Attribute = Float64Attribute exports.ClosedSplineCurve3 = ClosedSplineCurve3 exports.SplineCurve3 = SplineCurve3 exports.Spline = Spline exports.AxisHelper = AxisHelper exports.BoundingBoxHelper = BoundingBoxHelper exports.EdgesHelper = EdgesHelper exports.WireframeHelper = WireframeHelper exports.XHRLoader = XHRLoader exports.BinaryTextureLoader = BinaryTextureLoader exports.GeometryUtils = GeometryUtils exports.ImageUtils = ImageUtils exports.Projector = Projector exports.CanvasRenderer = CanvasRenderer exports.SceneUtils = SceneUtils exports.LensFlare = LensFlare Object.defineProperty(exports, '__esModule', { value: true }) })