zhongshujie
2024-10-16 218a387c6191311ed29b1aa81612e0aa3b4fa9dc
Merge branch 'master' of http://182.92.203.7:2001/r/testbookLayout
18个文件已删除
12个文件已修改
225 文件已重命名
22664 ■■■■■ 已修改文件
src/App.vue 2 ●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/assets/methods/resources.js 2 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0004-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0005-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0019-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0022-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0022-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0023-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0023-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0024-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0024-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0027-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0028-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0028-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0028-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0028-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0029-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0030-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0030-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0030-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0031-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0031-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0032-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0033-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0034-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0034-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0038-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0049-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0049-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0050-7.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0050-8.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0053-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0054-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0055-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0056-6.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0057-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0057-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0057-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0058-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0059-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0059-6.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0062-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0063-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0063-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0063-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0066-11.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0067-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0068-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0068-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0069-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0070-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0070-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0070-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0071-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0071-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0072-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0072-8.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0074-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0077-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0077-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0080-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0080-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0082-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0082-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0083-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0086-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0086-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0087-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0088-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0088-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0089-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0089-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0090-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0090-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0091-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0092-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0093-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0094-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0095-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0096-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0097-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0097-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0097-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0098-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0098-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0099-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0099-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0099-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0104-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0104-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0104-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0105-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0105-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0106-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0106-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0108-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0109-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0109-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0109-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0111-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0112-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0112-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0113-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0115-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0115-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0116-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0116-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0117-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0119-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0121-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0121-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0123-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0133-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0134-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0134-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0135-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0135-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0136-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0136-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0137-7.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0137-8.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0137-9.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0140-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0142-8.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0148-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0149-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0149-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0150-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0151-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0151-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0159-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0160-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0163-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0166-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0167-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0167-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0168-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0168-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0168-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0169-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0172-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0173-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0174-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0174-6.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0175-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0175-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0175-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0175-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0175-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0175-6.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0175-7.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0175-8.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0175-9.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0176-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0176-11.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0176-8.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0177-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0177-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0178-7.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0179-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0179-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0180-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0181-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0181-6.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0182-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0183-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0183-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0183-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0185-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0189-9.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0190-25.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0191-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0192-23.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0193-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0194-14.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0195-6.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0196-13.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0196-14.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0196-15.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0196-16.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0197-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0197-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0197-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0197-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0197-6.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0197-7.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0199-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0200-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0200-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0201-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0201-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0201-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0201-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0201-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0202-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0202-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0204-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0206-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0206-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0207-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0207-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0207-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0207-6.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0208-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0208-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0208-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0208-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0212-9.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0214-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0214-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0215-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0215-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0215-5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0215-6.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0215-7.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0215-8.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0219-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0220-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/0220-4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/FD.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/dy2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/dy4.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/dy5.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/fxlj.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/gcsk.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/gn.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/images/zshg.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/0100-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/0100-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/0100-3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/0101-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/0101-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/0102-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/0102-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/0103-1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/0103-2.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/cxgk.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/dy1.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/dy3.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/hzjl.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/stlx.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/tbts.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/tjfx.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/wttc.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/imgs/xxmb.jpg 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/assets/main.less 14 ●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/view/components/chapter001.vue 792 ●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/view/components/chapter002.vue 2685 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/view/components/chapter003.vue 2944 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/view/components/chapter004.vue 6003 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/view/components/chapter005.vue 9400 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/view/components/header.vue 37 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/view/components/index.vue 34 ●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/books/mathBook/view/components/sample.vue 733 ●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/components/examinations/index.vue 18 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
src/App.vue
@@ -68,7 +68,7 @@
      process.env.VUE_APP_RESOURCE_CTX +
        (process.env.VUE_APP_ENV == "product"
          ? process.env.VUE_APP_BOOK_ID
          : "sportsAndHealth")
          : "mathBook")
      );
      // this.activeBook = await this.config.getBookConfig(
      //   'http://182.92.203.7:3007/books/resource/'+
src/assets/methods/resources.js
@@ -1,5 +1,6 @@
import fileApi from "@/assets/js/middleGround/api/file";
import identityApi from "../js/middleGround/api/identity";
import { tokenKey } from "../js/config";
export const getResourcePath = async (md5, appRefCode = "jingshieke") => {
  let path = "";
  await fileApi
@@ -18,6 +19,7 @@
};
// 获取收藏的资源
export const getCollectResource = async (key) => {
  if(!localStorage.getItem(tokenKey)) return []
  let list = []
  await identityApi
  .getUserKey({
src/books/mathBook/assets/images/0004-1.jpg

src/books/mathBook/assets/images/0005-1.jpg

src/books/mathBook/assets/images/0019-1.jpg

src/books/mathBook/assets/images/0022-1.jpg

src/books/mathBook/assets/images/0022-2.jpg

src/books/mathBook/assets/images/0023-1.jpg

src/books/mathBook/assets/images/0023-2.jpg

src/books/mathBook/assets/images/0024-1.jpg

src/books/mathBook/assets/images/0024-2.jpg

src/books/mathBook/assets/images/0027-1.jpg

src/books/mathBook/assets/images/0028-1.jpg

src/books/mathBook/assets/images/0028-2.jpg

src/books/mathBook/assets/images/0028-3.jpg

src/books/mathBook/assets/images/0028-4.jpg

src/books/mathBook/assets/images/0029-1.jpg

src/books/mathBook/assets/images/0030-1.jpg

src/books/mathBook/assets/images/0030-2.jpg

src/books/mathBook/assets/images/0030-3.jpg

src/books/mathBook/assets/images/0031-1.jpg

src/books/mathBook/assets/images/0031-2.jpg

src/books/mathBook/assets/images/0032-1.jpg

src/books/mathBook/assets/images/0033-1.jpg

src/books/mathBook/assets/images/0034-1.jpg

src/books/mathBook/assets/images/0034-2.jpg

src/books/mathBook/assets/images/0038-1.jpg

src/books/mathBook/assets/images/0049-1.jpg

src/books/mathBook/assets/images/0049-2.jpg

src/books/mathBook/assets/images/0050-7.jpg

src/books/mathBook/assets/images/0050-8.jpg

src/books/mathBook/assets/images/0053-1.jpg

src/books/mathBook/assets/images/0054-1.jpg

src/books/mathBook/assets/images/0055-1.jpg

src/books/mathBook/assets/images/0056-6.jpg

src/books/mathBook/assets/images/0057-1.jpg

src/books/mathBook/assets/images/0057-2.jpg

src/books/mathBook/assets/images/0057-3.jpg

src/books/mathBook/assets/images/0058-1.jpg

src/books/mathBook/assets/images/0059-5.jpg

src/books/mathBook/assets/images/0059-6.jpg

src/books/mathBook/assets/images/0062-3.jpg

src/books/mathBook/assets/images/0063-2.jpg

src/books/mathBook/assets/images/0063-3.jpg

src/books/mathBook/assets/images/0063-4.jpg

src/books/mathBook/assets/images/0066-11.jpg

src/books/mathBook/assets/images/0067-1.jpg

src/books/mathBook/assets/images/0068-1.jpg

src/books/mathBook/assets/images/0068-2.jpg

src/books/mathBook/assets/images/0069-1.jpg

src/books/mathBook/assets/images/0070-2.jpg

src/books/mathBook/assets/images/0070-3.jpg

src/books/mathBook/assets/images/0070-4.jpg

src/books/mathBook/assets/images/0071-1.jpg

src/books/mathBook/assets/images/0071-2.jpg

src/books/mathBook/assets/images/0072-4.jpg

src/books/mathBook/assets/images/0072-8.jpg

src/books/mathBook/assets/images/0074-1.jpg

src/books/mathBook/assets/images/0077-1.jpg

src/books/mathBook/assets/images/0077-3.jpg

src/books/mathBook/assets/images/0080-1.jpg

src/books/mathBook/assets/images/0080-2.jpg

src/books/mathBook/assets/images/0082-1.jpg

src/books/mathBook/assets/images/0082-2.jpg

src/books/mathBook/assets/images/0083-2.jpg

src/books/mathBook/assets/images/0086-1.jpg

src/books/mathBook/assets/images/0086-2.jpg

src/books/mathBook/assets/images/0087-2.jpg

src/books/mathBook/assets/images/0088-1.jpg

src/books/mathBook/assets/images/0088-3.jpg

src/books/mathBook/assets/images/0089-1.jpg

src/books/mathBook/assets/images/0089-2.jpg

src/books/mathBook/assets/images/0090-1.jpg

src/books/mathBook/assets/images/0090-4.jpg

src/books/mathBook/assets/images/0091-1.jpg

src/books/mathBook/assets/images/0092-1.jpg

src/books/mathBook/assets/images/0093-1.jpg

src/books/mathBook/assets/images/0094-1.jpg

src/books/mathBook/assets/images/0095-1.jpg

src/books/mathBook/assets/images/0096-1.jpg

src/books/mathBook/assets/images/0097-1.jpg

src/books/mathBook/assets/images/0097-2.jpg

src/books/mathBook/assets/images/0097-3.jpg

src/books/mathBook/assets/images/0098-1.jpg

src/books/mathBook/assets/images/0098-5.jpg

src/books/mathBook/assets/images/0099-1.jpg

src/books/mathBook/assets/images/0099-2.jpg

src/books/mathBook/assets/images/0099-4.jpg

src/books/mathBook/assets/images/0104-1.jpg

src/books/mathBook/assets/images/0104-2.jpg

src/books/mathBook/assets/images/0104-3.jpg

src/books/mathBook/assets/images/0105-1.jpg

src/books/mathBook/assets/images/0105-2.jpg

src/books/mathBook/assets/images/0106-3.jpg

src/books/mathBook/assets/images/0106-4.jpg

src/books/mathBook/assets/images/0108-1.jpg

src/books/mathBook/assets/images/0109-1.jpg

src/books/mathBook/assets/images/0109-2.jpg

src/books/mathBook/assets/images/0109-4.jpg

src/books/mathBook/assets/images/0111-4.jpg

src/books/mathBook/assets/images/0112-1.jpg

src/books/mathBook/assets/images/0112-3.jpg

src/books/mathBook/assets/images/0113-3.jpg

src/books/mathBook/assets/images/0115-2.jpg

src/books/mathBook/assets/images/0115-3.jpg

src/books/mathBook/assets/images/0116-1.jpg

src/books/mathBook/assets/images/0116-2.jpg

src/books/mathBook/assets/images/0117-1.jpg

src/books/mathBook/assets/images/0119-1.jpg

src/books/mathBook/assets/images/0121-2.jpg

src/books/mathBook/assets/images/0121-4.jpg

src/books/mathBook/assets/images/0123-1.jpg

src/books/mathBook/assets/images/0133-2.jpg

src/books/mathBook/assets/images/0134-3.jpg

src/books/mathBook/assets/images/0134-5.jpg

src/books/mathBook/assets/images/0135-2.jpg

src/books/mathBook/assets/images/0135-3.jpg

src/books/mathBook/assets/images/0136-1.jpg

src/books/mathBook/assets/images/0136-2.jpg

src/books/mathBook/assets/images/0137-7.jpg

src/books/mathBook/assets/images/0137-8.jpg

src/books/mathBook/assets/images/0137-9.jpg

src/books/mathBook/assets/images/0140-3.jpg

src/books/mathBook/assets/images/0142-8.jpg

src/books/mathBook/assets/images/0148-3.jpg

src/books/mathBook/assets/images/0149-1.jpg

src/books/mathBook/assets/images/0149-2.jpg

src/books/mathBook/assets/images/0150-1.jpg

src/books/mathBook/assets/images/0151-1.jpg

src/books/mathBook/assets/images/0151-2.jpg

src/books/mathBook/assets/images/0159-1.jpg

src/books/mathBook/assets/images/0160-5.jpg

src/books/mathBook/assets/images/0163-1.jpg

src/books/mathBook/assets/images/0166-1.jpg

src/books/mathBook/assets/images/0167-1.jpg

src/books/mathBook/assets/images/0167-2.jpg

src/books/mathBook/assets/images/0168-1.jpg

src/books/mathBook/assets/images/0168-2.jpg

src/books/mathBook/assets/images/0168-3.jpg

src/books/mathBook/assets/images/0169-1.jpg

src/books/mathBook/assets/images/0172-2.jpg

src/books/mathBook/assets/images/0173-2.jpg

src/books/mathBook/assets/images/0174-3.jpg

src/books/mathBook/assets/images/0174-6.jpg

src/books/mathBook/assets/images/0175-1.jpg

src/books/mathBook/assets/images/0175-2.jpg

src/books/mathBook/assets/images/0175-3.jpg

src/books/mathBook/assets/images/0175-4.jpg

src/books/mathBook/assets/images/0175-5.jpg

src/books/mathBook/assets/images/0175-6.jpg

src/books/mathBook/assets/images/0175-7.jpg

src/books/mathBook/assets/images/0175-8.jpg

src/books/mathBook/assets/images/0175-9.jpg

src/books/mathBook/assets/images/0176-1.jpg

src/books/mathBook/assets/images/0176-11.jpg

src/books/mathBook/assets/images/0176-8.jpg

src/books/mathBook/assets/images/0177-1.jpg

src/books/mathBook/assets/images/0177-5.jpg

src/books/mathBook/assets/images/0178-7.jpg

src/books/mathBook/assets/images/0179-1.jpg

src/books/mathBook/assets/images/0179-4.jpg

src/books/mathBook/assets/images/0180-3.jpg

src/books/mathBook/assets/images/0181-4.jpg

src/books/mathBook/assets/images/0181-6.jpg

src/books/mathBook/assets/images/0182-1.jpg

src/books/mathBook/assets/images/0183-1.jpg

src/books/mathBook/assets/images/0183-2.jpg

src/books/mathBook/assets/images/0183-4.jpg

src/books/mathBook/assets/images/0185-4.jpg

src/books/mathBook/assets/images/0189-9.jpg

src/books/mathBook/assets/images/0190-25.jpg

src/books/mathBook/assets/images/0191-5.jpg

src/books/mathBook/assets/images/0192-23.jpg

src/books/mathBook/assets/images/0193-5.jpg

src/books/mathBook/assets/images/0194-14.jpg

src/books/mathBook/assets/images/0195-6.jpg

src/books/mathBook/assets/images/0196-13.jpg

src/books/mathBook/assets/images/0196-14.jpg

src/books/mathBook/assets/images/0196-15.jpg

src/books/mathBook/assets/images/0196-16.jpg

src/books/mathBook/assets/images/0197-1.jpg

src/books/mathBook/assets/images/0197-2.jpg

src/books/mathBook/assets/images/0197-3.jpg

src/books/mathBook/assets/images/0197-4.jpg

src/books/mathBook/assets/images/0197-6.jpg

src/books/mathBook/assets/images/0197-7.jpg

src/books/mathBook/assets/images/0199-1.jpg

src/books/mathBook/assets/images/0200-1.jpg

src/books/mathBook/assets/images/0200-2.jpg

src/books/mathBook/assets/images/0201-1.jpg

src/books/mathBook/assets/images/0201-2.jpg

src/books/mathBook/assets/images/0201-3.jpg

src/books/mathBook/assets/images/0201-4.jpg

src/books/mathBook/assets/images/0201-5.jpg

src/books/mathBook/assets/images/0202-1.jpg

src/books/mathBook/assets/images/0202-2.jpg

src/books/mathBook/assets/images/0204-3.jpg

src/books/mathBook/assets/images/0206-1.jpg

src/books/mathBook/assets/images/0206-2.jpg

src/books/mathBook/assets/images/0207-1.jpg

src/books/mathBook/assets/images/0207-4.jpg

src/books/mathBook/assets/images/0207-5.jpg

src/books/mathBook/assets/images/0207-6.jpg

src/books/mathBook/assets/images/0208-1.jpg

src/books/mathBook/assets/images/0208-2.jpg

src/books/mathBook/assets/images/0208-3.jpg

src/books/mathBook/assets/images/0208-4.jpg

src/books/mathBook/assets/images/0212-9.jpg

src/books/mathBook/assets/images/0214-4.jpg

src/books/mathBook/assets/images/0214-5.jpg

src/books/mathBook/assets/images/0215-1.jpg

src/books/mathBook/assets/images/0215-2.jpg

src/books/mathBook/assets/images/0215-5.jpg

src/books/mathBook/assets/images/0215-6.jpg

src/books/mathBook/assets/images/0215-7.jpg

src/books/mathBook/assets/images/0215-8.jpg

src/books/mathBook/assets/images/0219-1.jpg

src/books/mathBook/assets/images/0220-3.jpg

src/books/mathBook/assets/images/0220-4.jpg

src/books/mathBook/assets/images/FD.jpg

src/books/mathBook/assets/images/dy2.jpg

src/books/mathBook/assets/images/dy4.jpg

src/books/mathBook/assets/images/dy5.jpg

src/books/mathBook/assets/images/fxlj.jpg

src/books/mathBook/assets/images/gcsk.jpg

src/books/mathBook/assets/images/gn.jpg

src/books/mathBook/assets/images/zshg.jpg

src/books/mathBook/assets/imgs/0100-1.jpg
Binary files differ
src/books/mathBook/assets/imgs/0100-2.jpg
Binary files differ
src/books/mathBook/assets/imgs/0100-3.jpg
Binary files differ
src/books/mathBook/assets/imgs/0101-1.jpg
Binary files differ
src/books/mathBook/assets/imgs/0101-2.jpg
Binary files differ
src/books/mathBook/assets/imgs/0102-1.jpg
Binary files differ
src/books/mathBook/assets/imgs/0102-2.jpg
Binary files differ
src/books/mathBook/assets/imgs/0103-1.jpg
Binary files differ
src/books/mathBook/assets/imgs/0103-2.jpg
Binary files differ
src/books/mathBook/assets/imgs/cxgk.jpg
Binary files differ
src/books/mathBook/assets/imgs/dy1.jpg
Binary files differ
src/books/mathBook/assets/imgs/dy3.jpg
Binary files differ
src/books/mathBook/assets/imgs/hzjl.jpg
Binary files differ
src/books/mathBook/assets/imgs/stlx.jpg
Binary files differ
src/books/mathBook/assets/imgs/tbts.jpg
Binary files differ
src/books/mathBook/assets/imgs/tjfx.jpg
Binary files differ
src/books/mathBook/assets/imgs/wttc.jpg
Binary files differ
src/books/mathBook/assets/imgs/xxmb.jpg
Binary files differ
src/books/mathBook/assets/main.less
@@ -256,7 +256,7 @@
    width: 80%;
  }
  .img-c {
    width: 70%;
    width: 30%;
  }
  .img-d {
    width: 60%;
@@ -384,7 +384,6 @@
  div.bk {
    border: 2px solid #00a1e9;
    padding: 0.8em;
    margin-bottom: 2em;
    margin-top: 2em;
    box-shadow: inset -0.5em -0.5em 0 0 #e0f2fc;
@@ -624,6 +623,9 @@
        justify-content: center;
        font-weight: 600;
      }
      span {
        white-space: nowrap;
      }
    }
  }
  .page-header-odd {
@@ -689,6 +691,9 @@
  }
  .mt-40 {
    margin-top: 40px;
  }
  .mt-80 {
    margin-top: 80px !important;
  }
  .mb-80 {
    margin-bottom: 80px !important;
@@ -833,6 +838,11 @@
    color: #00aeef;
    margin-top: 40px;
  }
  // 隐藏页面
  .hidePage {
    min-height: 0 !important;
    height: 0 !important;
  }
}
/* 媒体查询做基础响应式布局 */
src/books/mathBook/view/components/chapter001.vue
@@ -58,7 +58,7 @@
          <h3>1.1.1 集合与元素<span class="fontsz2">>>></span></h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/gcsk.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <span> 观察几组对象: </span>
@@ -71,7 +71,7 @@
          <p>(5) 到一个角的两边距离相等的所有点.</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/fxlj.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
@@ -85,14 +85,14 @@
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/imgs/gn.jpg" />
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">集合</p>
            <p class="block">集合与元素</p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/cxgk.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
@@ -285,7 +285,7 @@
          <div class="bj">
            <examinations :cardList="questionData[11]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData" :isReal="false"></examinations>
              v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
@@ -302,17 +302,11 @@
          </li>
        </ul>
        <div class="padding-116">
          <div class="bj">
            <examinations :cardList="questionData[12]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData" :isReal="false"></examinations>
          </div>
          <h3>1.1.2 常见集合<span class="fontsz2">>>></span></h3>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/imgs/gn.jpg" />
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">有限集</p>
@@ -320,7 +314,7 @@
            <p class="block">空集</p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/fxlj.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            在上节例(1)
@@ -411,7 +405,7 @@
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/imgs/zshg.jpg" />
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block">有理数:整数和分数的统称;</p>
@@ -435,9 +429,8 @@
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <examinations :cardList="questionData[13]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" :isReal="false"></examinations>
          <examinations :cardList="questionData[13]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          <p>全体自然数组成的集合,记作N,称为 <b>自然数集;</b></p>
          <p>全体正整数组成的集合,记作N*或N+,称为; <b>正整数集</b></p>
          <p>全体整数组成的集合,记作Z,称为 <b>整数集;</b></p>
@@ -753,7 +746,7 @@
          </p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0019-1.jpg" style="width: 40%" />
            <img class="img-c" alt="" src="../../assets/images/0019-1.jpg" style="width: 40%" />
          </p>
          <p class="img">图1-1</p>
@@ -785,7 +778,6 @@
              分别举出几个集合的例子,使用不同的方法表示这些集合.并与同学交流:哪些集合适合用列举法表示,哪些集合适合用描述法表示?
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -836,25 +828,6 @@
          <h2 id="c031">习题1.1<span class="fontsz2"> >>></span></h2>
          <div class="bj">
            <p>
              <span class="bj-sp">水平一</span>
            </p>
            <div class="textIndentation">
              1.判断下列对象能否组成集合,能的画“√”,不能的画“×”.
              <p>(1) 不超过π的正整数的全体.( )</p>
              <p>(2) 数学课本中所有的难题.( )</p>
              <p>(3) 中国的大城市的全体.( )</p>
              <p>(4) 平方后等于自身的数的全体.( )</p>
              <p>(5) 你们班上身高1.5 m以上的学生的全体.( )</p>
            </div>
            <div class="textIndentation">
              2.选择题.
              <p>已知集合M={x|x=4n,n∈N+},则下列各数属于集合M的是( ).</p>
              <p>A.0 &nbsp; B.2 007&nbsp; C.2 008 &nbsp;D.2 009</p>
            </div>
          </div>
        </div>
      </div>
    </div>
@@ -867,75 +840,8 @@
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <div class="bj" style="margin-top: 50px">
            <div class="textIndentation">
              3.填空题.
              <p>(1) 用符号“∈”或“∉”填空.</p>
              <p>
                2 5 ______Q,  2 5 ______Z,  2 5 ______R,  2 ______Q,  2
                ______R.
              </p>
              <p>
                (2) 你们班班委会成员组成的集合用列举法可以表示为<input @change="changeAssess($event, 'text11')" maxlength="200"
                  :value="chapter001.tkItem01.text11" class="assess" type="text" />
              </p>
              <p>
                (3) 4的整数倍组成的集合可以表示为
                <input @change="changeAssess($event, 'text12')" maxlength="200" :value="chapter001.tkItem01.text12"
                  class="assess" type="text" />
              </p>
              <p>
                (4) 已知集合A={2,3,2a},若10∈A,则a的值为
                <input @change="changeAssess($event, 'text13')" maxlength="200" :value="chapter001.tkItem01.text13"
                  class="assess" type="text" />
              </p>
            </div>
            <div class="textIndentation">
              4.用适当的方法表示下列集合.
              <p>
                (1) 不超过10的正偶数组成的集合;
                <input @change="changeAssess($event, 'text15')" maxlength="200" :value="chapter001.tkItem01.text15"
                  class="assess" type="text" />
              </p>
              <p>
                (2) 方程x2-3x+2=0的解集;
                <input @change="changeAssess($event, 'text16')" maxlength="200" :value="chapter001.tkItem01.text16"
                  class="assess" type="text" />
              </p>
              <p>
                (3) 由所有锐角三角形组成的集合.
                <input @change="changeAssess($event, 'text17')" maxlength="200" :value="chapter001.tkItem01.text17"
                  class="assess" type="text" />
              </p>
            </div>
            <div class="textIndentation">
              5.用描述法表示下列集合,并在数轴上表示出来.
              <p>(1) 不等式x+4≥0的解集;</p>
              <textarea cols="30" rows="4" v-model="chapterData.txt1" placeholder="请输入内容"
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
              <p>(2) 不等式3x≤9的解集;</p>
              <p>(3) 不等式-x<3的解集.</p>
            </div>
            <p>
              <span class="bj-sp">水平二</span>
            </p>
            <p>
              1.已知集合M={x|x2=a}中只有一个元素,请写出由a的可能取值组成的集合.
              <input @change="changeAssess($event, 'text18')" maxlength="200" :value="chapter001.tkItem01.text18"
                class="assess" type="text" />
            </p>
            <p>
              2.被7除余1的整数组成的集合可以表示为
              <input @change="changeAssess($event, 'text19')" maxlength="200" :value="chapter001.tkItem01.text19"
                class="assess" type="text" />
            </p>
            <p>3.用描述法表示平面直角坐标系中第二象限内的所有点组成的集合.</p>
          </div>
          <examinations :cardList="questionData[16]" :hideCollect="true" sourceType="json"
          v-if="questionData" ></examinations>
          <h2 id="c031">
            1.2 集合之间的关系<span class="fontsz2">>>></span>
          </h2>
@@ -943,7 +849,7 @@
          <h3>1.2.1 子集<span class="fontsz2">>>></span></h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/gcsk.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <p>
@@ -965,14 +871,14 @@
        </ul>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/fxlj.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            我们知道,全国城镇常住人口中的每个人都是全国人口中的一员,因此,集合A中的任何一个元素都是集合B中的元素,这时我们就说集合A与集合B有包含关系.
          </p>
          <p>同样,整数集与有理数集、有理数集与实数集也有包含关系.</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/cxgk.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
@@ -985,7 +891,7 @@
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/imgs/gn.jpg" />
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">子集</p>
@@ -999,12 +905,12 @@
          </p>
          <div class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0022-1.jpg" style="width: 40%" />
            <img class="img-c" alt="" src="../../assets/images/0022-1.jpg" style="width: 40%" />
            <p class="img" style="font-size: 14px">图1-2</p>
          </div>
          <div class="img-rights openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0022-2.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0022-2.jpg" />
            <p class="img" style="color: #ac92c4; font-size: 14px">图1-3</p>
          </div>
          <p>
@@ -1027,7 +933,7 @@
        </ul>
        <div class="padding-116">
          <div class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0023-1.jpg" style="margin-top: 30px" />
            <img class="img-c" alt="" src="../../assets/images/0023-1.jpg" style="margin-top: 30px" />
            <p class="img" style="font-size: 14px">图1-4</p>
          </div>
@@ -1038,7 +944,7 @@
          </p>
          <div class="img-float openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0023-2.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0023-2.jpg" />
            <p class="img" style="font-size: 14px">图1-5</p>
          </div>
          <ul>
@@ -1094,25 +1000,9 @@
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <div class="textIndentation">
              1.用符号“∈”“∉”“⊆”“⊇”“⊈”填空.
              <p>(1)π______{x|x≤3.141 6};</p>
              <p>(2) ∅____{0};</p>
              <p>(3) {a,b,c,d}______{b,d,e,f,a};</p>
              <p>(4) {1,3,5,7,9,15}______{1,3,5,15}.</p>
            </div>
            <p>
              2.在某次体育测试中,百米跑和跳高都及格时,才能被评为及格.若A表示百米跑及格的同学组成的集合,B表示跳高及格的同学组成的集合,C表示体育测试及格的同学组成的集合,请指出A,B,C之间的包含关系,并指出其中的子集.<input
                @change="changeAssess($event, 'text20')" maxlength="20" :value="chapter001.tkItem01.text20"
                class="assess" type="text" />
            </p>
            <p>
              3.写出集合{2,3}的所有子集.
              <input @change="changeAssess($event, 'text21')" maxlength="20" :value="chapter001.tkItem01.text21"
                class="assess" type="text" />
            </p>
            <examinations :cardList="questionData[19]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
@@ -1132,7 +1022,7 @@
          <h3>1.2.2 真子集与相等集合<span class="fontsz2">>>></span></h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/wttc.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <div class="textIndentation">
@@ -1146,7 +1036,7 @@
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/fxlj.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>对于“问题提出”中的(1),显然有P⊆M.</p>
@@ -1155,7 +1045,7 @@
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/cxgk.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            对于两个集合A,B,如果集合A是集合B的子集,且集合B中至少有一个元素不属于集合A,那么集合A叫作集合B的真子集(如图1-6所示),记作A⫋B(或B⫌A),读作“A真包含于B”或“B真包含A”.
@@ -1167,7 +1057,7 @@
          <p>这些集合之间的关系可以用图1-7直观表示.</p>
          <div class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0024-2.jpg" style="width: 50%" />
            <img class="img-c" alt="" src="../../assets/images/0024-2.jpg" style="width: 50%" />
            <p class="img" style="font-size: 14px">图1-7</p>
          </div>
          <p>
@@ -1221,30 +1111,17 @@
              </div>
            </li>
          </ul>
          <p></p>
          <!--
          <p>
            <span class="zt-ls2">分析</span>为了不重不漏地写出集合A
            的所有子集,我们应分为以下几个 步骤来写.
          </p>
          <p>(1) ∅是所有集合的子集,所以先写出 ∅;</p>
          <p>(2) 写出含有一个元素的子集:{a},{b},{c};</p>
          <p>(3) 写出含有两个元素的子集:{a,b},{a,c},{b,c};</p>
          <p>(4) 写出含有三个元素的子集:{a,b,c}.</p> -->
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <p class="block tl">
              请举出两个有包含关系的集合,然后说出它们之间的包含关系,指出其中的子集或者真子集,并用Venn图表示它们之间的关系,与同学互相交流.
            </p>
            <examinations :cardList="questionData[21]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/fxlj.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
@@ -1252,7 +1129,7 @@
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/cxgk.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,对于两个集合A,B,如果A⊆B,且B⊆A,那么此时集合A与集合B的元素是完全一样的,称集合A与集合B
@@ -1282,7 +1159,6 @@
        </ul>
        <div class="padding-116">
          <p><span class="zt-ls2">例2</span>说出下列每对集合之间的关系.</p>
          <ul>
            <li>
              (1) A={1,2,3,4}和B={1,3,4};
@@ -1332,7 +1208,6 @@
              <p><span class="zt-ls2">解</span>(3) C=∅.</p>
            </li>
          </ul>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
@@ -1343,7 +1218,6 @@
              与同学交流讨论,说一说子集、真子集、相等集合的区别与联系.
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -1368,27 +1242,10 @@
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
            </p>
          </div>
          <h2 id="c031">习题1.2<span class="fontsz2"> >>></span></h2>
          <div class="bj">
            <p>
              <span class="bj-sp">水平一</span>
            </p>
            <p>1.设集合M={x|x>-1},则下列关系式中正确的是( ).</p>
            <p>A.0⫋M B. − 2 ∈ M C.∅∈M D.{0}⫋M</p>
            <p>2.设集合A={x∈Z|x<5},B={x∈Z|x≤3},则集合A与B的关系是______.</p>
            <p>
              3.已知集合A={4+a,-4},B={2,b}.若A=B,求a,b的值.
              <input @change="changeAssess($event, 'text22')" maxlength="20" :value="chapter001.tkItem01.text22"
                class="assess" type="text" />
            </p>
            <p>
              4.举例说明A⊆B与A⫋B的区别.
              <textarea cols="30" rows="4" v-model="chapterData.txt3" placeholder="请输入内容"
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
            </p>
            <examinations :cardList="questionData[22]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
@@ -1402,45 +1259,18 @@
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <div class="bj">
            <p>
              <span class="bj-sp">水平二</span>
            </p>
            <p>
              1.设集合M={x|x=3n,n∈N},P={x|x=6n,n∈N},则下列关系式中正确的是( ).
            </p>
            <p>A.M=P B.M⫋P C.P⫋M D.P⊈M</p>
            <p>
              2.设集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x是等边三角形},D={x|x是直角三角形},写出它们之间所有的包含关系.<textarea cols="30" rows="4"
                v-model="chapterData.txt4" placeholder="请输入内容" class="w100 ta-br textarea-text"
                @input="handleChapterData"></textarea>
            </p>
            <div class="textIndentation">
              3.设集合M={x|x2-4=0},P={a}.
              <p>
                (1) 用列举法表示集合M;<textarea cols="30" rows="4" v-model="chapterData.txt5" placeholder="请输入内容"
                  class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
              </p>
              <p>(2) 写出集合M的所有子集;</p>
              <p>(3) 若P⊆M,求a的值.</p>
            </div>
          </div>
          <h2 id="c031">
            1.3 集合的运算<span class="fontsz2">>>>>>></span>
          </h2>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/gcsk.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <div class="img-rights openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0027-1.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0027-1.jpg" />
            <p class="img" style="font-size: 14px">图1-8</p>
          </div>
          <p>
            到2035年,我国要发展成为体育强国.北京市曾在2008年和2022年分别举办了第29届夏季奥运会和第24届冬季奥运会,
            因此成为世界上第一个既举办过夏季奥运会又举办过冬季奥运会的城市.现在用集合的观点来分析这个问题,如图1-8所示,我们用集合U表示世界上所有的城市,用集合A表示到2022年年底举办过夏季奥运会的城市,用集合B表示到2022年年底举办过冬季奥运会的城市.
@@ -1474,10 +1304,10 @@
          <h3>1.3.1 交集<span class="fontsz2">>>></span></h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/fxlj.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <div class="img-rights openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0028-1.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0028-1.jpg" />
            <p class="img" style="font-size: 14px">图1-9</p>
          </div>
          <p>我们来研究本节“观察思考”中的问题 (1).</p>
@@ -1485,7 +1315,7 @@
            到2022年年底举办过夏季奥运会的城市组成集合A,举办过冬季奥运会的城市组成集合B,同时举办过两种奥运会的城市也组成一个集合C,这个集合中的元素既是集合A中的元素,又是集合B中的元素.也就是说,集合C是集合A与集合B的所有公共元素组成的集合,如图1-9所示.
          </p>
          <div class="img-rights openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0028-2.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0028-2.jpg" />
            <p class="img" style="font-size: 14px">图1-10</p>
          </div>
@@ -1494,11 +1324,11 @@
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/cxgk.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <div class="img-rights openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0028-3.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0028-3.jpg" />
            <p class="img" style="font-size: 14px">图1-11</p>
          </div>
          <p>
@@ -1559,7 +1389,7 @@
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/imgs/gn.jpg" />
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">交集</p>
@@ -1567,7 +1397,7 @@
          <p>观察可知 A∩B={x|-1<x≤3}.</p>
          <div class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0028-4.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0028-4.jpg" />
            <p class="img" style="font-size: 14px">图1-12</p>
          </div>
        </div>
@@ -1604,7 +1434,7 @@
          </ul>
          <div class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0029-1.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0029-1.jpg" />
            <p class="img" style="font-size: 14px">图1-13</p>
          </div>
@@ -1702,52 +1532,8 @@
            <p>(1) A∩B=B∩A;(2) A∩A=A,A∩∅=∅;</p>
            <p>(3) A∩B⊆A,A∩B⊆B;(4) 若A⊆B,则A∩B=A.</p>
          </div>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <p class="block tl">
              1.与同学交流讨论例4的答案,若表示为A∩B={4,1}可不可以?为什么?
              <textarea cols="30" rows="4" v-model="chapterData.txt6" placeholder="请输入内容"
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
            </p>
            <p class="block tl">
              2.你能解释交集的这四条性质吗?与同学交流讨论.
              <textarea cols="30" rows="4" v-model="chapterData.txt7" placeholder="请输入内容"
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <div class="textIndentation">
              1.填空题.
              <p>
                (1) {-1,0,1}∩{0,1,2}=<input @change="changeAssess($event, 'text23')" maxlength="20"
                  :value="chapter001.tkItem01.text23" class="assess" type="text" />
                ;
              </p>
              <p>
                (2) {x,y}∩{a,b,c}=<input @change="changeAssess($event, 'text24')" maxlength="20"
                  :value="chapter001.tkItem01.text24" class="assess" type="text" />;
              </p>
              <p>
                (3) {x|x是等腰三角形}∩{x|x是直角三角形}=<input @change="changeAssess($event, 'text25')" maxlength="20"
                  :value="chapter001.tkItem01.text25" class="assess" type="text" />
                ;
              </p>
              <p>
                (4) N+∩Z=<input @change="changeAssess($event, 'text26')" maxlength="20"
                  :value="chapter001.tkItem01.text26" class="assess" type="text" />.
              </p>
            </div>
          </div>
          <examinations :cardList="questionData[25]" :hideCollect="true" sourceType="json"
          v-if="questionData" ></examinations>
        </div>
      </div>
    </div>
@@ -1763,70 +1549,45 @@
          </li>
        </ul>
        <div class="padding-116">
          <div class="bj">
            <div class="textIndentation">
              2.求下列集合的交集.
              <p>
                (1)
                设集合A={x|x是20以内的正奇数},B={x|x是20以内能被3整除的正整数};
              </p>
              <textarea cols="30" rows="4" v-model="chapterData.txt8" placeholder="请输入内容"
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
              <p>(2) 设集合A={x|-1<x≤3},B={x|0≤x≤5};</p>
              <p>(3) 设集合A={x|x>0},B={x|x≤5};</p>
              <p>(4) 设集合A={x|x<3},B={x|x<-2};</p>
              <p>(5) 设集合A={x|x>5},B={x|x<4};</p>
              <p>(6) 设集合A={(x,y)|x+y-3=0},B={(x,y)|2x+y-4=0}.</p>
            </div>
          </div>
          <h3>1.3.2 并集<span class="fontsz2">>>></span></h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/fxlj.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <div class="img-rights openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0030-1.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0030-1.jpg" />
            <p class="img" style="font-size: 14px">图1-14</p>
          </div>
          <p>我们再来研究本节“观察思考”中的问题(2).</p>
          <p>
            显然,我们只要把到2022年年底举办过夏季奥运会的城市或者举办过冬季奥运会的城市全部合并在一起就行了,这样合并在一起的城市就组成了一个新的集合,这个集合中的元素属于A或者属于B,如图1-14所示.
          </p>
          <div class="img-rights openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0030-2.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0030-2.jpg" />
            <p class="img" style="font-size: 14px">图1-15</p>
          </div>
          <p>
            再如,集合P={a,b,c},集合Q={a,b,d,e},集合M={a,b,c,d,e},集合M中的元素是由集合P或集合Q中的元素组成的(如图1-15所示).
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/imgs/gn.jpg" />
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">并集</p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/cxgk.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,设A,B是两个集合,由所有属于A或者属于B的元素组成的集合C叫作集合A与集合B的并集,记作A∪B,读作“A并B”,即
          </p>
          <p>C=A∪B={x|x∈A或x∈B}.</p>
          <p>图1-16(1)(2) 中的涂色部分就表示集合A与集合B的并集.</p>
          <div class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0030-3.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0030-3.jpg" />
            <p class="img" style="font-size: 14px">图1-16</p>
          </div>
          =
        </div>
      </div>
@@ -1875,25 +1636,20 @@
              </p>
            </li>
          </ul>
          <div class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0031-1.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0031-1.jpg" />
            <p class="img" style="font-size: 14px">图1-17</p>
          </div>
          <p>观察可知A∪B={x|-3<x<7}.</p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
              <examinations :cardList="questionData[27]" :hideCollect="true" sourceType="json"
              v-if="questionData" ></examinations>
            </div>
            <p class="block tl">与同学交流讨论例2:</p>
            <p class="block tl">(1) -1,7是否属于A∪B?为什么?</p>
            <p class="block tl">(2) -3,3是否属于A∪B?为什么?</p>
          </div>
          <ul>
            <li>
              <span class="zt-ls2">例3</span>设集合A={x|x>4}, B={x|x≤-2}, 求A∪B.
@@ -1914,26 +1670,14 @@
              </p>
            </li>
          </ul>
          <div class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0031-2.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0031-2.jpg" />
            <p class="img" style="font-size: 14px">图1-18</p>
          </div>
          <p>观察可知A∪B={x|x>4或x≤-2}.</p>
          <p>根据并集的含义可以知道,对于任意两个集合A,B,有下述性质.</p>
          <p>(1) A∪B=B∪A;(2) A∪A=A,A∪∅=A;</p>
          <p>(3) A⊆A∪B,B⊆A∪B;(4) 若B⊆A,则A∪B=A.</p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <p class="block tl">你能解释并集的这四条性质吗?与同学交流讨论.</p>
          </div>
        </div>
      </div>
    </div>
@@ -1953,70 +1697,19 @@
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <div class="textIndentation">
              1.填空题.
              <p>
                (1) {-1,0,1}∪{0,1,2}=<input @change="changeAssess($event, 'text27')" maxlength="20"
                  :value="chapter001.tkItem01.text27" class="assess" type="text" />
                ;
              </p>
              <p>
                (2) {x,y}∪{a,b,c}=<input @change="changeAssess($event, 'text28')" maxlength="20"
                  :value="chapter001.tkItem01.text28" class="assess" type="text" />;
              </p>
              <p>
                (3) {x|x是等腰三角形}∪{x|x是直角三角形}=<input @change="changeAssess($event, 'text29')" maxlength="20"
                  :value="chapter001.tkItem01.text29" class="assess" type="text" />;
              </p>
              <p>
                (4) N+∪Z =<input @change="changeAssess($event, 'text30')" maxlength="20"
                  :value="chapter001.tkItem01.text30" class="assess" type="text" />.
              </p>
            </div>
            <div class="textIndentation">
              2.求下列集合的并集.
              <p>(1) 设集合A={x|-1<x≤3},B={x|0≤x≤5};</p>
              <textarea cols="30" rows="4" v-model="chapterData.txt9" placeholder="请输入内容"
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
              <p>(2) 设集合A={x|x>-3},B={x|x≤2};</p>
              <textarea cols="30" rows="4" v-model="chapterData.txt10" placeholder="请输入内容"
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
              <p>(3) 设集合A={x|x<3},B={x|x<-2};</p>
              <textarea cols="30" rows="4" v-model="chapterData.txt11" placeholder="请输入内容"
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
              <p>(4) 设集合A={x|x<0},B={x|x≥5}.</p>
              <textarea cols="30" rows="4" v-model="chapterData.txt12" placeholder="请输入内容"
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
            </div>
            <p>3.用符号“⊆”或“⊇”填空:A∩B______A∪B.</p>
            <p>
              4.已知集合A={1,4,7},B={1,3,5,7,8},C={1,2,4,7},求(1)
              A∩B;<input @change="changeAssess($event, 'text31')" maxlength="20" :value="chapter001.tkItem01.text31"
                class="assess" type="text" />
              (2) A∩C;<input @change="changeAssess($event, 'text32')" maxlength="20" :value="chapter001.tkItem01.text32"
                class="assess" type="text" />(3)(A∩B)∪(A∩C).<input @change="changeAssess($event, 'text33')"
                maxlength="20" :value="chapter001.tkItem01.text33" class="assess" type="text" />
            </p>
            <examinations :cardList="questionData[28]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
          <h3>1.3.3 全集与补集<span class="fontsz2">>>></span></h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/fxlj.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>我们继续来研究本节“观察思考”中的问题(3) .</p>
          <div class="img-rights openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0032-1.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0032-1.jpg" />
            <p class="img" style="font-size: 14px">图1-19</p>
          </div>
@@ -2041,21 +1734,21 @@
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/imgs/gn.jpg" />
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">全集</p>
            <p class="block">补集</p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/imgs/cxgk.jpg" />
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,如果一个集合含有我们研究的问题中涉及的全部元素,那么这个集合叫作全集,常用符号U表示.设U是全集,A是U的一个子集,则由U中所有不属于A的元素组成的集合叫作子集A在全集U中的补集(或余集),记作∁UA,读作“A在全集U中的补集”.即
          </p>
          <p>∁UA={x|x∈U且x∉A}.</p>
          <div class="img-float openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0033-1.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0033-1.jpg" />
            <p class="img" style="font-size: 14px">图1-20</p>
          </div>
          <p>图1-20中的涂色部分就表示∁UA.</p>
@@ -2075,7 +1768,8 @@
              </p>
            </div>
            <p class="block tl">
              你能解释全集和补集的这三条性质吗?与同学交流讨论.
              <examinations :cardList="questionData[29]" :hideCollect="true" sourceType="json"
              v-if="questionData" ></examinations>
            </p>
          </div>
          <p>
@@ -2205,17 +1899,6 @@
              </div>
            </li>
          </ul>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <p class="block tl">
              根据例1,与同学一起交流讨论:(∁UA)∩(∁UB)和∁U(A∪B)的结果,看看它们之间存在什么关系.
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -2362,12 +2045,12 @@
          </ul>
          <div class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0034-1.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0034-1.jpg" />
            <p class="img" style="font-size: 14px">图1-21</p>
          </div>
          <div class="img-rights openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0034-2.jpg" />
            <img class="img-c" alt="" src="../../assets/images/0034-2.jpg" />
            <p class="img" style="font-size: 14px">图1-22</p>
          </div>
@@ -2385,40 +2068,9 @@
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <p>
              1.已知全集U={2,3,5,7,11,13,17,19},集合A={3,5,7,11},B={2,7,13,19}.求:
            </p>
            <p>
              (1) A∪B,A∩B;
              <input @change="changeAssess($event, 'text34')" maxlength="20" :value="chapter001.tkItem01.text34"
                class="assess" type="text" />
              (2) ∁UA,∁UB;
              <input @change="changeAssess($event, 'text35')" maxlength="20" :value="chapter001.tkItem01.text35"
                class="assess" type="text" />(3) ∁U(A∪B),∁U(A∩B).
              <input @change="changeAssess($event, 'text36')" maxlength="20" :value="chapter001.tkItem01.text36"
                class="assess" type="text" />
            </p>
            <p>
              2.已知全集U={1,2,3,4,5,6,7,8},∁UA={1,4,7},求集合A.
              <input @change="changeAssess($event, 'text37')" maxlength="20" :value="chapter001.tkItem01.text37"
                class="assess" type="text" />
            </p>
            <p>
              3.设全集为R,集合A={x|x≥-2},B={x|x<3},则∁RA=
              <input @change="changeAssess($event, 'text38')" maxlength="20" :value="chapter001.tkItem01.text38"
                class="assess" type="text" />, ∁RB=
              <input @change="changeAssess($event, 'text39')" maxlength="20" :value="chapter001.tkItem01.text39"
                class="assess" type="text" />,(∁RA)∩B=
              <input @change="changeAssess($event, 'text40')" maxlength="20" :value="chapter001.tkItem01.text40"
                class="assess" type="text" />.
            </p>
            <p>
              4.设全集U=R,集合A={x|-5≤x<1},B={x|x≤2},求A∩B,A∪B,(∁UA)∩B,(∁UA)∪B,(∁UB)∩A,(∁UB)∪A.
            </p>
            <textarea cols="30" rows="4" v-model="chapterData.txt13" placeholder="请输入内容"
              class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
          <div class="bj" >
            <examinations :cardList="questionData[30]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
@@ -2427,219 +2079,21 @@
    <div class="page-box" page="31">
      <div v-if="showPageList.indexOf(31) > -1">
        <ul class="page-header-odd fl al-end">
          <li>024</li>
          <li>024-025</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <h2 id="c031">习题1.3<span class="fontsz2"> >>></span></h2>
          <div class="bj">
            <p>
              <span class="bj-sp">水平一</span>
            </p>
            <div class="textIndentation">
              1.填空题.
              <p>
                (1)
                已知集合A={m,a,t,h,s},B={e,n,g,l,i,s,h},则A∪B=_________,A∩B=______;
              </p>
              <p>
                (2)
                若集合A={x|x是直角三角形},B={x|x是等边三角形},则A∩B=_________;
              </p>
              <p>(3) 若集合A={x|x是正方形},B={x|x是矩形},则A∪B=______;</p>
              <p>
                (4)
                设集合A={x|x>1},B={x|-2<x<3},则A∪B=______,A∩B=______.
              </p>
            </div>
            <div class="textIndentation">
              2.选择题.
              <p>(1) 设全集U={x∈N+|x≤9},集合A={2,3,5,7},则∁UA=( ).</p>
              <p>A.{0,4,6,8,9}</p>
              <p>B.{0,1,4,6,8,9}</p>
              <p>C.{1,4,6,8,9}</p>
              <p>D.{4,6,8,9}</p>
              <p>(2) 已知集合A={1,2,a2},B={-1,4},A∩B={4},则a=( ).</p>
              <p>A.-2或2</p>
              <p>B.4</p>
              <p>C.-2</p>
              <p>D.2</p>
            </div>
            <p>3.设全集为R,集合A={x|-1<x<3},B={x|x<-2}.求:</p>
            <p>(1) ∁RA,∁RB;(2)(∁RA)∩(∁RB);(3)(∁RA)∪(∁RB).</p>
            <p>
              <span class="bj-sp">水平二</span>
            </p>
            <div class="textIndentation">
              1.选择题.
              <p>
                (1)
                设全集为R,集合M={x|-3≤x<2},P={x|x≥0},则∁R(M∩P)=( ).
              </p>
              <p>A.{x|0≤x<2}</p>
              <p>B.{x|x≥2}</p>
              <p>C.{x|x<0或x≥2}</p>
              <p>D.{x|x≤0或x>2}</p>
            </div>
          <div class="bj" >
            <examinations :cardList="questionData[31]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 025 -->
    <div class="page-box" page="32">
      <div v-if="showPageList.indexOf(32) > -1">
        <ul class="page-header-box">
          <li>
            <p>第一单元 集合</p>
          </li>
          <li>
            <p><span>025</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <div class="bj">
            <p>
              (2) 设全集U=R,集合 A = { x | − 4 < x < 1 2 }
              ,B={x|x≤-4},则∁R(A∪B)=( ).
            </p>
            <p>
              A.<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mrow>
                    <mo stretchy="false">|</mo>
                  </mrow>
                  <mi>x</mi>
                  <mo><</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mrow>
                    <mo stretchy="false">|</mo>
                  </mrow>
                  <mi>x</mi>
                  <mo>≤</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mrow>
                    <mo stretchy="false">|</mo>
                  </mrow>
                  <mi>x</mi>
                  <mo>></mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mrow>
                    <mo stretchy="false">|</mo>
                  </mrow>
                  <mi>x</mi>
                  <mo>≥</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
              </math>
            </p>
            <p>
              (3)
              已知全集U={1,2,3,4},集合A={3,4},M=∁UA,A=∁UP,则M与P的关系是( ).
            </p>
            <p>A.M=∁UP</p>
            <p>B.M=P</p>
            <p>C.P⊈M</p>
            <p>D.M⊈P</p>
            <p>
              (4)
              设全集U={a,b,c,d},集合A={a},B={a,b,c},则下列集合为空集的是( ).
            </p>
            <p>A.A∩(∁UB)</p>
            <p>B.(∁UA)∩(∁UB)</p>
            <p>C.(∁UA)∩B</p>
            <p>D.A∩B</p>
            <div class="textIndentation">
              2.请将“交集”或“并集”填在下面的空格里.
              <p>
                (1)
                求方程(x+2)(x+1)=0的解集,就是求方程x+2=0和x+1=0的解集的_________;
              </p>
              <p>
                (2) 求不等式组<math display="0">
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">{</mo>
                    <mtable columnspacing="1em" rowspacing="4pt">
                      <mtr>
                        <mtd>
                          <mi>x</mi>
                          <mo>></mo>
                          <mn>3</mn>
                          <mo>,</mo>
                        </mtd>
                        <mtd></mtd>
                      </mtr>
                      <mtr>
                        <mtd>
                          <mi>x</mi>
                          <mo>−</mo>
                          <mn>2</mn>
                          <mo>≤</mo>
                          <mn>4</mn>
                        </mtd>
                        <mtd></mtd>
                      </mtr>
                    </mtable>
                    <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                  </mrow>
                </math>的解集就是求不等式<i>x</i>>3和<i>x</i>-2≤4的解集的______.
              </p>
            </div>
          </div>
        </div>
      </div>
    <div class="page-box hidePage" page="32">
    </div>
    <!-- 026 -->
    <div class="page-box" page="33">
@@ -2691,19 +2145,15 @@
          <h2 id="c031" style="font-size: 25px">
            单元小结<span class="fontsz2">>>>>>></span>
          </h2>
          <p class="bj2">
            <b>学习导图</b>
          </p>
          <div class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0038-1.jpg" />
            <img class="img-b" alt="" src="../../assets/images/0038-1.jpg" />
          </div>
          <p class="bj2">
            <b>学习指导</b>
          </p>
          <div class="textIndentation">
            1.集合及其表示.
            <p>(1) 由一些确定的对象所组成的整体就称为集合.</p>
@@ -2722,7 +2172,6 @@
              (6) 集合主要有两种表示方法:列举法和描述法.两种表示方法各有特点.
            </p>
          </div>
          <div class="textIndentation">
            2.集合之间的关系.
            <p>
@@ -2768,100 +2217,20 @@
            <p>第一单元 集合</p>
          </li>
          <li>
            <p><span>029</span></p>
            <p><span>029-030</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <h2 id="c031">单元检测<span class="fontsz2"> >>>>>></span></h2>
          <div class="bj">
            <p>
              <span class="bj-sp">水平一</span>
            </p>
            <div class="textIndentation">
              1.选择题.
              <p>(1) 下列表示方法正确的是( ).</p>
              <p>A.{a}∈{a,b,c}</p>
              <p>B.0∈∅</p>
              <p>C.N+⫋N</p>
              <p>D.{x|x是无限小数}={x|x是无理数}</p>
              <p>
                (2) 方程(x2+1)(x-2)(x-3)=0的解集表示不正确的是( ).
              </p>
              <p>A.{2,3}</p>
              <p>B.{3,2}</p>
              <p>C.{x|(x2+1)(x-2)(x-3)=0}</p>
              <p>D.{(2,3)}</p>
              <p>
                (3) 设全集为N,集合M={x∈N|x≥8},则∁NM中元素的个数为( ).
              </p>
              <p>A.7个</p>
              <p>B.8个</p>
              <p>C.9个</p>
              <p>D.无限多个</p>
              <p>(4) 集合{x∈N|-1<x≤2}的真子集的个数是( ).</p>
              <p>A.15个</p>
              <p>B.16个</p>
              <p>C.7个</p>
              <p>D.8个</p>
              <p>
                (5)
                已知全集U={x∈N+|-2<x<9},集合M={3,4,5},P={1,3,6},则{2,7,8}是( ).
              </p>
              <p>A.M∪P</p>
              <p>B.M∩P</p>
              <p>C.(∁UM)∪(∁UP)</p>
              <p>D.(∁UM)∩(∁UP)</p>
            </div>
            <p>
              2.已知全集为R,集合A={x|x≥1},B={x|0≤x<3},则A∪B=____,A∩B=____,∁R(A∪B)=____,∁R(A∩B)=____.
            </p>
            <p>
              3.已知集合A={2,4,5,9,11},B={1,3,5,7,9},则A∪B=____,A∩B=____.
            </p>
            <p>
              4.设全集U=R,集合A={x|x<-1},B={x|-3≤x<3},求A∩B,A∪B,∁UA,∁UB,(∁UA)∩(∁UB),∁U(A∪B),(∁UA)∪(∁UB),∁U(A∩B).
            </p>
          <div class="bj" >
            <examinations :cardList="questionData[36]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 030 -->
    <div class="page-box" page="37">
      <div v-if="showPageList.indexOf(37) > -1">
        <ul class="page-header-odd fl al-end">
          <li>030</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <div class="bj">
            <p>
              <span class="bj-sp">水平二</span>
            </p>
            <p>1.已知集合A={-4,x2},B={x-1,9},求满足下列条件的x的值.</p>
            <p>(1) 9∈A∩B;(2) {9}=A∩B.</p>
            <p>2.集合M={x|ax2+2x+1=0}只有一个元素,写出由a的值组成的集合.</p>
            <p>
              3.设集合A={x|-4<x<2},B={x|-m-1<x<m-1,m>0},求分别满足下列条件的m的取值的集合.
            </p>
            <p>(1) A⊆B;(2) A∩B=∅.</p>
            <p>4.已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0}.</p>
            <p>(1) 用列举法表示集合A,B;</p>
            <p>(2) 如果A=B,求a的值.</p>
            <p>
              5.已知全集U={x|x是不大于20的质数},A⊆U,B⊆U,且A∩(∁UB)={3,5},B∩(∁UA)={7,19},(∁UA)∩(∁UB)={2,17}.
            </p>
            <p>(1) 用Venn 图表示已知条件中集合之间的关系;</p>
            <p>(2) 求集合A和B.</p>
          </div>
        </div>
      </div>
    <div class="page-box hidePage" page="37">
    </div>
    <!-- 函数控件弹窗 -->
@@ -3060,7 +2429,6 @@
<script>
import examinations from '@/components/examinations/index.vue'
// import graffiti from '@/components/graffiti/index.vue'
import { getResourcePath } from '@/assets/methods/resources'
import {
  getCollectResource,
src/books/mathBook/view/components/chapter002.vue
@@ -1,22 +1,72 @@
<template>
  <div class="chapter" num="3">
  <div class="chapter" num="2">
    <!-- 第二单元首页 -->
    <div class="page-box" page="38">
      <div v-if="showPageList.indexOf(38) > -1">
        <div class="padding-116">第二单元首页</div>
        <h1 id="a006">
          <img class="img-0" alt="" src="../../assets/images/dy2.jpg" />
        </h1>
        <div class="padding-116">
          <p>
            物体有轻有重,速度有快有慢,气温有高有低,光线有强有弱,面积有大有小……在实际生活中,这种不相等的数量关系无处不在.我们可以利用不等关系构建不等式,并通过不等式解决现实生活中的问题.
          </p>
          <p>
            例如,随着时代的进步,人们对住宅的要求越来越高.通常人们在选择住宅时,都会考虑采光问题,这就需要把窗户开得尽可能大.按采光标准,窗户的有效透光面积与室内地面面积的比值应不小于
            <math display="0">
              <mfrac>
                <mn>1</mn>
                <mn>7</mn>
              </mfrac>
            </math>,这个比值越大,住宅的采光效果越好.
          </p>
          <p>
            如果窗户的有效透光面积和室内地面面积同时增加相同的面积,是不是采光效果就会更好呢?解决这样的问题就需要用到有关不等式的知识.
          </p>
          <p>
            不等式是数学中的重要内容,它具有应用广泛、变换灵活的特点,是研究数量大小关系的必备知识,与数学的其他分支内容有着密切的联系,也是学习高等数学的基础和工具.
          </p>
          <p>
            本单元在初中学习的基础之上,进一步学习不等式的基本性质、区间、一元二次不等式、含绝对值的不等式等.学习根据数量关系列出相应的不等式,并利用这些不等式找到问题的解决方案,提升数学运算、直观想象、逻辑推理和数学建模等核心素养.
          </p>
        </div>
      </div>
    </div>
    <!-- 目标 -->
    <div class="page-box" page="39">
      <div v-if="showPageList.indexOf(39) > -1">
        <div class="padding-116">目标</div>
        <div class="padding-116">
          <p class="left">
            <img class="inline2" alt="" src="../../assets/images/xxmb.jpg" />
          </p>
          <div class="fieldset">
            <p>1.不等式的基本性质.</p>
            <p>(1) 掌握判断两个数(式)大小的“作差比较法”;</p>
            <p>(2) 了解不等式的基本性质.</p>
            <p>2.区间.</p>
            <p>理解区间的概念.</p>
            <p>3.一元二次不等式.</p>
            <p>(1) 了解一元二次不等式的概念;</p>
            <p>
              (2) 了解二次函数、一元二次方程与一元二次不等式三者之间的关系;
            </p>
            <p>(3) 掌握一元二次不等式的解法.</p>
            <p>4.含绝对值的不等式.</p>
            <p>
              (1)
              了解含绝对值的不等式|<i>x</i>|<<i>a</i>和|<i>x</i>|><i>a</i>(<i>a</i>>0)的含义;
            </p>
            <p>
              (2)
              掌握形如|<i>ax</i>+<i>b</i>|<<i>c</i>和|<i>ax</i>+<i>b</i>|><i>c</i>(<i>c</i>>0)的不等式的解法.
            </p>
            <p>5.不等式的应用.</p>
            <p>
              初步掌握从实际问题中抽象出一元二次不等式模型解决简单实际问题的方法.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 033 -->
    <div class="page-box" page="40">
      <div v-if="showPageList.indexOf(40) > -1">
@@ -28,10 +78,153 @@
            <p><span>033</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="inline2" alt="" src="../../assets/images/xxmb.jpg" />
          </p>
          <div class="fieldset">
            <p>1.不等式的基本性质.</p>
            <p>(1) 掌握判断两个数(式)大小的“作差比较法”;</p>
            <p>(2) 了解不等式的基本性质.</p>
            <p>2.区间.</p>
            <p>理解区间的概念.</p>
            <p>3.一元二次不等式.</p>
            <p>(1) 了解一元二次不等式的概念;</p>
            <p>
              (2) 了解二次函数、一元二次方程与一元二次不等式三者之间的关系;
            </p>
            <p>(3) 掌握一元二次不等式的解法.</p>
            <p>4.含绝对值的不等式.</p>
            <p>
              (1)
              了解含绝对值的不等式|<i>x</i>|<<i>a</i>和|<i>x</i>|><i>a</i>(<i>a</i>>0)的含义;
            </p>
            <p>
              (2)
              掌握形如|<i>ax</i>+<i>b</i>|<<i>c</i>和|<i>ax</i>+<i>b</i>|><i>c</i>(<i>c</i>>0)的不等式的解法.
            </p>
            <p>5.不等式的应用.</p>
            <p>
              初步掌握从实际问题中抽象出一元二次不等式模型解决简单实际问题的方法.
            </p>
          </div>
          <h2 id="b007">
            2.1 不等式的基本性质<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c012">
            2.1.1 不等式的基本性质<span class="fontsz2">>>></span>
          </h3>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block">我们知道:</p>
            <p class="block">(1) <i>a</i>><i>b</i>⇔<i>a</i>-<i>b</i>>0;</p>
            <p class="block">(2) <i>a</i>><i>b</i>⇔<i>b</i><<i>a</i>;</p>
            <p class="block">
              (3)
              若<i>a</i>><i>b</i>,<i>b</i>><i>c</i>,则<i>a</i>><i>c</i>.
            </p>
            <p class="block">初中我们还学习过不等式的下列性质:</p>
            <p class="block">
              <b>性质1</b>
              <i>a</i>><i>b</i>⇔<i>a</i>±<i>c</i>><i>b</i>±<i>c</i>.
            </p>
            <p class="block">
              <b>性质2</b>
              <i>a</i>><i>b</i>,<i>c</i>>0⇒<i>ac</i>><i>bc</i>(或<math display="0">
                <mfrac>
                  <mi>a</mi>
                  <mi>c</mi>
                </mfrac>
                <mo>></mo>
                <mfrac>
                  <mi>b</mi>
                  <mi>c</mi>
                </mfrac>
              </math>).
            </p>
            <p class="block">
              <b>性质3</b>
              <i>a</i>><i>b</i>,<i>c</i><0⇒<i>ac</i><<i>bc</i>(或<math display="0">
                <mfrac>
                  <mi>a</mi>
                  <mi>c</mi>
                </mfrac>
                <mo><</mo>
                <mfrac>
                  <mi>b</mi>
                  <mi>c</mi>
                </mfrac>
              </math>).
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            有观点认为,最美人体的下半身长(肚脐至脚的触地点的长度)与全身长之比是<math display="0">
              <mfrac>
                <mrow>
                  <msqrt>
                    <mn>5</mn>
                  </msqrt>
                  <mo>−</mo>
                  <mn>1</mn>
                </mrow>
                <mn>2</mn>
              </mfrac>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mrow>
                    <msqrt>
                      <mn>5</mn>
                    </msqrt>
                    <mo>−</mo>
                    <mn>1</mn>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo>≈</mo>
                <mn>0.618</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,这被称为黄金分割比例.某芭蕾舞演员全身长166cm,下半身长98cm.表演过程中,芭蕾舞演员会立起脚尖跳舞,此时肚脐与脚的触地点的距离增加了8
            cm.试问:该芭蕾舞演员下半身长与全身长的比值,在脚尖立起前后哪个大?
            哪一个更接近0.618?
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            该芭蕾舞演员脚尖立起前,下半身长与全身长的比值为<math display="0">
              <mfrac>
                <mn>98</mn>
                <mn>166</mn>
              </mfrac>
            </math>;脚尖立起后,下半身长与全身长的比值为<math display="0">
              <mfrac>
                <mrow>
                  <mn>98</mn>
                  <mo>+</mo>
                  <mn>8 </mn>
                </mrow>
                <mrow>
                  <mn>166</mn>
                  <mo>+</mo>
                  <mn>8</mn>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>106</mn>
                <mn>174</mn>
              </mfrac>
            </math>
            .本题要求比较这两个分数的大小.
          </p>
        </div>
      </div>
    </div>
    <!-- 034 -->
    <div class="page-box" page="41">
      <div v-if="showPageList.indexOf(41) > -1">
@@ -40,8 +233,70 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            为了借助不等式知识解决上面的问题,我们需要进一步研究不等式的性质.根据初中学过的不等式的3个基本性质,可以得到一系列推论.
          </p>
          <p>根据性质1,可得下列推论.</p>
          <p>
            <b>推论1</b>
            <i>a</i>><i>b</i>,<i>c</i>><i>d</i>⇒<i>a</i>+<i>c</i>><i>b</i>+<i>d</i>.
          </p>
          <p><b>证明</b> 根据性质1,可知</p>
          <p class="center">
            <i>a</i>><i>b</i>⇒<i>a</i>+<i>c</i>><i>b</i>+<i>c</i>,
          </p>
          <p class="center">
            <i>c</i>><i>d</i>⇒<i>c</i>+<i>b</i>><i>d</i>+<i>b</i>,即<i>b</i>+<i>c</i>><i>b</i>+<i>d</i>.
          </p>
          <p>
            从而<i>a</i>+<i>c</i>><i>b</i>+<i>c</i>><i>b</i>+<i>d</i>,即<i>a</i>+<i>c</i>><i>b</i>+<i>d</i>.
          </p>
          <p>例如,5>1,3>-2,根据推论1,有5+3>1+(-2),即8>-1.</p>
          <p>
            <b>推论2</b> <i>a</i>+<i>b</i>><i>c</i>⇒<i>a</i>><i>c</i>-<i>b</i>.
          </p>
          <p>根据性质2,可得下列推论.</p>
          <p>
            <b>推论3</b>
            <i>a</i>><i>b</i>>0,<i>c</i>><i>d</i>>0⇒<i>ac</i>><i>bd</i>.
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[41]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        <div class="padding-116"></div>
          <p>
            <span class="zt-ls"><b>例1</b></span> 已知<i>a</i>><i>b</i>>0.
          </p>
          <p>(1) 比较2<i>a</i>与2<i>b</i>的大小;</p>
          <p>(2) 比较-2<i>a</i>与-2<i>b</i>的大小;</p>
          <p>(3) 比较<i>ac</i>与<i>bc</i>的大小.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为<i>a</i>><i>b</i>,2>0,根据性质2,有2<i>a</i>>2<i>b</i>.
          </p>
          <p>
            (2)
            因为<i>a</i>><i>b</i>,-2<0,根据性质3,有-2<i>a</i><-2<i>b</i>.
          </p>
          <p>(3) 若<i>c</i>>0,根据性质2,有<i>ac</i>><i>bc</i>.</p>
          <p>若<i>c</i><0,根据性质3,有<i>ac</i><<i>bc</i>.</p>
          <p>若<i>c</i>=0,则有<i>ac</i>=<i>bc</i>=0,所以<i>ac</i>=<i>bc</i>.</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 已知<i>a</i>><i>b</i>,比较<i>a</i>-1与<i>b</i>-2的大小.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<i>a</i>><i>b</i>,-1>-2,
          </p>
          <p>根据推论1,有<i>a</i>+(-1)><i>b</i>+(-2),</p>
          <p>即<i>a</i>-1><i>b</i>-2.</p>
        </div>
      </div>
    </div>
    <!-- 035 -->
@@ -55,7 +310,173 @@
            <p><span>035</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.用“>”或“<”填空.</p>
            <p>
              (1) <i>a</i>+5___<i>b</i>+5(<i>a</i><<i>b</i>);(2)
              <i>x</i>+5___<i>x</i>+2;
            </p>
            <p>
              (3) m+1___<i>m</i>-1;(4)
              -5<i>p</i>___-5<i>q</i>(<i>p</i><<i>q</i>).
            </p>
            <p>2.用“>”或“<”填空.</p>
            <p>
              (1) 若4<i>x</i><2,则<i>x</i>___<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>;(2) 若<i>a</i><0,则2<i>a</i>___<i>a</i>.
            </p>
          </div>
          <h3 id="c013">2.1.2 作差比较法<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            我们知道实数可以比较大小.数学中经常用下面的等价关系比较<i>a</i>,<i>b</i>的大小.
          </p>
          <p class="center"><i>a</i>-<i>b</i>>0⇔<i>a</i>><i>b</i>;</p>
          <p class="center"><i>a</i>-<i>b</i><0⇔<i>a</i><<i>b</i>;</p>
          <p class="center"><i>a</i>-<i>b</i>=0⇔<i>a</i>=<i>b</i>.</p>
          <p>
            由此可见,比较<i>a</i>,<i>b</i>的大小,只要判断它们的差<i>a</i>-<i>b</i>与0的大小关系即可.
          </p>
          <p>
            例如,我们可以作差比较<i>a</i><sup>2</sup>+1与2<i>a</i>的大小(<i>a</i>≠1).
          </p>
          <p>
            因为(<i>a</i><sup>2</sup>+1)-2<i>a</i>=<i>a</i><sup>2</sup>-2<i>a</i>+1=(<i>a</i>-1)<sup>2</sup>,且当<i>a</i>≠1时,(<i>a</i>-1)<sup>2</sup>>0,所以<i>a</i><sup>2</sup>+1>2<i>a</i>.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 分析本节“问题提出”中的问题.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 作差可得<math display="0">
              <mfrac>
                <mn>98</mn>
                <mn>166</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>98</mn>
                  <mo>+</mo>
                  <mn>8</mn>
                </mrow>
                <mrow>
                  <mn>166</mn>
                  <mo>+</mo>
                  <mn>8</mn>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>98</mn>
                <mn>166</mn>
              </mfrac>
              <mo>−</mo>
              <mfrac>
                <mn>106</mn>
                <mn>174</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>98</mn>
                  <mo>×</mo>
                  <mn>174</mn>
                  <mo>−</mo>
                  <mn>106</mn>
                  <mo>×</mo>
                  <mn>166</mn>
                </mrow>
                <mrow>
                  <mn>166</mn>
                  <mo>×</mo>
                  <mn>174</mn>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mo>−</mo>
                  <mn>544</mn>
                </mrow>
                <mrow>
                  <mn>166</mn>
                  <mo>×</mo>
                  <mn>174</mn>
                </mrow>
              </mfrac>
              <mo><</mo>
              <mn>0</mn>
            </math>,所以<math display="0">
              <mfrac>
                <mn>98</mn>
                <mn>166</mn>
              </mfrac>
              <mo><</mo>
              <mfrac>
                <mn>106</mn>
                <mn>174</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            又因为<math display="0">
              <mfrac>
                <mn>98</mn>
                <mn>166</mn>
              </mfrac>
              <mo>≈</mo>
              <mn>0.590</mn>
              <mn>4</mn>
            </math>,<math display="0">
              <mfrac>
                <mn>106</mn>
                <mn>174</mn>
              </mfrac>
              <mo>≈</mo>
              <mn>0.690</mn>
              <mn>2</mn>
            </math>,所以立起脚尖后,该芭蕾舞演员的下半身长与全身长的比值更接近0.618.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              本例中,作差时也可以这样计算:
              <math display="0">
                <mfrac>
                  <mn>98</mn>
                  <mn>166</mn>
                </mfrac>
                <mo>−</mo>
                <mfrac>
                  <mn>106</mn>
                  <mn>174</mn>
                </mfrac>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mn>1</mn>
                  <mo>−</mo>
                  <mfrac>
                    <mn>68</mn>
                    <mn>166</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>-</mo>
              </math>
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 036 -->
@@ -66,7 +487,241 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk">
            <p class="block">
              <math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mn>1</mn>
                  <mo>−</mo>
                  <mfrac>
                    <mn>68</mn>
                    <mn>174</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <mn>68</mn>
                  <mn>174</mn>
                </mfrac>
                <mo>−</mo>
                <mfrac>
                  <mn>68</mn>
                  <mn>166</mn>
                </mfrac>
              </math>
              .因为分子相同时,分母越大,分数越小,所以
              <math display="0">
                <mfrac>
                  <mn>98</mn>
                  <mn>166</mn>
                </mfrac>
                <mo>−</mo>
                <mfrac>
                  <mn>106</mn>
                  <mn>174</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mn>68</mn>
                  <mn>174</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mn>68</mn>
                  <mn>166</mn>
                </mfrac>
                <mo><</mo>
                <mn>0</mn>
              </math>.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例2</b></span> 已知<i>b</i>><i>a</i>>0,<i>c</i>>0,比较<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
              </mfrac>
            </math>与<math display="0">
              <mfrac>
                <mi>a</mi>
                <mi>b</mi>
              </mfrac>
            </math>的大小.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 作差可得<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mi>a</mi>
                <mi>b</mi>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>a</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>b</mi>
                </mrow>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>b</mi>
                </mrow>
              </mfrac>
              <mo>−</mo>
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                </mrow>
                <mrow>
                  <mi>b</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>−</mo>
                    <mi>a</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>b</mi>
                </mrow>
              </mfrac>
            </math>.
          </p>
          <p>
            因为<i>b</i>><i>a</i>>0,所以<i>b</i>-<i>a</i>>0.又因为<i>c</i>>0,所以<math display="0">
              <mfrac>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>−</mo>
                    <mi>a</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>b</mi>
                </mrow>
              </mfrac>
              <mo>></mo>
              <mn>0</mn>
            </math>,
          </p>
          <p>
            即<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
              </mfrac>
              <mo>−</mo>
              <mfrac>
                <mi>a</mi>
                <mi>b</mi>
              </mfrac>
              <mo>></mo>
              <mn>0</mn>
            </math>,所以<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
              </mfrac>
              <mo>></mo>
              <mfrac>
                <mi>a</mi>
                <mi>b</mi>
              </mfrac>
            </math>.
          </p>
          <examinations :cardList="questionData[43]" :hideCollect="true" sourceType="json"
          v-if="questionData" ></examinations>
        </div>
      </div>
    </div>
    <!-- 037 -->
@@ -80,7 +735,35 @@
            <p><span>037</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c014">习题2.1<span class="fontsz2">>>></span></h3>
          <examinations :cardList="questionData[44]" :hideCollect="true" sourceType="json"
          v-if="questionData" ></examinations>
          <h2 id="b008">2.2 区间<span class="fontsz1">>>>>>>>></span></h2>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/gn.jpg" /></p>
            </div>
            <p class="block">闭区间</p>
            <p class="block">开区间</p>
            <p class="block">左闭右开区间</p>
            <p class="block">左开右闭区间</p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            以不等式表示元素共同特征的数集,还有一种更为简单的表示方法,叫<b>作区间表示法</b>.
          </p>
          <p>设<i>a</i><<i>b</i>,我们规定:</p>
          <p>
            (1)
            满足不等式<i>a</i>≤<i>x</i>≤<i>b</i>的<i>x</i>的集合叫作<b>闭区间</b>,表示为
            [<i>a</i>,<i>b</i>].
          </p>
          <p>
            (2)
            满足不等式<i>a</i><<i>x</i><<i>b</i>的<i>x</i>的集合叫作<b>开区间</b>,表示为(<i>a</i>,<i>b</i>).
          </p>
        </div>
      </div>
    </div>
    <!-- 038 -->
@@ -91,7 +774,27 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            (3)
            满足不等式<i>a</i>≤<i>x</i><<i>b</i>和<i>a</i><<i>x</i>≤<i>b</i>的<i>x</i>的集合分别叫作<b>左闭右开区间</b>和<b>左开右闭区间</b>,分别表示为
            [<i>a</i>,<i>b</i>),(<i>a</i>,<i>b</i>].
          </p>
          <p>
            这里的<i>a</i>与<i>b</i>都叫作相应区间的端点.这些区间还可以用数轴表示(如表2-1所示).在数轴上,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点.
          </p>
          <p class="img">表2-1</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0049-1.jpg" /></p>
          <p>
            实数集<b>R</b>可以用区间表示为(-∞,+∞).符号“∞”读作“无穷大”,它不是一个具体的数,仅表示某个量在变化时,绝对值无限增大的趋势.“+∞”读作“正无穷大”,表示某个量沿正方向无限增大;“-∞”读作“负无穷大”,表示某个量沿负方向无限变化,其绝对值无限增大.
          </p>
          <p>
            我们还可以把满足<i>x</i>≥<i>a</i>,<i>x</i>><i>a</i>,<i>x</i>≤<i>b</i>,<i>x</i><<i>b</i>的<i>x</i>的集合用区间分别表示为
            [<i>a</i>,+∞),(<i>a</i>,+∞),(-∞,<i>b</i>],(-∞,<i>b</i>),如表2-2所示.
          </p>
          <p class="img">表2-2</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0049-2.jpg" /></p>
        </div>
      </div>
    </div>
    <!-- 039 -->
@@ -105,7 +808,151 @@
            <p><span>039</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk mt-80">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              区间也是一个集合,它是实数集的一个子集.但并非所有的数集都能用区间表示.例如,集合{1,3,4,5,7,8,11,12}、自然数集<b>N</b>、整数集<b>Z</b>就不能用区间表示.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例1</b></span> 把下列集合用区间表示出来,并指出区间的类型.
          </p>
          <p>(1) {<i>x</i>|-3≤<i>x</i>≤1};(2) {<i>x</i>|-1<<i>x</i><2};</p>
          <p>
            (3)
            <math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow>
                  <mo stretchy="false">|</mo>
                </mrow>
                <mfrac>
                  <mn>3</mn>
                  <mn>2</mn>
                </mfrac>
                <mo>≤</mo>
                <mi>x</mi>
                <mo><</mo>
                <mn>4</mn>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>;(4)
            <math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow>
                  <mo stretchy="false">|</mo>
                </mrow>
                <mo>−</mo>
                <mn>6</mn>
                <mo><</mo>
                <mi>x</mi>
                <mo>≤</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>;
          </p>
          <p>(5) {<i>x</i>|<i>x</i>≥2};(6) {<i>x</i>|<i>x</i><1}.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) [-3,1],是闭区间;
          </p>
          <p>(2)(-1,2),是开区间;</p>
          <p>
            (3)
            <math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mfrac>
                  <mn>3</mn>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>4</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,是左闭右开区间;
          </p>
          <p>
            (4)
            <math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mn>6</mn>
                <mo>,</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>,是左开右闭区间;
          </p>
          <p>(5) [2,+∞),是左闭右开区间;</p>
          <p>(6)(-∞,1),是开区间.</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 用区间表示不等式3<i>x</i><9<i>x</i>+4的解集,并在数轴上表示出来.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 解不等式3<i>x</i><9<i>x</i>+4,得
          </p>
          <math display="block">
            <mi>x</mi>
            <mo>></mo>
            <mo>−</mo>
            <mfrac>
              <mn>2</mn>
              <mn>3</mn>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>
            所以不等式的解集用区间表示为<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>2</mn>
                  <mn>3</mn>
                </mfrac>
                <mo>,</mo>
                <mo>+</mo>
                <mi mathvariant="normal">∞</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,表示在数轴上如图2-1所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0050-7.jpg" /></p>
          <p class="img">图2-1</p>
          <p>
            <span
              class="zt-ls"><b>例3</b></span> 设<b>R</b>为全集,集合<i>A</i>={<i>x</i>|-5<<i>x</i><6},<i>B</i>={<i>x</i>|<i>x</i>≥3或<i>x</i>≤-3},用区间表示<i>A</i>∩<i>B</i>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            在数轴上将集合<i>A</i>,<i>B</i>表示出来,如图2-2所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0050-8.jpg" /></p>
          <p class="img">图2-2</p>
          <p>
            <i>A</i>∩<i>B</i>={<i>x</i>|-5<<i>x</i><6}∩{<i>x</i>|<i>x</i>≥3或<i>x</i>≤-3}
          </p>
          <p>={<i>x</i>|-5<<i>x</i>≤-3}∪{<i>x</i>|3≤<i>x</i><6}</p>
          <p>=(-5,-3]∪[3,6).</p>
        </div>
      </div>
    </div>
    <!-- 040 -->
@@ -116,7 +963,28 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.用区间表示下列集合.</p>
            <p>(1) <i>A</i>={<i>x</i>|<i>x</i>>0};</p>
            <p>(2) <i>B</i>={<i>x</i>|<i>x</i><0};</p>
            <p>(3) <i>M</i>={<i>x</i>|-1<<i>x</i>≤0}.</p>
            <p>2.填空题.</p>
            <p>(1) {<i>x</i>|-π≤<i>x</i>≤π}用区间表示为______;</p>
            <p>(2) {<i>x</i>|-π<<i>x</i><π}用区间表示为______;</p>
            <p>(3) {<i>x</i>|-π<<i>x</i>≤π}用区间表示为______;</p>
            <p>(4) {<i>x</i>|-π≤<i>x</i><π}用区间表示为______;</p>
            <p>(5) {<i>x</i>|<i>x</i>≥π}用区间表示为______;</p>
            <p>(6) {<i>x</i>|<i>x</i><-π}用区间表示为______.</p>
            <p>
              3.设<b>R</b>为全集,集合<i>M</i>={<i>x</i>|4<i>x</i>>2<i>x</i>+4},<i>P</i>={<i>x</i>|-1≤<i>x</i>≤1},用区间表示下列集合.
            </p>
            <p>
              (1) <i>M</i>∪<i>P</i>,<i>M</i>∩<i>P</i>;(2) ∁<i><sub><b>R</b></sub>M</i>,∁<i><sub><b>R</b></sub>P</i>.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 041 -->
@@ -130,7 +998,30 @@
            <p><span>041</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c015">习题2.2<span class="fontsz2">>>></span></h3>
          <examinations :cardList="questionData[47]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          <h2 id="b009">
            2.3 一元二次不等式<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c016">
            2.3.1 一元二次不等式的概念<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p class="center"><b>汽车急刹车的停车距离</b></p>
          <p>
            随着人民生活质量的提高,人们的购车意愿上升.2021年末全国民用汽车保有量30
            151万辆,比2020年末增加2
            064万辆.在此背景下,汽车行驶安全越发需要引起人们的重视。汽车行驶的过程中,由于惯性的作用,急刹车后会继续向前滑行一段距离才能停住,一般称这段距离为汽车“急刹车的停车距离”.急刹车的停车距离<i>y</i>(m)
            与车速<i>x</i>(km/h)之间具有确定的关系.不同车型的汽车急刹车的停车距离与车速之间的关系不同,同一车型的汽车急刹车的停车距离与车速之间的关系也会因为天气条件、道路状况等因素的不同而发生变化.
          </p>
          <p>
            在正常天气条件下,某汽车在高速公路上急刹车的停车距离<i>y</i>(m)
            与车速<i>x</i>(km/h)
            之间的函数关系为<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>,如果希望该汽车急刹车的停车距离不
          </p>
        </div>
      </div>
    </div>
    <!-- 042 -->
@@ -141,7 +1032,58 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">
            超过50m,那么其行驶速度的范围是多少?(注:高速公路上的最低速度为60
            km/h)
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            上述问题要求“汽车急刹车的停车距离不超过50
            m”,即y≤50.而该汽车急刹车的停车距离与车速之间的关系为<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>,因此得到
          </p>
          <p class="center">0.007<i>x</i><sup>2</sup>+0.2<i>x</i>≤50.</p>
          <p>
            为了求出行驶速度的范围,我们需要对这个不等式进行求解.这个不等式可以进一步整理为
          </p>
          <p class="center">0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50≤0.</p>
          <p>
            这个不等式只含有一个未知数<i>x</i>,并且未知数<i>x</i>的最高次数为2.像这样的不等式还有很多,如2<i>x</i><sup>2</sup>+5<i>x</i>-3<0,3<i>x</i><sup>2</sup>+6<i>x</i>-1>0等.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/gn.jpg" /></p>
            </div>
            <p class="block">一元二次不等式</p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            一般地,只含有一个未知数,且未知数的最高次数为2的整式不等式,叫作<b>一元二次不等式</b>.一元二次不等式的一般表达式为<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0(≥0)或<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0(≤0),其中<i>a</i>,<i>b</i>,<i>c</i>均为常数,且<i>a</i>≠0.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block"><b>1.一元二次方程</b></p>
            <p class="block">
              一元二次方程<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>=0(<i>a</i>≠0)的实数解的情况与求解公式如表2-3所示.
            </p>
            <p class="img">表2-3</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0053-1.jpg" />
            </p>
            <p class="block">
              当<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>>0时,有些一元二次方程也可以用因式分解法写成<i>a</i>(<i>x</i>-<i>x</i>1)(<i>x</i>-<i>x</i>2)=0(<i>a</i>≠0),然后再求解.
            </p>
            <p class="block"><b>2.二次函数</b></p>
            <p class="block">
              二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>(<i>a</i>≠0)的图像是一条抛物线.当<i>a</i>>0时,抛物线开口向上;当<i>a</i><0时,抛物线开口向下.抛物线与<i>x</i>轴共有3种
              位置关系.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 043 -->
@@ -155,7 +1097,88 @@
            <p><span>043</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk">
            <p class="block">
              (1) 当<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>>0时,抛物线与<i>x</i>轴有两个交点;
            </p>
            <p class="block">
              (2) 当<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=0时,抛物线与<i>x</i>轴只有一个交点;
            </p>
            <p class="block">
              (3) 当<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i><0时,抛物线与<i>x</i>轴无交点.
            </p>
            <p class="block">抛物线与<i>x</i>轴的3种位置关系如表2-4所示.</p>
            <p class="img">表2-4</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0054-1.jpg" />
            </p>
            <p class="block">
              二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>(<i>a</i>≠0)的图像的对称轴方程为<math display="0">
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>b</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
              </math>,顶点坐标为<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>b</mi>
                    <mrow>
                      <mn>2</mn>
                      <mi>a</mi>
                    </mrow>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mi>a</mi>
                      <mi>c</mi>
                      <mo>−</mo>
                      <msup>
                        <mi>b</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mrow>
                      <mn>4</mn>
                      <mi>a</mi>
                    </mrow>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,与<i>y</i>轴的交点坐标为(0,<i>c</i>).
            </p>
          </div>
          <p><b>例</b> 已知二次函数<i>y</i>=<i>x</i><sup>2</sup>-2<i>x</i>-3,</p>
          <p>(1) 画出该函数图像;</p>
          <p>
            (2)
            指出该函数图像上纵坐标分别为<i>y</i>=0,<i>y</i>>0,<i>y</i><0的所有点;
          </p>
          <p>
            (3)
            根据函数图像写出<i>y</i>=0,<i>y</i>>0,<i>y</i><0时所对应的<i>x</i>的值或取值范围.
          </p>
          <p class="block">
            <span
              class="zt-ls2"><b>分析</b></span> ①根据<i>x</i><sup>2</sup>的系数判断函数图像(抛物线)的开口方向;②用判别式判定出一元二次方程<i>x</i><sup>2</sup>-2<i>x</i>-3=0的解的情况,从而确定二次函数<i>y</i>=<i>x</i><sup>2</sup>-2<i>x</i>-3的图像与<i>x</i>轴的交点个数和交点坐标;③计算二次函数图像的顶点坐标、与<i>y</i>轴的交点坐标;④求出二次函数图像的对称轴方程,并利用函数图像的对称性再找出一些点;⑤最后根据上述信息画出函数图像.
          </p>
          <p class="block">
            画出图像后,<i>y</i>=0,<i>y</i>>0,<i>y</i><0分别对应函数图像与<i>x</i>轴相交、函数图像在<i>x</i>轴上方、函数图像在<i>x</i>轴下方三种情形,根据图像完成(2)(3)
            两个问题.
          </p>
        </div>
      </div>
    </div>
    <!-- 044 -->
@@ -166,7 +1189,111 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <examinations :cardList="questionData[51]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
          v-if="questionData" ></examinations>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0055-1.jpg" /></p>
          <p class="img">图2-3</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为<i>a</i>=1>0,所以函数图像为开口向上的抛物线.
          </p>
          <p>
            因为<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=(-2)<sup>2</sup>-4×1×(-3)=16>0,
          </p>
          <p>
            所以一元二次方程<i>x</i><sup>2</sup>-2<i>x</i>-3=0有两个不相等的实数解.
          </p>
          <p>解方程,得<i>x</i><sub>1</sub>=-1,<i>x</i><sub>2</sub>=3.</p>
          <p>所以抛物线与<i>x</i>轴的交点坐标为(-1,0),(3,0).</p>
          <p>
            抛物线的顶点坐标为<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>b</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                    <mi>c</mi>
                    <mo>−</mo>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,即(1,-4).
          </p>
          <p>
            抛物线的对称轴方程为<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mi>b</mi>
                <mrow>
                  <mn>2</mn>
                  <mi>a</mi>
                </mrow>
              </mfrac>
            </math>,即<i>x</i>=1.抛物线与<i>y</i>轴的交点坐标为(0,<i>c</i>),即(0,-3).根据函数的对称性,可以再取一些点,如(2,-3).
          </p>
          <p>
            根据以上信息,就可以画出函数<i>y</i>=<i>x</i><sup>2</sup>-2<i>x</i>-3的图像(如图2-3所示).
          </p>
          <p>
            (2)
            观察图像可知,满足<i>y</i>=0的点是抛物线与<i>x</i>轴的交点;满足<i>y</i>>0的点是抛物线在<i>x</i>轴上方的所有点;满足<i>y</i><0的点是抛物线在<i>x</i>轴下方的所有点.
          </p>
          <p>
            (3)
            观察图像可知,当<i>y</i>=0时,对应抛物线与<i>x</i>轴的两个交点,此时<i>x</i>有两个取值,<i>x</i><sub>1</sub>=-1,<i>x</i><sub>2</sub>=3;
          </p>
          <p>
            当<i>y</i>>0时,对应抛物线在<i>x</i>轴上方的所有点,此时<i>x</i>的取值范围是<i>x</i><-1或<i>x</i>>3;
          </p>
          <p>
            当<i>y</i><0时,对应抛物线在<i>x</i>轴下方的所有点,此时<i>x</i>的取值范围是-1<<i>x</i><3.
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[51]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>已知下列二次函数:</p>
            <p>
              ①<i>y</i>=<i>x</i><sup>2</sup>-3<i>x</i>-4, ②<i>y</i>=<i>x</i><sup>2</sup>+<i>x</i>+2,
              ③<i>y</i>=<i>x</i><sup>2</sup>-6<i>x</i>+9.
            </p>
            <p>(1) 分别画出它们的函数图像;</p>
            <p>
              (2)
              根据函数图像写出<i>y</i>=0,<i>y</i>>0,<i>y</i><0时所对应的<i>x</i>的值或取值范围.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 045 -->
@@ -180,7 +1307,184 @@
            <p><span>045</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c017">
            2.3.2 一元二次不等式的基本解法<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            回到本节开头的问题,如何解不等式0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50≤0呢?
          </p>
          <p>
            当<i>x</i>变化时,不等式的左边可以看作<i>x</i>的二次函数<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50.这样解不等式0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50≤0的问题就可以转化为求二次函数<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50的图像上<i>y</i>≤0所对应点的<i>x</i>的取值范围问题.
          </p>
          <p>
            二次函数<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50的图像是开口向上的抛物线.因为<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=(0.2)<sup>2</sup>-4×0.007×(-50)=1.44>0,所以抛物线与<i>x</i>轴有两个交点,交点的横坐标是方程0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50=0的两个解,解方程0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50=0得<i>x</i>1=-100,<math
              display="0">
              <msub>
                <mi>x</mi>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msub>
              <mo>=</mo>
              <mfrac>
                <mn>500</mn>
                <mn>7</mn>
              </mfrac>
            </math>.所以图像与<i>x</i>轴的交点坐标为(-100,0),<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>500</mn>
                  <mn>7</mn>
                </mfrac>
                <mo>,</mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.对称轴方程为<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mi>b</mi>
                <mrow>
                  <mn>2</mn>
                  <mi>a</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mn>100</mn>
                <mn>7</mn>
              </mfrac>
            </math>,顶点坐标为<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>b</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                    <mi>c</mi>
                    <mo>−</mo>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,即<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>100</mn>
                  <mn>7</mn>
                </mfrac>
                <mo>,</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>360</mn>
                  <mn>7</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0056-6.jpg" /></p>
          <p class="img">图2-4</p>
          <p>
            故二次函数<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50的简图如图2-4所示.
          </p>
          <p>观察图像可知:</p>
          <p>
            当<i>y</i>=0时,对应抛物线与<i>x</i>轴的两个交点,此时<i>x</i>1=-100,<math display="0">
              <msub>
                <mi>x</mi>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msub>
              <mo>=</mo>
              <mfrac>
                <mn>500</mn>
                <mn>7</mn>
              </mfrac>
            </math>;
          </p>
          <p>
            当<i>y</i><0时,对应抛物线在<i>x</i>轴下方的所有点,此时<i>x</i>的取值范围是<math display="0">
              <mo>−</mo>
              <mn>100</mn>
              <mo><</mo>
              <mi>x</mi>
              <mo><</mo>
              <mfrac>
                <mn>500</mn>
                <mn>7</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            故满足不等式0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50≤0的<i>x</i>所在的区间为<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mn>100</mn>
                <mo>,</mo>
                <mfrac>
                  <mn>500</mn>
                  <mn>7</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>.
          </p>
          <p>
            考虑到高速公路上的最低速度为60km/h,如果希望该汽车急刹车的停车距离不超过50m,那么其行驶速度的范围是<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mn>60</mn>
                <mo>,</mo>
                <mfrac>
                  <mn>500</mn>
                  <mn>7</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>,行驶速度的最大值为<math display="0">
              <mfrac>
                <mn>500</mn>
                <mn>7</mn>
              </mfrac>
              <mo>≈</mo>
              <mn>71</mn>
            </math>(km/h).
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            一般地,使一元二次不等式成立的值叫作这个<b>一元二次不等式的解</b>.
          </p>
        </div>
      </div>
    </div>
    <!-- 046 -->
@@ -191,7 +1495,60 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">
            一元二次不等式的所有解组成的集合,叫作这个<b>一元二次不等式的解集</b>.
          </p>
          <p>
            上面的情形表明,二次函数图像的开口方向及其与<i>x</i>轴的交点坐标,可以确定其对应的一元二次不等式的解集.
          </p>
          <p><b>例</b> 利用二次函数的图像解下列一元二次不等式.</p>
          <p>
            (1) -<i>x</i><sup>2</sup>+3<i>x</i>+4<0;(2) <i>x</i><sup>2</sup>-2<i>x</i>+3>0.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0057-1.jpg" /></p>
          <p class="img">图2-5</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            Δ=<i>b</i><sup>2</sup>-4<i>ac</i>=3<sup>2</sup>-4×(-1)×4=25>0,所以函数<i>y</i>=-<i>x</i><sup>2</sup>+3<i>x</i>+4的图像与<i>x</i>轴有两个交点.解方程-<i>x</i><sup>2</sup>+3<i>x</i>+4=0可得,<i>x</i>1=-1,<i>x</i>2=4.
          </p>
          <p>
            函数<i>y</i>=-<i>x</i><sup>2</sup>+3<i>x</i>+4的图像是开口向下的抛物线,与<i>x</i>轴的交点坐标是(-1,0),(4,0),函数<i>y</i>=-<i>x</i><sup>2</sup>+3<i>x</i>+4的图像如图2-5所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0057-2.jpg" /></p>
          <p class="img">图2-6</p>
          <p>
            观察图像可得,不等式-<i>x</i><sup>2</sup>+3<i>x</i>+4<0的解集是(-∞,
            -1)∪(4, +∞).
          </p>
          <p>
            (2)
            <i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=(-2)<sup>2</sup>-4×1×3=-8<0,所以函数<i>y</i>=<i>x</i><sup>2</sup>-2<i>x</i>+3的图像与<i>x</i>轴无交点.
          </p>
          <p>
            函数<i>y</i>=<i>x</i><sup>2</sup>-2<i>x</i>+3的图像是开口向上的抛物线,与<i>x</i>轴无交点,其简图如图2-6所示.
          </p>
          <p>
            观察图像可得,不等式<i>x</i><sup>2</sup>-2<i>x</i>+3>0的解集为<b>R</b>.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              例(1)
              中,注意到不等式-<i>x</i><sup>2</sup>+3<i>x</i>+4<0⇔<i>x</i><sup>2</sup>-3<i>x</i>-4>0,从而可将问题转化成解不等式<i>x</i><sup>2</sup>-3<i>x</i>-4>0,即当一元二次不等式的二次项系数为负数时,可以利用不等式的性质将不等式化成二次项系数为正数的一元二次不等式,再求解.
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/tjfx.jpg" /></p>
          <p>
            通过上面的分析,发现二次函数的图像、一元二次方程的解、一元二次不等式的解集之间有着密切的联系,可以总结成表2-5.
          </p>
          <p class="img">表2-5</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0057-3.jpg" /></p>
        </div>
      </div>
    </div>
    <!-- 047 -->
@@ -205,8 +1562,25 @@
            <p><span>047</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="img">续表</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0058-1.jpg" /></p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            一般地,与二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>(<i>a</i>>0)对应的一元二次不等式有四种情形,分别是<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0,<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≥0,<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0,<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≤0.利用二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>(<i>a</i>>0)的图像求解相应的一元二次不等式,可以分为三步.
          </p>
          <p>
            第一步:确定相应的一元二次方程<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>=0的判别式<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>,从而确定二次函数的图像与<i>x</i>轴的相交情况;如果有交点,则利用方程<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>=0解出交点的横坐标.
          </p>
          <p>
            第二步:画出二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>的简图.
          </p>
          <p>第三步:观察简图,写出不等式的解集.</p>
          <div class="bj">
            <examinations :cardList="questionData[54]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 048 -->
@@ -217,7 +1591,143 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>
              (4) <i>x</i><sup>2</sup>-3<i>x</i>-4>0;(5) <i>x</i><sup>2</sup>-<i>x</i>-2≤0;(6)
              -<i>x</i><sup>2</sup>-3<i>x</i><0;
            </p>
            <p>
              (7) -<i>x</i><sup>2</sup>+5<i>x</i>-6<0;(8) -3<i>x</i><sup>2</sup>+2<i>x</i>-1>0.
            </p>
          </div>
          <h3 id="c018">
            2.3.3 特殊类型一元二次不等式的解法<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>观察下列不等式:</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mn>3</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo><</mo>
            <mn>0</mn>
            <mo>;</mo>
          </math>
          <p class="right">①</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mn>3</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>></mo>
            <mn>0</mn>
            <mo>;</mo>
          </math>
          <p class="right">②</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mn>3</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>≤</mo>
            <mn>0</mn>
            <mo>;</mo>
          </math>
          <p class="right">③</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mn>3</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>≥</mo>
            <mn>0</mn>
            <mo>.</mo>
          </math>
          <p class="right">④</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0059-5.jpg" /></p>
          <p class="img">图2-7</p>
          <p>
            以上四个不等式对应的二次函数为<i>y</i>=(<i>x</i>+1)(<i>x</i>-3),对应的一元二次方程为(<i>x</i>+1)(<i>x</i>-3)=0.其解为<i>x</i>1=-1,<i>x</i>2=3.二次函数<i>y</i>=(<i>x</i>+1)(<i>x</i>-3)的图像与<i>x</i>轴有两个交点(-1,0),(3,0).
          </p>
          <p>二次函数<i>y</i>=(<i>x</i>+1)(<i>x</i>-3)的简图如图2-7所示.</p>
          <p>
            结合二次函数<i>y</i>=(<i>x</i>+1)(<i>x</i>-3)的简图,我们可以得到以下结论.
          </p>
          <p>
            (1)
            不等式(<i>x</i>+1)(<i>x</i>-3)<0的解在方程(<i>x</i>+1)(<i>x</i>-3)=0的两解之间,解集为(-1,3);
          </p>
          <p>
            (2)
            不等式(<i>x</i>+1)(<i>x</i>-3)>0的解在方程(<i>x</i>+1)(<i>x</i>-3)=0的两解之外,解集为(-∞,-1)∪(3,+∞);
          </p>
          <p>
            (3)
            不等式(<i>x</i>+1)(<i>x</i>-3)≤0的解在方程(<i>x</i>+1)(<i>x</i>-3)=0的两解之间,解集为[-1,3];
          </p>
          <p>
            (4)
            不等式(<i>x</i>+1)(<i>x</i>-3)≥0的解在方程(<i>x</i>+1)(<i>x</i>-3)=0的两解之外,解集为(-∞,-1]∪[3,+∞).
          </p>
          <p>
            一般地,一元二次方程(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)=0(其中<i>p</i>,<i>q</i>为实数,并且<i>p</i><<i>q</i>)有两个不相等的实数解<i>x</i>1=<i>p</i>,<i>x</i>2=<i>q</i>,二次函数<i>y</i>=(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)的简图如图2-8所示.
          </p>
          <p>
            观察二次函数<i>y</i>=(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)的简图,可知下列结论成立.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0059-6.jpg" /></p>
          <p class="img">图2-8</p>
          <p>
            (1)
            不等式(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)<0的解集为(<i>p</i>,<i>q</i>);
          </p>
          <p>
            (2)
            不等式(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)>0的解集为(-∞,<i>p</i>)∪(<i>q</i>,+∞);
          </p>
        </div>
      </div>
    </div>
    <!-- 049 -->
@@ -231,7 +1741,65 @@
            <p><span>049</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            (3)
            不等式(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)≤0的解集为[<i>p</i>,<i>q</i>];
          </p>
          <p>
            (4)
            不等式(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)≥0的解集为(-∞,<i>p</i>]∪[<i>q</i>,+∞).
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 解下列不等式.
          </p>
          <p>
            (1)(<i>x</i>+3)(<i>x</i>+1)<0;(2)(6-<i>x</i>)(<i>x</i>+4)≤0.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)(<i>x</i>+3)(<i>x</i>+1)<0,即[<i>x</i>-(-3)][<i>x</i>-(-1)]<0.
          </p>
          <p>所以不等式的解集为(-3,-1).</p>
          <p>
            (2)
            由(6-<i>x</i>)(<i>x</i>+4)≤0得(<i>x</i>-6)(<i>x</i>+4)≥0,即
          </p>
          <p class="center">(<i>x</i>-6)[<i>x</i>-(-4)]≥0.</p>
          <p>所以不等式的解集为(-∞,-4]∪[6,+∞).</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 解下列不等式.
          </p>
          <p>
            (1)(<i>x</i>+1)<sup>2</sup>≥4;(2)(2<i>x</i>-3)<sup>2</sup><9.
          </p>
          <p class="block">
            <span
              class="zt-ls2"><b>分析</b></span> 由(<i>x</i>+1)<sup>2</sup>≥4得<i>x</i><sup>2</sup>+2<i>x</i>+1≥4,即<i>x</i><sup>2</sup>+2<i>x</i>-3≥0,从而可以利用二次函数<i>y</i>=<i>x</i><sup>2</sup>+2<i>x</i>-3的图像进行求解;注意到4=2<sup>2</sup>,也可以考虑将(<i>x</i>+1)<sup>2</sup>≥4整理为(<i>x</i>+1)<sup>2</sup>-4≥0,并使用平方差公式,即(<i>x</i>+1)<sup>2</sup>-2<sup>2</sup>≥0,得到(<i>x</i>+3)(<i>x</i>-1)≥0,此时可以借助上面的结论直接求解.下面我们将使用后一种方法进行求解.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            由(<i>x</i>+1)<sup>2</sup>≥4得(<i>x</i>+1)<sup>2</sup>-2<sup>2</sup>≥0,
          </p>
          <p>从而  [(<i>x</i>+1)+2][(<i>x</i>+1)-2]≥0,</p>
          <p>化简得(<i>x</i>+3)(<i>x</i>-1)≥0,</p>
          <p>即   [<i>x</i>-(-3)](<i>x</i>-1)≥0,</p>
          <p>所以不等式的解集为(-∞,-3]∪[1,+∞).</p>
          <p>
            (2)
            由(2<i>x</i>-3)<sup>2</sup><9得(2<i>x</i>-3)<sup>2</sup>-3<sup>2</sup><0,
          </p>
          <p>从而  [(2<i>x</i>-3)+3][(2<i>x</i>-3)-3]<0,</p>
          <p>化简得 2<i>x</i>(2<i>x</i>-6)<0,</p>
          <p>即   <i>x</i>(<i>x</i>-3)<0,</p>
          <p>即(<i>x</i>-0)(<i>x</i>-3)<0,</p>
          <p>所以不等式的解集为(0,3).</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>解下列一元二次不等式.</p>
            <examinations :cardList="questionData[56]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 050 -->
@@ -242,7 +1810,13 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c019">习题2.3<span class="fontsz2">>>></span></h3>
          <div class="bj" >
            <examinations :cardList="questionData[57]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 051 -->
@@ -257,7 +1831,142 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b010">
            2.4 含绝对值的不等式<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c020">
            2.4.1 含绝对值的不等式的基本解法<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p class="center"><b>商品房预售中的不等式知识</b></p>
          <p>
            商品房预售时,房地产开发企业将正在建设中的房屋预先出售给购房者,
            并在购房合同中约定所购买房屋的具体面积(称为“合同约定面积”).房屋竣工后,
            根据现场实测的房屋面积被称为“产权登记面积”.为保护购房者权益,
            我国相关法律规定,
            预售房屋的购房合同中应当写明“合同约定面积”与“产权登记面积”发生误差时的处理方式.合同未作约定的,
            按以下原则处理:“(一) 面积误差比绝对值在3%以内(含3%) 的,
            根据‘产权登记面积’结算房价款;(二)
            面积误差比绝对值超出3%时,购房者有权退房.其中,
            面积误差比=(产权登记面积-合同约定面积)/合同约定面积×100%.”
          </p>
          <p>
            李先生购买预售房屋时, 合同约定面积为100 m<sup>2</sup>.房屋竣工后,
            产权登记面积在什么范围时, 李先生需要根据产权登记面积结算房价款?
            或者有权退房?
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block">
              1.绝对值定义:数轴上表示数<i>a</i>的点与原点之间的距离叫作数<i>a</i>的绝对值,记作|<i>a</i>|.
            </p>
            <p class="block">
              2.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,即
            </p>
            <p class="block">
              <math display="0">
                <mo stretchy="false">|</mo>
                <mi>a</mi>
                <mrow>
                  <mo stretchy="false">|</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mi>a</mi>
                        <mo>,</mo>
                        <mi>a</mi>
                        <mo>></mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mn>0</mn>
                        <mo>,</mo>
                        <mi>a</mi>
                        <mo>=</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mo>−</mo>
                        <mi>a</mi>
                        <mo>,</mo>
                        <mi>a</mi>
                        <mo><</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>,也可以写成<math display="0">
                <mo stretchy="false">|</mo>
                <mi>a</mi>
                <mrow>
                  <mo stretchy="false">|</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mi>a</mi>
                        <mo>,</mo>
                        <mi>a</mi>
                        <mo>≥</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mo>−</mo>
                        <mi>a</mi>
                        <mo>,</mo>
                        <mi>a</mi>
                        <mo><</mo>
                        <mn>0</mn>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>.
            </p>
            <p class="block">
              3.设<i>a</i>>0,数轴上与原点的距离是<i>a</i>的点有两个,它们分别在原点两侧,分别是-<i>a</i>和<i>a</i>,如图2-9所示.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0062-3.jpg" />
            </p>
            <p class="img">图2-9</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 052 -->
@@ -268,7 +1977,76 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            假设产权登记面积为<i>x</i>(m<sup>2</sup>),上述问题可用一个含有绝对值的不等式表示.
          </p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">|</mo>
              <mfrac>
                <mrow>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>100</mn>
                </mrow>
                <mn>100</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">|</mo>
            </mrow>
            <mo>≤</mo>
            <mn>3%</mn>
            <mo>,或</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">|</mo>
              <mfrac>
                <mrow>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>100</mn>
                </mrow>
                <mn>100</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">|</mo>
            </mrow>
            <mo>></mo>
            <mn>3%</mn>
            <mo>,</mo>
          </math>
          <p>可化为 |<i>x</i>-100|≤3,或|<i>x</i>-100|>3.</p>
          <p>如果我们能解出这两个不等式,就能回答上述问题.</p>
          <p>那么,如何解这种含有绝对值的不等式呢?我们先从简单的情形开始分析.</p>
          <p>
            设<i>a</i>>0,由绝对值的意义可知,含有绝对值的方程|<i>x</i>|=<i>a</i>的解是<i>x</i>=<i>a</i>或<i>x</i>=-<i>a</i>.那么,含有绝对值的不等式(如|<i>x</i>|≥<i>a</i>,|<i>x</i>|><i>a</i>,|<i>x</i>|≤<i>a</i>,|<i>x</i>|<<i>a</i>等)
            怎么解呢?下面以不等式|<i>x</i>|≤<i>a</i>(<i>a</i>>0)
            和|<i>x</i>|><i>a</i>(<i>a</i>>0)为例进行分析.
          </p>
          <p>
            由绝对值的几何意义,|<i>x</i>|表示实数<i>x</i>对应的点与原点之间的距离.因此,不等式|<i>x</i>|≤<i>a</i>(<i>a</i>>0)
            表示数轴上到原点的距离不大于<i>a</i>的点的集合.在数轴上,满足|<i>x</i>|≤<i>a</i>(<i>a</i>>0)
            的实数<i>x</i>对应的点如图2-10所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0063-2.jpg" /></p>
          <p class="img">图2-10</p>
          <p>
            所以不等式|<i>x</i>|≤<i>a</i>(<i>a</i>>0)
            的解集是{<i>x</i>|-<i>a</i>≤<i>x</i>≤<i>a</i>},用区间表示为[-<i>a</i>,<i>a</i>].
          </p>
          <p>
            同理,不等式|<i>x</i>|><i>a</i>(<i>a</i>>0)
            表示数轴上到原点的距离大于<i>a</i>的点的集合.在数轴上,满足|<i>x</i>|><i>a</i>(<i>a</i>>0)的实数<i>x</i>对应的点如图2-11所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0063-3.jpg" /></p>
          <p class="img">图2-11</p>
          <p>
            所以不等式|<i>x</i>|><i>a</i>(<i>a</i>>0) 的解集是
            {<i>x</i>|<i>x</i><-<i>a</i>或<i>x</i>><i>a</i>},用区间表示为(-∞,-<i>a</i>)∪(<i>a</i>,+∞).
          </p>
          <p>由此,可以得到表2-6.</p>
          <p class="img">表2-6</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0063-4.jpg" /></p>
        </div>
      </div>
    </div>
    <!-- 053 -->
@@ -282,7 +2060,74 @@
            <p><span>053</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><b>例</b> 解不等式|2<i>x</i>|<5.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            由|2<i>x</i>|<5得-5<2<i>x</i><5,
          </p>
          <p>
            即 <math display="0">
              <mo>−</mo>
              <mfrac>
                <mn>5</mn>
                <mn>2</mn>
              </mfrac>
              <mo><</mo>
              <mi>x</mi>
              <mo><</mo>
              <mfrac>
                <mn>5</mn>
                <mn>2</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            所以不等式的解集是<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
          <examinations :cardList="questionData[60]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
          v-if="questionData" ></examinations>
          <h3 id="c021">
            2.4.2
            |<i>ax</i>+<i>b</i>|<<i>c</i>和|<i>ax</i>+<i>b</i>|><i>c</i>(<i>c</i>>0)的解法<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            求解此类不等式时,可以将<i>ax</i>+<i>b</i>看作一个整体,再利用含绝对值不等式的基本解法,去掉绝对值,然后进行求解.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 解不等式|2<i>x</i>-1|<5.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            由|2<i>x</i>-1|<5得-5<2<i>x</i>-1<5,
          </p>
          <p>即 -4<2<i>x</i><6,</p>
          <p>  -2<<i>x</i><3.</p>
          <p>所以不等式的解集是(-2,3).</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 解不等式|1-2<i>x</i>|<3.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为|1-2<i>x</i>|=|2<i>x</i>-1|,
          </p>
          <p>所以由|1-2<i>x</i>|<3得|2<i>x</i>-1|<3.</p>
        </div>
      </div>
    </div>
    <!-- 054 -->
@@ -293,8 +2138,45 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>由|2<i>x</i>-1|<3得-3<2<i>x</i>-1<3,</p>
          <p>即 -2<2<i>x</i><4,</p>
          <p>  -1<<i>x</i><2.</p>
          <p>所以不等式的解集是(-1,2).</p>
          <p>
            <span class="zt-ls"><b>例3</b></span> 解不等式|<i>x</i>+3|≥2.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            由|<i>x</i>+3|≥2得<i>x</i>+3≤-2或<i>x</i>+3≥2,
          </p>
          <p>即 <i>x</i>≤-5或<i>x</i>≥-1.</p>
          <p>所以不等式的解集是(-∞,-5]∪[-1,+∞).</p>
          <p>
            现在我们回到本节开始的问题,解不等式|<i>x</i>-100|≤3得97≤<i>x</i>≤103,解不等式|<i>x</i>-100|>3得<i>x</i>>103或<i>x</i><97.如果产权登记面积在97
            m<sup>2</sup>和103 m<sup>2</sup>之间(包含97 m<sup>2</sup>和103
            m<sup>2</sup>)
            时,李先生按照产权登记面积结算房款;如果产权登记面积小于97
            m<sup>2</sup>或大于103 m<sup>2</sup>时,李先生有权退房.
          </p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 解不等式|3<i>x</i>-(<i>x</i>-2)|≤2.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            由|3<i>x</i>-(<i>x</i>-2)|≤2得|3<i>x</i>-<i>x</i>+2|≤2,
          </p>
          <p>即  |2<i>x</i>+2|≤2,</p>
          <p>从而 -2≤2<i>x</i>+2≤2,</p>
          <p>   -4≤2<i>x</i>≤0,</p>
          <p>   -2≤<i>x</i>≤0.</p>
          <p>所以不等式的解集是[-2,0].</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[61]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 055 -->
@@ -308,7 +2190,29 @@
            <p><span>055</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c022">习题2.4<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[62]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
          <h2 id="b011">
            2.5 不等式的应用<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c023">
            2.5.1 不等式的简单应用<span class="fontsz2">>>></span>
          </h3>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0066-11.jpg" /></p>
          <p class="img">图2-12</p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 用篱笆在墙边围一块矩形小花坛,其中一边靠墙(如图2-12所示),篱笆总长为8m.若小花坛的面积不小于6
            m<sup>2</sup>,则小花坛垂直于墙的一边的长度范围是多少?
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            设小花坛垂直于墙的一边的长度为<i>x</i>(m),则与墙平行的一边的长度为(8-2<i>x</i>)m.考虑到实际情况,有<i>x</i>>0,并且8-2<i>x</i>>0,所以<i>x</i>满足0<<i>x</i><4.
          </p>
        </div>
      </div>
    </div>
    <!-- 056 -->
@@ -319,7 +2223,78 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>设小花坛的面积为<i>S</i>(m<sup>2</sup>),则</p>
          <p class="center"><i>S</i>=<i>x</i>(8-2<i>x</i>),</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0067-1.jpg" /></p>
          <p class="img">图2-13</p>
          <p>整理得 <i>S</i>=-2<i>x</i><sup>2</sup>+8<i>x</i>.</p>
          <p>
            由题意得 <i>S</i>=-2<i>x</i><sup>2</sup>+8<i>x</i>≥6,即<i>x</i><sup>2</sup>-4<i>x</i>+3≤0.
          </p>
          <p>
            画出二次函数<i>y</i>=<i>x</i><sup>2</sup>-4<i>x</i>+3的简图(如图2-13所示).
          </p>
          <p>由图像得不等式的解为{<i>x</i>|1≤<i>x</i>≤3}.</p>
          <p>结合0<<i>x</i><4,得</p>
          <p class="center">
            {<i>x</i>|0<<i>x</i><4}∩{<i>x</i>|1≤<i>x</i>≤3}={<i>x</i>|1≤<i>x</i>≤3}.
          </p>
          <p>所以小花坛垂直于墙的一边的长度在1m至3m之间(含1m和3m).</p>
          <p>
            <span
              class="zt-ls"><b>例2</b></span> 某网店销售一种电动玩具,成本为10元/个.平时按单价20元销售,日平均销售量为100个.为进一步提升业绩,该网店决定在“双11”期间举办降价促销活动.根据以往的统计,如果该电动玩具的单价每降低0.5元,日平均销售量就会大约增加10个.为了使促销活动期间日平均利润不低于平时,应如何确定降价的范围?
          </p>
          <p class="block">
            <span
              class="zt-ls2"><b>分析</b></span> 利润=(销售单价-成本单价)×销售量.降价过程中,单价降低能够使销售量变大,但也使销售单价与成本单价的差减小,所以降价的范围应保证利润不低于促销前.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              由例1和例2可知,在解决与一元二次不等式有关的实际问题时,不仅要解一元二次不等式,而且要考虑实际背景对未知数的限制.在例1中,实际背景对未知数的限制是0<<i>x</i><4;在例2中,实际背景对未知数的限制是0<<i>x</i><10.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>解</b></span>
            假设降价<i>x</i>元.考虑到实际情况,价格的降幅应小于10元,即保证销售价高于成本价,所以要求<i>x</i>>0并且<i>x</i><10,即0<<i>x</i><10.
          </p>
          <p>平时的日平均利润为(20-10)×100=1 000(元).</p>
          <p>
            降价<i>x</i>元后,销售单价为(20-<i>x</i>)元,单个玩具的利润为(20-<i>x</i>)-10=(10-<i>x</i>)元,日平均销售量为<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mn>100</mn>
                <mo>+</mo>
                <mfrac>
                  <mn>10</mn>
                  <mn>0.5</mn>
                </mfrac>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>个.因此,降价<i>x</i>元后的日平均利润为(10-<i>x</i>)(100+20<i>x</i>)元.
          </p>
          <p>由题意得(10-<i>x</i>)(100+20<i>x</i>)≥1 000.</p>
          <p>化简得<i>x</i><sup>2</sup>-5<i>x</i>≤0,即<i>x</i>(<i>x</i>-5)≤0.</p>
          <p>所以不等式的解集为 {<i>x</i>|0≤<i>x</i>≤5}.</p>
          <p>
            由于0<<i>x</i><10,所以<i>x</i>的范围是{<i>x</i>|0<<i>x</i><10}∩{<i>x</i>|0≤<i>x</i>≤5},即{<i>x</i>|0<<i>x</i>≤5}.所以降价的范围应在0至5元之间(含5元,不含0元),即单价定在15元至20元之间(含15元,不含20元),便能满足要求.
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[63]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 057 -->
@@ -333,8 +2308,67 @@
            <p><span>057</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0068-1.jpg" /></p>
          <p class="img">第2题图</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[64]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
          <h3 id="c024">
            2.5.2 不等式与复杂实际问题<span class="fontsz2">>>></span>
          </h3>
          <p>
            <span
              class="zt-ls"><b>例1</b></span> 我国交通法规对小型汽车驾驶员的年龄限制如下:最低年龄18周岁,最高年龄70周岁.已有研究表明,小型汽车驾驶员对红绿灯变化的反应时间<i>y</i>(ms)
            与驾驶员年龄<i>x</i>(周岁)
            的关系为<i>y</i>=0.005<i>x</i><sup>2</sup>-0.2<i>x</i>+22,其中18≤<i>x</i>≤70.问:反应时间超过24.5ms的驾驶员所处的年龄范围是多少?
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 由题意得,<i>y</i>=0.005<i>x</i><sup>2</sup>-0.2<i>x</i>+22>24.5,即
          </p>
          <p>     0.005<i>x</i><sup>2</sup>-0.2<i>x</i>-2.5>0.</p>
          <p>化简得 <i>x</i><sup>2</sup>-40<i>x</i>-500>0.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0068-2.jpg" /></p>
          <p class="img">图2-14</p>
          <p>
            考查二次函数<i>y</i>=<i>x</i><sup>2</sup>-40<i>x</i>-500,<i>a</i>=1>0,<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=(-40)<sup>2</sup>-4×1×(-500)=3
            600>0,所以二次函数<i>y</i>=<i>x</i><sup>2</sup>-40<i>x</i>-500的图像开口向上,并且与<i>x</i>轴有两个交点.其简图如图2-14所示.
          </p>
          <p>
            由图像可知,不等式<i>x</i><sup>2</sup>-40<i>x</i>-500>0的解集为(-∞,-10)∪(50,+∞),这也是不等式0.005<i>x</i><sup>2</sup>-0.2<i>x</i>-2.5>0的解集.
          </p>
          <p>
            考虑到18≤<i>x</i>≤70,所以<i>x</i>的范围是(50,70],即反应时间超过24.5
            <i>ms</i>
            的驾驶员所处的年龄范围在50岁至70岁之间(不包含50岁,包含70岁).
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 身体质量指数(Body Mass
            Index,BMI)是衡量人体胖瘦程度的一个常用标准,计算公式为<math display="0">
              <mi>B</mi>
              <mi>M</mi>
              <mi>I</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mo>体重</mo>
                </mrow>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mo>身高</mo>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </mfrac>
            </math>(BMI单位:kg/m<sup>2</sup>).一项研究指出,中职学生身体质量指数与身体素质之间存在一定的关系.研究中使用身体素质指标来衡量学
          </p>
        </div>
      </div>
    </div>
    <!-- 058 -->
@@ -346,7 +2380,53 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            生的身体素质,该指标是指学生参加50m跑,立定跳远,力量(男生引体向上、女生1分钟仰卧起坐),耐力跑(男生1
            000m跑、女生800m跑),坐位体前屈等项目的成绩总和.身体素质指标为正数说明身体素质较好.上述研究发现,身体素质指标(<i>y</i>)与BMI(<i>x</i>)
            之间的关系如表2-7所示.
          </p>
          <p>问:身体素质较好的男生和女生,其BMI的范围分别是多少?</p>
          <p class="img">表2-7</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0069-1.jpg" /></p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            先考虑男生的情况.由题意得,<i>y</i>=-0.05<i>x</i><sup>2</sup>+2<i>x</i>-19.2>0,即
          </p>
          <p class="center">0.05<i>x</i><sup>2</sup>-2<i>x</i>+19.2<0.</p>
          <p>化简得 <i>x</i><sup>2</sup>-40<i>x</i>+384<0.</p>
          <p>
            考查二次函数<i>y</i>=<i>x</i><sup>2</sup>-40<i>x</i>+384,<i>a</i>=1>0,<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=40<sup>2</sup>-4×1×384=64>0,所以二次函数<i>y</i>=<i>x</i><sup>2</sup>-40<i>x</i>+384的图像开口向上,与<i>x</i>轴有两个交点.
          </p>
          <p>
            所以不等式<i>x</i><sup>2</sup>-40<i>x</i>+384<0的解集为(16,24),这也是不等式-0.05<i>x</i><sup>2</sup>+2<i>x</i>-19.2>0的解集.
          </p>
          <p>
            再考虑女生的情况.由题意得,<i>y</i>=-0.01<i>x</i><sup>2</sup>+0.39<i>x</i>-3.68>0,即
          </p>
          <p class="center">0.01<i>x</i><sup>2</sup>-0.39<i>x</i>+3.68<0.</p>
          <p>化简得 <i>x</i><sup>2</sup>-39<i>x</i>+368<0.</p>
          <p>
            考查二次函数<i>y</i>=<i>x</i><sup>2</sup>-39<i>x</i>+368,<i>a</i>=1>0,<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=(-39)<sup>2</sup>-4×1×368=49>0,所以二次函数<i>y</i>=<i>x</i><sup>2</sup>-39<i>x</i>+368的图像开口向上,与<i>x</i>轴有两个交点.
          </p>
          <p>
            所以不等式<i>x</i><sup>2</sup>-39<i>x</i>+368<0的解集为(16,23),这也是不等式-0.01<i>x</i><sup>2</sup>+0.39<i>x</i>-3.68>0的解集.
          </p>
          <p>
            因此,身体素质较好的男生BMI 的范围是(16,24),身体素质较好的女生BMI
            的范围是(16,23).
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <p class="block">
              小组合作收集用一元二次不等式解决的实际问题,并探究解决这类问题的一般步骤和注意事项.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 059 -->
@@ -357,22 +2437,21 @@
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>059</span></p>
            <p><span>059-060</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c025">习题2.5<span class="fontsz2">>>></span></h3>
          <div  class="bj" >
            <examinations :cardList="questionData[66]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 060 -->
    <div class="page-box" page="67">
      <div v-if="showPageList.indexOf(67) > -1">
        <ul class="page-header-odd fl al-end">
          <li>060</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="67">
    </div>
    <!-- 061 -->
    <div class="page-box" page="68">
@@ -385,7 +2464,117 @@
            <p><span>061</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b012">数学园地<span class="fontsz1">>>>>>>>></span></h2>
          <p>
            本单元中,我们学习了不等式的一些性质,以及如何解一元二次不等式和含绝对值的不等式.实际上,数学领域中还有很多不等式,也被用来解决生产生活中的实际问题.尤其是微积分体系建立以前,不等式是计算最大值和最小值问题的最佳工具.下面我们介绍一些著名的不等式.
          </p>
          <p>
            填写表2-8,并观察<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>b</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>,<math display="0">
              <msqrt>
                <mi>a</mi>
                <mi>b</mi>
              </msqrt>
            </math>,<math display="0">
              <mfrac>
                <mn>2</mn>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mi>a</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>b</mi>
                  </mfrac>
                </mrow>
              </mfrac>
            </math>这三个数的大小关系.
          </p>
          <p class="img">表2-8</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0072-4.jpg" /></p>
          <p>
            填写表2-9,并观察<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>,<math display="0">
              <mroot>
                <mrow>
                  <mi>a</mi>
                  <mi>b</mi>
                  <mi>c</mi>
                </mrow>
                <mn>3</mn>
              </mroot>
            </math>,<math display="0">
              <mfrac>
                <mn>3</mn>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mi>a</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>b</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>b</mi>
                  </mfrac>
                </mrow>
              </mfrac>
            </math>这三个数的大小关系.
          </p>
          <p class="img">表2-9</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0072-8.jpg" /></p>
          <p>通过填写和观察上面两个表格,你有什么发现和猜想?</p>
          <p>实际上,若<i>a</i>,<i>b</i>,<i>c</i>均为正数,则可给出如下定义.</p>
          <p>
            (1)
            <math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>b</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>叫作<i>a</i>,<i>b</i>两数的算术平均数,<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>叫作<i>a</i>,<i>b</i>,<i>c</i>三数的算术平均数;
          </p>
        </div>
      </div>
    </div>
    <!-- 062 -->
@@ -396,7 +2585,264 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            (2)
            <math display="0">
              <msqrt>
                <mi>a</mi>
                <mi>b</mi>
              </msqrt>
            </math>叫作<i>a</i>,<i>b</i>两数的几何平均数,<math display="0">
              <mroot>
                <mrow>
                  <mi>a</mi>
                  <mi>b</mi>
                  <mi>c</mi>
                </mrow>
                <mn>3</mn>
              </mroot>
            </math>叫作<i>a</i>,<i>b</i>,<i>c</i>三数的几何平均数;
          </p>
          <p>
            (3)
            <math display="0">
              <mfrac>
                <mn>2</mn>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mi>a</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>b</mi>
                  </mfrac>
                </mrow>
              </mfrac>
            </math>叫作<i>a</i>,<i>b</i>两数的调和平均数,<math display="0">
              <mfrac>
                <mn>3</mn>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mi>a</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>b</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>c</mi>
                  </mfrac>
                </mrow>
              </mfrac>
            </math>叫作<i>a</i>,<i>b</i>,<i>c</i>三数的调和平均数.
          </p>
          <p>观察上面两个表格,可以发现</p>
          <math display="block">
            <mfrac>
              <mrow>
                <mi>a</mi>
                <mo>+</mo>
                <mi>b</mi>
              </mrow>
              <mn>2</mn>
            </mfrac>
            <mo>⩾</mo>
            <msqrt>
              <mi>a</mi>
              <mi>b</mi>
            </msqrt>
            <mo>⩾</mo>
            <mfrac>
              <mn>2</mn>
              <mrow>
                <mfrac>
                  <mn>1</mn>
                  <mi>a</mi>
                </mfrac>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <mi>b</mi>
                </mfrac>
              </mrow>
            </mfrac>
            <mo>,</mo>
            <mfrac>
              <mrow>
                <mi>a</mi>
                <mo>+</mo>
                <mi>b</mi>
                <mo>+</mo>
                <mi>c</mi>
              </mrow>
              <mn>3</mn>
            </mfrac>
            <mo>⩾</mo>
            <mroot>
              <mrow>
                <mi>a</mi>
                <mi>b</mi>
                <mi>c</mi>
              </mrow>
              <mn>3</mn>
            </mroot>
            <mo>⩾</mo>
            <mfrac>
              <mn>3</mn>
              <mrow>
                <mfrac>
                  <mn>1</mn>
                  <mi>a</mi>
                </mfrac>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <mi>b</mi>
                </mfrac>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <mi>c</mi>
                </mfrac>
              </mrow>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>
            大胆地想一想,对于<i>n</i>个正数的算术平均数、几何平均数、调和平均数,怎样用符号表示?它们的大小关系能确定吗?
          </p>
          <p>
            一般地,若<i>a</i>1,<i>a</i>2,<i>a</i>3,…,<i>an</i>为<i>n</i>个正数,则有
          </p>
          <math display="block">
            <mfrac>
              <mrow>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>1</mn>
                  </mrow>
                </msub>
                <mo>+</mo>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msub>
                <mo>+</mo>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msub>
                <mo>+</mo>
                <mo>⋯</mo>
                <mo>+</mo>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mi>n</mi>
                  </mrow>
                </msub>
              </mrow>
              <mi>n</mi>
            </mfrac>
            <mo>⩾</mo>
            <mroot>
              <mrow>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>1</mn>
                  </mrow>
                </msub>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msub>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msub>
                <mo>⋯</mo>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mi>n</mi>
                  </mrow>
                </msub>
              </mrow>
              <mi>n</mi>
            </mroot>
            <mo>⩾</mo>
            <mfrac>
              <mi>n</mi>
              <mrow>
                <mfrac>
                  <mn>1</mn>
                  <msub>
                    <mi>a</mi>
                    <mrow>
                      <mn>1</mn>
                    </mrow>
                  </msub>
                </mfrac>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <msub>
                    <mi>a</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                </mfrac>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <msub>
                    <mi>a</mi>
                    <mrow>
                      <mn>3</mn>
                    </mrow>
                  </msub>
                </mfrac>
                <mo>+</mo>
                <mo>⋯</mo>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <msub>
                    <mi>a</mi>
                    <mrow>
                      <mi>n</mi>
                    </mrow>
                  </msub>
                </mfrac>
              </mrow>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>
            其中,当<i>a</i><sub>1</sub>=<i>a</i><sub>1</sub>=<i>a</i><sub>1</sub>=…=<i>an</i>时,等号成立.
          </p>
          <p>
            随着学习的进一步深入,我们就能够证明数学史上这个著名的不等式,并且知道它的广泛应用.
          </p>
        </div>
      </div>
    </div>
    <!-- 063 -->
@@ -410,8 +2856,46 @@
            <p><span>063</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b013">单元小结<span class="fontsz1">>>>>>>>></span></h2>
          <p class="bj2"><b>学习导图</b></p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0074-1.jpg" /></p>
          <p class="bj2"><b>学习指导</b></p>
          <p>1.不等式的基本性质.</p>
          <p>(1) 比较数(式)的大小常用“作差比较法”.</p>
          <p>(2) 运用不等式的性质时,要注意验证条件是否都满足.</p>
          <p>2.区间.</p>
          <p>
            区间是集合的一种表示形式,主要包括开区间、闭区间、左开右闭区间和右开左闭区间.
          </p>
          <p>3.一元二次不等式.</p>
          <p>
            (1) 将一元二次不等式统一化成<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0(≥0)
            或<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0(≤0)
            的形式.
          </p>
          <p>
            (2) 若<i>a</i>>0,此时二次函数的图像开口向上,计算判别式<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>.
          </p>
          <p>
            ①当<i>Δ</i>>0时,二次函数的图像与<i>x</i>轴有两个不同的交点(<i>x</i><sub>1</sub>,0),(<i>x</i><sub>2</sub>,0)(<i>x</i><sub>1</sub><<i>x</i><sub>2</sub>).画出函数简图,可得如下结论.
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0的解集为(-∞,<i>x</i><sub>1</sub>)∪(<i>x</i><sub>2</sub>,+∞);
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≥0的解集为(-∞,<i>x</i><sub>1</sub>]∪[<i>x</i><sub>2</sub>,+∞);
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0的解集为(<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>);
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≤0的解集为 [<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>].
          </p>
          <p>
            ②当<i>Δ</i>=0时,二次函数的图像与<i>x</i>轴只有一个交点(<i>x</i><sub>0</sub>,0).画出函数简图,可得如下结论.
          </p>
        </div>
      </div>
    </div>
    <!-- 064 -->
@@ -423,58 +2907,109 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0的解集为(-∞,<i>x</i><sub>0</sub>)∪(<i>x</i><sub>0</sub>,+∞);
          </p>
          <p><i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≥0的解集为<b>R</b>;</p>
          <p><i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0的解集为 ∅;</p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≤0的解集为 {<i>x</i>|<i>x</i>=<i>x</i><sub>0</sub>}.
          </p>
          <p>
            ③当<i>Δ</i><0时,二次函数的图像与<i>x</i>轴没有交点.画出函数简图,可得如下结论.
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0和<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≥0的解集均为<b>R</b>;
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0和<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≤0的解集均为 ∅.
          </p>
          <p>
            (3)
            若<i>a</i><0,则可以转化为-<i>ax</i><sup>2</sup>-<i>bx</i>-<i>c</i>>0(≥0)或-<i>ax</i><sup>2</sup>-<i>bx</i>-<i>c</i><0(≤0)的情形,然后再按步骤(2)
            的方法进行求解.
          </p>
          <p>4.含绝对值的不等式.</p>
          <p>
            (1)
            不等式|<i>x</i>|≤<i>a</i>(<i>a</i>>0)的解集是{<i>x</i>|-<i>a</i>≤<i>x</i>≤<i>a</i>},用区间表示为[-<i>a</i>,<i>a</i>].
          </p>
          <p>
            (2)
            不等式|<i>x</i>|><i>a</i>(<i>a</i>>0)的解集是{<i>x</i>|<i>x</i><-<i>a</i>或<i>x</i>><i>a</i>},用区间表示为(-∞,-<i>a</i>)∪(<i>a</i>,+∞).
          </p>
          <p>
            (3)
            求解形如|<i>ax</i>+<i>b</i>|<<i>c</i>和|<i>ax</i>+<i>b</i>|><i>c</i>(<i>c</i>>0)的不等式时,可以将<i>ax</i>+<i>b</i>看作一个整体,
            再利用含绝对值不等式的基本解法, 去掉绝对值, 然后进行求解.
          </p>
          <p>5.不等式的应用.</p>
          <p>
            (1)
            在解决问题的过程中体验如何使用二次函数的图像直观地得出一元二次不等式的解集,学会利用数形结合的思想方法解决问题.
          </p>
          <p>(2) 应用一元二次不等式解决实际问题时,要注意未知量的实际意义.</p>
        </div>
      </div>
    </div>
    <!-- 065 -->
    <div class="page-box" page="72">
      <div v-if="showPageList.indexOf(72) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>065</span></p>
            <p><span>065-066</span></p>
          </li>
        </ul>
        <div class="padding-116">72</div>
        <div class="padding-116">
          <h2 id="b014">单元检测<span class="fontsz1">>>>>>>>></span></h2>
          <div class="bj" >
            <examinations :cardList="questionData[72]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 066 -->
    <div class="page-box" page="73">
      <div v-if="showPageList.indexOf(73) > -1">
        <ul class="page-header-odd fl al-end">
          <li>066</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">73</div>
      </div>
    <div class="page-box hidePage" page="73">
    </div>
  </div>
</template>
<script>
import examinations from '@/components/examinations/index.vue'
export default {
  name: '',
  name: "",
  props: {
    showPageList: {
      type: Array,
      default: [],
    },
    questionData: {
      type: Object,
    },
  },
  components: {},
  components: {examinations},
  data() {
    return {}
    return {};
  },
  computed: {},
  watch: {},
  created() { },
  mounted() { },
  methods: {},
}
};
</script>
<style lang="less" scoped></style>
<style lang="less" scoped>
.pr {
  position: relative;
}
.pa-bk {
  position: absolute;
  right: 45px;
  top: 0;
  width: 140px;
}
</style>
src/books/mathBook/view/components/chapter003.vue
@@ -1,21 +1,43 @@
<template>
  <div class="chapter" num="4">
  <div class="chapter" num="3">
    <!-- 第三单元首页 -->
    <div class="page-box" page="74">
      <div v-if="showPageList.indexOf(74) > -1">
        <div class="padding-116">第三单元首页</div>
        <h1 id="a007"><img class="img-0" alt="" src="../../assets/images/dy3.jpg" /></h1>
        <div class="padding-116">
          <p>
            在客观世界中存在各种各样的运动变化现象.如搭载神舟十四号载人飞船的长征二号运载火箭发射过程中,飞船与发射点距离会随着时间的变化而变化;深海勇士号载人潜水器在下潜实验过程中,其压强随着下潜深度的增加而增大;代表新能源技术的光伏发电和风能发电,我国的装机容量随时间变化而增长;我国快速发展的高速铁路,其总里程是逐年增加的,现已突破4万km
            ,稳居世界第一;每个人的体温随着时间的变化而变化;到商店购买同一种饮料的数量越多,付费越多等.这些动态变化现象都表现为变量之间的对应关系,我们常用函数模型来描述这些变量之间的关系和规律,并通过研究函数来认识客观世界.
          </p>
          <p>函数是描述客观世界变化规律和解决数学问题的重要工具.它与代数式、方程、不等式等知识联系紧密,是进一步学习数学的重要基础.函数的概念及其反映的数学思想和方法已广泛渗透到数学的各个领域,并在现实生活中有着广泛的应用.
          </p>
          <p>
            本单元主要学习函数的概念、函数的表示方法、函数的单调性和奇偶性以及函数的应用.本单元的学习,重在感受用直观想象从具体问题中抽象出数学问题,并用精确的数学符号语言表达概念、性质、推理等;掌握研究函数的基本内容、过程和方法;运用建立分段函数、二次函数等数学模型解决实际问题的方法;积累一定的数学经验和方法,提升直观想象、数学抽象、数学建模、逻辑推理等核心素养.
          </p>
        </div>
      </div>
    </div>
    <!-- 目标 -->
    <div class="page-box" page="75">
      <div v-if="showPageList.indexOf(75) > -1">
        <div class="padding-116">目标</div>
        <div class="padding-116">
          <p class="left"><img class="inline2" alt="" src="../../assets/images/xxmb.jpg" /></p>
          <div class="fieldset">
            <p>1.函数的概念.</p>
            <p>能从具体情境中抽象概括出函数的概念,学习用集合语言和对应关系描述函数概念.</p>
            <p>2.函数的表示方法.</p>
            <p>了解函数的三种表示方法,会恰当地选用这些方法表示函数;</p>
            <p>理解分段函数的概念;</p>
            <p>通过研究函数的变化规律来把握客观世界中事物的变化规律.</p>
            <p>3.函数的单调性和奇偶性.</p>
            <p>学习用精准的数学符号语言描述函数的性质,掌握判断函数单调性和奇偶性的方法.</p>
            <p>4.函数的应用.</p>
            <p>初步掌握建立分段函数、二次函数模型来解决实际问题的方法;</p>
            <p>能运用函数的思想和方法解决实际问题,提升核心素养和思维品质.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 069 -->
    <div class="page-box" page="76">
      <div v-if="showPageList.indexOf(76) > -1">
@@ -27,7 +49,27 @@
            <p><span>069</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b015">3.1 函数的概念<span class="fontsz1">>>>>>>>></span></h2>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" /></p>
          <p>情境1:职业教育助力乡村振兴,某职业院校电子商务专业学生小莉负责帮助某村农户在电商平台上销售2 000 kg橘子,橘子的售价是6元/kg.考查橘子的销售收入<i>y</i>(元) 与销售量<i>x</i>(kg)
            的关系.
          </p>
          <p>情境2:如表3-1所示,2007年4月至2020年7月,我国共成功发射了55颗北斗导航卫星,全面建成了我国自主建设、独立运行的北斗卫星导航系统.考查每年发射卫星的颗数<i>y</i>与年份<i>x</i>的关系.
          </p>
          <p class="img">表3-1</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0080-1.jpg" /></p>
          <p>情境3:为了建设人与自然和谐共生的美丽家园,气温变化是环境监测的重要内容,某城市某年7月某一天的气温如图3-1所示.描述这一天气温的变化情况,考查温度<i>Q</i>与时间<i>t</i>的关系.</p>
          <p class="center"><img class="img-d" alt="" src="../../assets/images/0080-2.jpg" /></p>
          <p class="img">图3-1</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>情境1中,橘子的销售收入<i>y</i>与销售量<i>x</i>的对应关系是<i>y</i>=6<i>x</i>,其中<i>x</i>的变化范围是数集<i>A</i>={<i>x</i>|0≤<i>x</i>≤2
            000},<i>y</i>的取值都在数集<i>B</i>={<i>y</i>|0≤<i>y</i>≤12
            000}中,对于数集<i>A</i>中的任一销售量<i>x</i>,在数集<i>B</i>中都有唯一确定的收入<i>y</i>与之对应,所以橘子的销售收入<i>y</i>是销售量<i>x</i>的函数.</p>
          <p>
            情境2中,<i>x</i>表示年份,<i>y</i>表示发射卫星颗数,<i>x</i>的变化范围是数集<i>A</i>={2007,
          </p>
        </div>
      </div>
    </div>
    <!-- 070 -->
@@ -38,7 +80,36 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">
            2009,2010,2011,2012,2015,2016,2017,2018,2019,2020},<i>y</i>的变化范围是数集<i>B</i>={1,2,3,4,5,6,10,18},对于数集<i>A</i>中的任一年份<i>x</i>,根据表3-1所给定的对应关系,在数集<i>B</i>中都有唯一确定的卫星颗数<i>y</i>与之对应,因此,每年发射卫星颗数<i>y</i>是年份<i>x</i>的函数.
          </p>
          <p>
            情境3中,<i>t</i>的变化范围是数集<i>A</i>={<i>x</i>|0≤<i>t</i>≤24},<i>Q</i>的取值都在数集<i>B</i>={<i>Q</i>|22≤<i>Q</i>≤32}中,对于数集<i>A</i>中的任一时刻<i>t</i>,按照图3-1中曲线给出的对应关系,在数集<i>B</i>中都有唯一确定的气温<i>Q</i>与之对应,所以气温<i>Q</i>是时间<i>t</i>的函数.
          </p>
          <p>在现实生活中,这样的例子还有很多.比如,每小时往蓄水池里注入2 <i>t</i>水,蓄水池的水位与注水时间的对应关系;火车匀速直线行驶的路程与行驶时间的对应关系等.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>一般地,设<i>A</i>,<i>B</i>是非空数集, 如果存在一个对应关系<i>f</i>,使对于集合 <i>A</i> 中的每一个数<i>x</i>,在集合<i>B</i> 中都有唯一确定的数<i>y</i>
            和它对应,那么就把对应关系<i>f</i>称为定义在集合<i>A</i>上的一个<b>函数</b>,记作</p>
          <p class="center"><i>y</i>=<i>f</i>(<i>x</i>),<i>x</i>∈<i>A</i>.</p>
          <p>
            其中,<i>x</i>叫作<b>自变量</b>,<i>x</i>的取值范围<i>A</i>叫作函数的<b>定义域</b>;与<i>x</i>的值相对应的<i>y</i>值叫作函数值,函数值的集合{<i>f</i>(<i>x</i>)|<i>x</i>∈<i>A</i>}叫作函数的<b>值域</b>.
          </p>
          <p>
            比如,初中学习过的一次函数<i>y</i>=3<i>x</i>-2,就是从实数集<b>R</b>(集合<i>A</i>)按照对应关系<i>f</i>(<i>x</i>)=3<i>x</i>-2到实数集<b>R</b>(集合<i>B</i>)的一个函数;二次函数<i>y</i>=<i>x</i><sup>2</sup>+4<i>x</i>-3,就是从实数集<b>R</b>(集合<i>A</i>)按照对应关系<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+4<i>x</i>-3到实数集{<i>y</i>|<i>y</i>≥-7}(集合<i>B</i>)的一个函数.
          </p>
          <p>
            对于函数<i>y</i>=<i>f</i>(<i>x</i>),当自变量在定义域内取一个确定的值<i>a</i>时,相应的函数值记作<i>f</i>(<i>a</i>).例如,函数<i>y</i>=<i>f</i>(<i>x</i>)=3<i>x</i>,当<i>x</i>=3,其函数值是<i>f</i>(3)=3×3=9.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" /></p>
            </div>
            <p class="block">
              函数符号<i>f</i>(<i>x</i>)中的<i>f</i>表示函数关系,不同的函数中,<i>f</i>的含义不同,函数的符号还常用<i>g</i>(<i>x</i>),<i>h</i>(<i>x</i>),<i>φ</i>(<i>x</i>),<i>F</i>(<i>x</i>)等表示.自变量除用<i>x</i>表示外,也常用<i>t</i>,<i>u</i>,<i>v</i>等表示.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 071 -->
@@ -52,7 +123,39 @@
            <p><span>071</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><span
              class="zt-ls"><b>例1</b></span> 我国要建设现代化产业体系,推动制造业高端化发展.李平制作了6个机械零件,它们的直径如表3-2所示.请用函数的概念描述李平制作这批机械零件的直径<i>y</i>(<i>mm</i>
            )与零件的标号<i>x</i>的函数关系.</p>
          <p class="img">表3-2</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0082-1.jpg" /></p>
          <p><span class="zt-ls"><b>解</b></span>
            设<i>x</i>表示零件的标号,<i>y</i>表示零件的直径,由表3-2,{1,2,3,4,5,6}中的任一数,<i>y</i>都有任一确定的值与它对应,所以表3-2确定了<i>y</i>与<i>x</i>的函数关系,其定义域为{1,2,3,4,5,6},值域为{13.40,13.50,13.55,13.60,13.65,13.70}.
          </p>
          <p><span
              class="zt-ls"><b>例2</b></span> 已知函数<i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>-1.当自变量<i>x</i>为-1,0,1,<i>a</i>时,求它们所对应的函数值.
          </p>
          <p><span class="zt-ls"><b>解</b></span> <i>f</i>(-1)=3×(-1)<sup>2</sup>-1=3-1=2,</p>
          <p>  <i>f</i>(0)=3×0<sup>2</sup>-1=0-1=-1,</p>
          <p>  <i>f</i>(1)=3×1<sup>2</sup>-1=3-1=2,</p>
          <p>  <i>f</i>(<i>a</i>)=3×<i>a</i><sup>2</sup>-1=3<i>a</i><sup>2</sup>-1.</p>
          <div class="fieldset">
            <p><b>相关链接</b></p>
            <p class="block">魔方是由6个不同颜色的面组成的正方体,它可组成约4 325亿亿种不同颜色的组合,其最佳复原魔方颜色组合的方法是用数学方法研究出来的.</p>
          </div>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0082-2.jpg" /></p>
          <p class="img">图3-2</p>
          <p><span class="zt-ls"><b>例3</b></span> 如图3-2所示,一个边长是<i>a</i>的正方体,体积是<i>V</i>,写出体积<i>V</i> 随边长<i>a</i>
            变化的函数关系式,并指出函数的自变量和定义域.</p>
          <p><span class="zt-ls"><b>解</b></span> 体积<i>V</i> 随边长<i>a</i>变化的函数关系式是</p>
          <p class="center"><i>V</i>=<i>a</i><sup>3</sup>(<i>a</i>>0).</p>
          <p>其中<i>a</i>是自变量,定义域为{<i>a</i>|<i>a</i>>0}.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[78]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 072 -->
@@ -63,7 +166,47 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>(3) 若函数<i>f</i>(<i>x</i>)=2<i>x</i>-1,则<i>f</i>(<i>t</i>)=___,<i>f</i>(<i>f</i>(5))=____.</p>
            <p>2.一列动车从A城以每小时200km的速度匀速直线行驶4 h后到达B城.该动车在行驶过程中,行驶的路程是时间的函数吗?如果是,请写出函数的定义域、对应关系和值域;如果不是,请说明理由.</p>
          </div>
          <p>从上面的学习可以知道,一个函数包含定义域、对应关系和值域.函数的值域是由函数的定义域和对应关系决定的.</p>
          <p>通常函数的定义域隐含在函数关系中.例如,我们不能计算当<i>x</i>=0时<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>的函数值<i>f</i>(0),因为<i>f</i>(0)无意义,因此,它的定义域是{<i>x</i>|<i>x</i>≠0}.在实际问题中,函数的定义域通常由问题的实际背景所决定.如例3中的函数<i>V</i>=<i>a</i><sup>3</sup>,由于<i>a</i>是正方体的边长,所以函数的定义域为<i>A</i>={<i>a</i>|<i>a</i>>0}.
          </p>
          <p><span
              class="zt-ls"><b>例4</b></span> 就业是最基本的民生,小凯通过自主创办奶品店实现职业发展.为促销自制酸奶,每瓶酸奶的价格是3.5元,每位顾客最多只能购买50瓶.假设某人购买这种酸奶<i>x</i>瓶,应付款<i>y</i>元.那么<i>y</i>(元)是<i>x</i>(瓶)的函数吗?如果是,请写出函数的定义域、对应关系和值域;如果不是,请说明理由.
          </p>
          <p><span class="zt-ls"><b>解</b></span>
            <i>x</i>的取值范围是数集<i>A</i>={<i>x</i>|<i>x</i>≤50,<i>x</i>∈<b>N</b>},<i>y</i>的取值范围是数集<i>B</i>={<i>y</i>|<i>y</i>=3.5<i>x</i>,<i>x</i>≤50,且<i>x</i>∈<b>N</b>}.对于集合<i>A</i>中的任一个数<i>x</i>,按照对应关系,在集合<i>B</i>中都有唯一确定的值与之对应,所以应付款<i>y</i>是购买数量<i>x</i>的函数.
          </p>
          <p>
            函数的定义域是{<i>x</i>|<i>x</i>≤50,<i>x</i>∈<b>N</b>},对应关系是<i>y</i>=3.5<i>x</i>,值域是{<i>y</i>|<i>y</i>=3.5<i>x</i>,<i>x</i>≤50,且<i>x</i>∈<b>N</b>}.
          </p>
          <p>
            例4中函数的定义域为什么是{<i>x</i>|<i>x</i>≤50,<i>x</i>∈<b>N</b>},而不是{<i>x</i>|<i>x</i>∈<b>R</b>}?这是因为此函数的定义域考虑了函数自变量取值的客观实际背景.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0083-2.jpg" /></p>
          <p class="img">图3-3</p>
          <p><span
              class="zt-ls"><b>例5</b></span> 如图3-3所示,在矩形<i>ABCD</i>中,<i>AB</i>的长度是<i>x</i>(m),<i>BC</i>的长度是(12-<i>x</i>)(m),矩形<i>ABCD</i>的面积是<i>y</i>(<i>m</i><sup>2</sup>),则<i>y</i>与<i>x</i>的对应关系是<i>y</i>=<i>x</i>(12-<i>x</i>),求该函数的定义域.
          </p>
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 因为<i>AB</i>的长度为<i>x</i>(m),<i>BC</i>的长度为(12-<i>x</i>)(m),所以必须满足<i>x</i>>0且12-<i>x</i>>0才有实际意义.
          </p>
        </div>
      </div>
    </div>
    <!-- 073 -->
@@ -77,11 +220,192 @@
            <p><span>073</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><span class="zt-ls"><b>解</b></span> 要使函数<i>y</i>=<i>x</i>(12-<i>x</i>)有实际意义,必须满足<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mi>x</mi>
                      <mo>></mo>
                      <mn>0</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mn>12</mn>
                      <mo>−</mo>
                      <mi>x</mi>
                      <mo>></mo>
                      <mn>0</mn>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math>解得0<<i>x</i><12.所以这个函数的定义域是{<i>x</i>|0<<i>x</i><12}.</p>
          <p><span class="zt-ls"><b>例6</b></span> 求下列函数的定义域.</p>
          <p>(1) <math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mrow>
                  <mn>4</mn>
                  <mi>x</mi>
                  <mo>+</mo>
                  <mn>7</mn>
                </mrow>
              </mfrac>
            </math>;(2)<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <msqrt>
                <mi>x</mi>
                <mo>−</mo>
                <mn>3</mn>
              </msqrt>
            </math>;</p>
          <p>(3) <math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <msqrt>
                <mn>4</mn>
                <mi>x</mi>
                <mo>+</mo>
                <mn>8</mn>
              </msqrt>
              <mo>+</mo>
              <mfrac>
                <mn>1</mn>
                <mrow>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>3</mn>
                </mrow>
              </mfrac>
            </math>.</p>
          <p><span class="zt-ls"><b>解</b></span>(1) 要使该函数有意义,必须满足</p>
          <p class="center">4<i>x</i>+7≠0,</p>
          <p>解得</p>
          <math display="block">
            <mi>x</mi>
            <mo>≠</mo>
            <mo>−</mo>
            <mfrac>
              <mn>7</mn>
              <mn>4</mn>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>所以函数<i>f</i>(<i>x</i>)的定义域是<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow>
                  <mo stretchy="false">|</mo>
                </mrow>
                <mi>x</mi>
                <mo>≠</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>7</mn>
                  <mn>4</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>.</p>
          <p>(2) 要使该函数有意义,必须满足</p>
          <p class="center"><i>x</i>-3≥0,</p>
          <p>解得 <i>x</i>≥3.</p>
          <p>所以函数<i>f</i>(<i>x</i>)的定义域是{<i>x</i>|<i>x</i>≥3}.</p>
          <p>(3) 要使该函数有意义,必须满足</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">{</mo>
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mn>4</mn>
                    <mi>x</mi>
                    <mo>+</mo>
                    <mn>8</mn>
                    <mo>≥</mo>
                    <mn>0</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>x</mi>
                    <mo>−</mo>
                    <mn>3</mn>
                    <mo>≠</mo>
                    <mn>0</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                </mtr>
              </mtable>
              <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
            </mrow>
          </math>
          <p>解得</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">{</mo>
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mi>x</mi>
                    <mo>≥</mo>
                    <mo>−</mo>
                    <mn>2</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>x</mi>
                    <mo>≠</mo>
                    <mn>3.</mn>
                  </mtd>
                  <mtd></mtd>
                </mtr>
              </mtable>
              <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
            </mrow>
          </math>
          <p>所以函数<i>f</i>(<i>x</i>)的定义域是{<i>x</i>|<i>x</i>≥-2且<i>x</i>≠3}.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj" >
            <examinations :cardList="questionData[80]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 074 -->
    <div class="page-box" page="81">
      <div v-if="showPageList.indexOf(81) > -1">
@@ -90,7 +414,13 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c026">习题3.1<span class="fontsz2">>>></span></h3>
          <div class="bj" >
            <examinations :cardList="questionData[81]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 075 -->
@@ -104,7 +434,200 @@
            <p><span>075</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p class="center"><img class="img-c" alt="" src="../../assets/images/0086-1.jpg" /></p>
            <p class="img">第2(2) 题图</p>
            <p>3.解答题.</p>
            <p>(1) 小梁第一季度和第二季度每月手机费充值如表3-3所示,请用函数的概念描述小梁每月手机费充值金额<i>y</i>(元)与月份<i>x</i>的对应关系.</p>
            <p class="img">表3-3</p>
            <p class="center"><img class="img-a" alt="" src="../../assets/images/0086-2.jpg" /></p>
            <p>(2) 求下列函数的定义域.</p>
            <p>①<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <mi>x</mi>
                  <mrow>
                    <mi>x</mi>
                    <mo>−</mo>
                    <mn>1</mn>
                  </mrow>
                </mfrac>
              </math>;</p>
            <p>②<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <mi>x</mi>
                  <mo>+</mo>
                  <mn>3</mn>
                </msqrt>
                <mo>+</mo>
                <msqrt>
                  <mn>2</mn>
                  <mo>−</mo>
                  <mi>x</mi>
                </msqrt>
              </math>;</p>
            <p>③<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <msup>
                    <mi>x</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo>−</mo>
                  <mn>5</mn>
                  <mi>x</mi>
                  <mo>+</mo>
                  <mn>6</mn>
                </msqrt>
              </math>.</p>
            <p><span class="bj-sp"><b>水平二</b></span></p>
            <p>1.填空题.</p>
            <p>(1) 若函数<i>f</i>(<i>x</i>)=2<i>x</i>+<i>b</i>,且<i>f</i>(-1)=5,则<i>b</i>=____;</p>
            <p>(2) 若函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mn>2</mn>
                        <mo>−</mo>
                        <mi>x</mi>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≤</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <msup>
                          <mi>x</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo>−</mo>
                        <mn>3</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>></mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>,则<i>f</i>(-1)=____,<i>f</i>(<i>f</i>(-1))=</p>
            <p>____;</p>
            <p>(3) 若函数<i>f</i>(<i>t</i>-1)=4<i>t</i>+7,则<i>f</i>(2)=____.</p>
            <p>2.求下列函数的定义域.</p>
            <p>(1) <math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <msup>
                    <mi>x</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo>−</mo>
                  <mn>16</mn>
                </msqrt>
              </math>;</p>
            <p>(2) <math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <msqrt>
                    <msup>
                      <mi>x</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo>−</mo>
                    <mn>3</mn>
                    <mi>x</mi>
                  </msqrt>
                </mfrac>
              </math>;</p>
            <p>(3) <math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <mn>5</mn>
                  <mo>−</mo>
                  <mrow>
                    <mo stretchy="false">|</mo>
                  </mrow>
                  <mn>3</mn>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>1</mn>
                  <mo stretchy="false">|</mo>
                </msqrt>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <mrow>
                    <mi>x</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                  </mrow>
                </mfrac>
              </math>.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 076 -->
@@ -116,10 +639,52 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>3.已知函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <msup>
                    <mi>x</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo>−</mo>
                  <mn>4</mn>
                  <mi>x</mi>
                  <mo>+</mo>
                  <mn>3</mn>
                </msqrt>
              </math>.</p>
            <p>(1) 求函数的定义域;</p>
            <p>(2) 比较<i>f</i>(5)与<i>f</i>(3)的大小;</p>
            <p>(3) 求函数的值域.</p>
          </div>
          <h2 id="b016">3.2 函数的表示方法<span class="fontsz1">>>>>>>>></span></h2>
          <h3 id="c027">3.2.1 函数的表示方法<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>我们知道,上一节“观察思考”中的3个情境都涉及变量之间的函数关系.情境1中,销售收入<i>y</i>(元)与销售量<i>x</i>(kg )的函数关系是<i>y</i>=6<i>x</i>,0≤<i>x</i>≤2
            000,这种表示函数关系的方法称为解析法;情境2中,用表格表示了发射卫星的颗数<i>y</i>与年份<i>x</i>的函数关系,这种表示函数关系的方法称为列表法;情境3中,用图像表示了气温<i>Q</i>与时间<i>t</i>的函数关系,这种表示函数关系的方法称为图像法.
          </p>
          <p><span class="zt-ls"><b>例1</b></span> 某辆汽车以30 km/<i>h</i> 的速度匀速直线行驶,用解析法表示汽车行驶的路程<i>s</i>(km
            )与时间<i>t</i>(<i>h</i>)之间的对应关系.</p>
          <p><span class="zt-ls"><b>解</b></span> 这个函数的定义域是{<i>t</i>|<i>t</i>≥0}.</p>
          <p>用解析法可将这个函数表示为<i>s</i>=30<i>t</i>,<i>t</i>≥0.</p>
          <p>用解析法表示函数关系,能够准确、完整地反映两个变量之间的关系.</p>
          <p><span class="zt-ls"><b>例2</b></span> 近年我国快递业务量迅速增长,从2017年至2021年,每年的快递业务量情况如表3-4所示(注:引自国家统计局数据).</p>
          <p class="img">表3-4</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0087-2.jpg" /></p>
          <p>表3-4清晰地反映了年份与当年快递业务量(亿件)之间的对应关系.在实际生活中,用列表法表示变量之间对应关系的例子还有很多.例如,记录某人每天的消费情况、单位职工的每月薪资收入、银行使用的存款“利息表”等.</p>
        </div>
      </div>
    </div>
    <!-- 077 -->
    <div class="page-box" page="84">
      <div v-if="showPageList.indexOf(84) > -1">
@@ -131,7 +696,38 @@
            <p><span>077</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>观察上一节“观察思考”中的情境3,我们发现用图像法表示函数关系时能直观形象地表示出函数的局部变化规律,进而可以预测它的整体变化趋势.但是我们并不能作出所有函数的图像.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0088-1.jpg" /></p>
          <p class="img">图3-4</p>
          <p><span
              class="zt-ls"><b>例3</b></span> 使用环保毛巾替代一次性纸巾,是倡导低碳环保生活的一种方式.某便民超市促销某种小毛巾,每条售价4元,每人限购5条.若顾客购买<i>x</i>条小毛巾需要付款<i>y</i>元,试用图像法表示函数<i>y</i>=<i>f</i>(<i>x</i>).
          </p>
          <p><span class="zt-ls"><b>解</b></span> 函数<i>y</i>=<i>f</i>(<i>x</i>)的定义域是{1,2,3,4,5},用图像法可将这个函数表示为图3-4.</p>
          <p>
            函数的图像既可以是离散的点,也可以是线段、直线、折线、连续的曲线等.在初中,我们用列表、描点、连线的方法画出了正比例函数、反比例函数、一次函数和二次函数的图像.图像法也被大量用于各类数据统计中.例如,GDP(国内生产总值)每年的增长情况、居民消费价格每季度的增长情况、全国人口数量每年的变化情况等.
          </p>
          <p><span class="zt-ls"><b>例4</b></span> 一艘军舰与某海港相距135 n mile(1 n mile ≈1.852 km ),如果军舰以45 n mile/h 的速度向海港前行,则3
            h后可到达海港.假设这艘军舰出发t(h)后,与海港的距离是s(n mile).</p>
          <p>(1) 用解析法表示函数<i>s</i>=<i>f</i>(<i>t</i>);</p>
          <p>(2) 用图像法表示函数<i>s</i>=<i>f</i>(<i>t</i>).</p>
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 计算该军舰从出发地驶入海港所需要的时间,就可得到函数<i>s</i>=<i>f</i>(<i>t</i>)的定义域.用解析法表示函数后,再画出函数的图像.
          </p>
          <p><span class="zt-ls"><b>解</b></span>(1) 因为该军舰从出发地驶入海港需要用时<math display="0">
              <mfrac>
                <mn>135</mn>
                <mn>45</mn>
              </mfrac>
              <mo>=</mo>
              <mn>3</mn>
              <mo>(</mo>
              <mi>h</mi>
              <mo>)</mo>
            </math>,所以函数的定义域为{<i>t</i>|0≤<i>t</i>≤3}.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0088-3.jpg" /></p>
          <p class="img">图3-5</p>
        </div>
      </div>
    </div>
    <!-- 078 -->
@@ -142,7 +738,23 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>又因为该军舰出发<i>t</i>(<i>h</i>)后,行驶的路程为45<i>t n mile</i> ,这时该军舰与海港的距离为(135-45<i>t</i>) <i>n mile</i> .</p>
          <p>所以,用解析法可将函数<i>s</i>=<i>f</i>(<i>t</i>)表示为</p>
          <p class="center"><i>s</i>=-45<i>t</i>+135,0≤<i>t</i>≤3.</p>
          <p>(2) 函数<i>s</i>=<i>f</i>(<i>t</i>)是一次函数,用图像法可将函数表示为图3-5.</p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left"><img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" /></p>
            </div>
            <p class="block">分组探讨,例2中的函数能否用解析法表示?例3中的函数能否用列表法和解析法表示?比较函数的三种表示方法,它们各自的特点是什么?</p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[85]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 079 -->
@@ -156,7 +768,183 @@
            <p><span>079</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c028">3.2.2 分段函数<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" /></p>
          <p>城市轨道交通出行便利,拉近了人们的距离.某城市地铁的票价如表3-6所示.1号线地铁全长21 km .设某位乘客乘坐的地铁行驶的路程为<i>x</i>(km
            ),票价是<i>y</i>(元),则<i>y</i>是<i>x</i>的函数,你能写出这个函数的解析式吗?</p>
          <p class="img">表3-6</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0090-1.jpg" /></p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            从表3-6可以发现,当0<<i>x</i>≤6时,<i>y</i>=2;当6<<i>x</i>≤11时,<i>y</i>=3;当11<<i>x</i>≤16时,<i>y</i>=4;当16<<i>x</i>≤21时,<i>y</i>=5.该函数的解析式如下.
          </p>
          <math display="block">
            <mi>y</mi>
            <mo>=</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">{</mo>
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mn>2</mn>
                    <mo>,</mo>
                    <mn>0</mn>
                    <mo><</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>6</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mn>3</mn>
                    <mo>,</mo>
                    <mn>6</mn>
                    <mo><</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>11</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mn>4</mn>
                    <mo>,</mo>
                    <mn>11</mn>
                    <mo><</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>16</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mn>5</mn>
                    <mo>,</mo>
                    <mn>16</mn>
                    <mo><</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>21</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
              </mtable>
              <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
            </mrow>
          </math>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/gn.jpg" /></p>
            </div>
            <p class="block">分段函数</p>
          </div>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0090-4.jpg" /></p>
          <p class="img">图3-6</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>像上面的函数,在自变量不同的取值范围内,有不同的对应关系,这样的函数叫作<b>分段函数</b>.</p>
          <p>
            例如,函数<i>y</i>=|<i>x</i>|的图像如图3-6所示.根据绝对值的概念,当<i>x</i>≥0时,<i>y</i>=<i>x</i>;当<i>x</i><0时,<i>y</i>=-<i>x</i>.所以这个函数的解析式为
          </p>
          <math display="block">
            <mi>y</mi>
            <mo>=</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">{</mo>
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mi>x</mi>
                    <mo>,</mo>
                    <mi>x</mi>
                    <mo>≥</mo>
                    <mn>0</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>−</mo>
                    <mi>x</mi>
                    <mo>,</mo>
                    <mi>x</mi>
                    <mo><</mo>
                    <mn>0.</mn>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
              </mtable>
              <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
            </mrow>
          </math>
          <p>生活中有很多可以用分段函数来描述的实际问题,如出租车计费,每个家庭水、电、燃气的计费,综合所得税纳税额等.</p>
          <p><span class="zt-ls"><b>例1</b></span> 已知函数<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mi>x</mi>
                      <mo>+</mo>
                      <mn>2</mn>
                      <mo>,</mo>
                      <mi>x</mi>
                      <mo>≤</mo>
                      <mn>0</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                    <mtd></mtd>
                    <mtd></mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <msup>
                        <mi>x</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                      <mo>−</mo>
                      <mn>3</mn>
                      <mo>,</mo>
                      <mi>x</mi>
                      <mo>></mo>
                      <mn>0.</mn>
                    </mtd>
                    <mtd></mtd>
                    <mtd></mtd>
                    <mtd></mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math></p>
          <p>(1) 求<i>f</i>(-5),<i>f</i>(4)的值;</p>
        </div>
      </div>
    </div>
    <!-- 080 -->
@@ -167,7 +955,100 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>(2) 求<i>f</i>(<i>f</i>(-1))的值.</p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" /></p>
            </div>
            <p class="block">
              分段函数是一个函数,不能把它看成几个函数,只是在同一个函数的定义域内,不同的取值范围内对应不同的函数关系.它的定义域是各个解析式的自变量取值集合的并集,值域也是各个解析式的函数值集合的并集.它的图像也比较特殊,有时图像是不连续的.
            </p>
          </div>
          <p><span class="zt-ls"><b>解</b></span>(1) 因为-5<0,所以<i>f</i>(-5)=-5+2=-3.</p>
          <p>因为4>0,所以 <i>f</i>(4)=4<sup>2</sup>-3=13.</p>
          <p>(2) 因为-1<0,所以<i>f</i>(-1)=-1+2=1.</p>
          <p>又因为1>0,所以<i>f</i>(<i>f</i>(-1))=<i>f</i>(1)=1<sup>2</sup>-3=-2.</p>
          <p><span
              class="zt-ls"><b>例2</b></span> 我国是用电量最大的国家,国家发出节能减排的号召,鼓励居民节约用电,2019年国家对居民每月用电量进行划分,电价施行“分档递增”.某城市居民每月用电计费价格如表3-7所示.假设这个城市的某居民某月用电量是<i>x</i>(kW·h),需支付电费<i>y</i>(元).
          </p>
          <p class="img">表3-7 某城市居民每月用电计费价格表</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0091-1.jpg" /></p>
          <p>(1) 用解析法表示<i>y</i>与<i>x</i>的函数关系,并画出函数的图像.</p>
          <p>(2) 如果李某家10月的用电量是180 kW·h ,那么他家应该支付电费多少?</p>
          <p>(3) 如果周某家12月支付电费294.26元,那么他家这个月的用电量是多少?</p>
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 首先需明确这个函数的定义域.由于居民用电量不同,其收费标准也不同,所以这是分段函数.其次要厘清自变量<i>x</i>在不同的取值范围内与因变量<i>y</i>之间的对应关系,并列出相应的解析式来解决相关问题.
          </p>
          <p><span class="zt-ls"><b>解</b></span>(1) 函数<i>y</i>=<i>f</i>(<i>x</i>)的定义域是{<i>x</i>|<i>x</i>≥0}.</p>
          <p>当0≤<i>x</i>≤200时,<i>y</i>与<i>x</i>的对应关系是<i>y</i>=0.52<i>x</i>;</p>
          <p>当200<<i>x</i>≤400时,<i>y</i>与<i>x</i>的对应关系是</p>
          <p class="center"><i>y</i>=0.52×200+0.57(<i>x</i>-200)=0.57<i>x</i>-10;</p>
          <p>当<i>x</i>>400时,<i>y</i>与<i>x</i>的对应关系是</p>
          <p><i>y</i>=0.52×200+0.57×200+0.82(<i>x</i>-400)=0.82<i>x</i>-110.</p>
          <p>用解析法表示<i>y</i>与<i>x</i>的函数关系如下.</p>
          <math display="block">
            <mi>y</mi>
            <mo>=</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">{</mo>
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mn>0.52</mn>
                    <mi>x</mi>
                    <mo>,</mo>
                    <mn>0</mn>
                    <mo>≤</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>200</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mn>0.57</mn>
                    <mi>x</mi>
                    <mo>−</mo>
                    <mn>10</mn>
                    <mo>,</mo>
                    <mn>200</mn>
                    <mo><</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>400</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mn>0.82</mn>
                    <mi>x</mi>
                    <mo>−</mo>
                    <mn>110</mn>
                    <mo>,</mo>
                    <mi>x</mi>
                    <mo>></mo>
                    <mn>400.</mn>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
              </mtable>
              <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
            </mrow>
          </math>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0092-1.jpg" /></p>
          <p class="img">图3-7</p>
        </div>
      </div>
    </div>
    <!-- 081 -->
@@ -181,10 +1062,249 @@
            <p><span>081</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>这个函数的图像如图3-7所示.</p>
          <p>(2) 因为<i>x</i>=180<200,<i>y</i>=0.52×180=93.60(元).</p>
          <p>所以,李某家10月应该支付电费93.60元.</p>
          <p>(3) 周某家电费是294.26元,由图3-7可估得<i>x</i>>400,因此</p>
          <p class="center">0.82<i>x</i>-110=294.26,</p>
          <p>解得<i>x</i>=493.</p>
          <p>所以,周某家12月的用电量为493 kW·h .</p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left"><img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" /></p>
            </div>
            <p class="block">依法纳税是每个公民的义务.查找国家征收个人所得税税率表, 并讨论:如果一个公司内两位员工一年的个人综合所得额分别为12万和15万,那么这两位员工所缴纳的个人所得税税额分别是多少?
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.填空题.</p>
            <p>(1) 若函数<math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mi>x</mi>
                        <mo>+</mo>
                        <mn>1</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>∈</mo>
                        <mrow data-mjx-texclass="INNER">
                          <mo data-mjx-texclass="OPEN">{</mo>
                          <mn>0</mn>
                          <mo>,</mo>
                          <mn>1</mn>
                          <mo>,</mo>
                          <mn>2</mn>
                          <mo data-mjx-texclass="CLOSE">}</mo>
                        </mrow>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mn>2</mn>
                        <mi>x</mi>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>∈</mo>
                        <mrow data-mjx-texclass="INNER">
                          <mo data-mjx-texclass="OPEN">{</mo>
                          <mn>3</mn>
                          <mo>,</mo>
                          <mn>4</mn>
                          <mo data-mjx-texclass="CLOSE">}</mo>
                        </mrow>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>,则<i>f</i>(0)=____,<i>f</i>(3)=____;</p>
            <p>(2) 若函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mn>3</mn>
                        <mi>x</mi>
                        <mo>−</mo>
                        <mn>1</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo><</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <msqrt>
                          <mi>x</mi>
                        </msqrt>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≥</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>____,</p>
            <p><i>f</i>(4)=____;</p>
            <p>(3) 若函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mn>3</mn>
                        <mi>x</mi>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≤</mo>
                        <mo>−</mo>
                        <mn>2</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mn>2020</mn>
                        <mo>,</mo>
                        <mo>−</mo>
                        <mn>2</mn>
                        <mo><</mo>
                        <mi>x</mi>
                        <mo>≤</mo>
                        <mn>2</mn>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <msup>
                          <mi>x</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo>−</mo>
                        <mn>1</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>></mo>
                        <mn>2</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>,则<i>f</i>(-1)=____,<i>f</i>(0)=____,<i>f</i>(3)=____;</p>
            <p>(4) 若函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <msup>
                          <mi>x</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo>+</mo>
                        <mn>3</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo><</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <msqrt>
                          <mn>2</mn>
                          <mi>x</mi>
                          <mo>+</mo>
                          <mn>1</mn>
                        </msqrt>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≥</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>____.</p>
            <p>2.为了促销某品牌的薯片,某电商平台拟采取如下促销方式:每袋薯片原来的价格是6元,若顾客购买30袋及以上,则每袋的价格为5元.假设某顾客一次性购买这种薯片<i>x</i>袋,电商平台收款是<i>y</i>元.
            </p>
            <p>(1) 当<i>x</i><30,<i>x</i>∈<b>N</b>时,写出<i>y</i>与<i>x</i>的函数关系式;</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 082 -->
    <div class="page-box" page="89">
      <div v-if="showPageList.indexOf(89) > -1">
@@ -194,7 +1314,79 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>(2) 用解析法表示函数<i>y</i>=<i>f</i>(<i>x</i>).</p>
            <p>3.某市居民家庭燃气收费采用分段计费方式,如表3-8所示.</p>
            <p>(1) 小黄家8月使用燃气46 m<sup>3</sup>,他家应付燃气费多少元;</p>
            <p>(2) 用解析法表示每户居民家庭每月缴纳燃气费<i>y</i>(元)与使用燃气量<i>x</i>(<i>m</i><sup>3</sup>)的函数关系,并画出函数的图像.</p>
            <p class="img">表3-8 某市居民家庭每月用燃气计费价格表</p>
            <p class="center"><img class="img-a" alt="" src="../../assets/images/0093-1.jpg" /></p>
          </div>
          <h3 id="c029">习题3.2<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <p><span class="bj-sp"><b>水平一</b></span></p>
            <p>1.选择题.</p>
            <p>(1) 某商场有某品牌的电动车30辆可供出售,每辆售价2 000元,那么该商场出售电动车的营业额<i>y</i>(元)与出售的数量<i>x</i>之间的函数关系用解析法表示正确的是( ).</p>
            <p>A.<i>y</i>=2 000<i>x</i></p>
            <p>B.<i>y</i>=2 000<i>x</i>,<i>x</i>≤30</p>
            <p>C.<i>y</i>=2 000<i>x</i>,<i>x</i>≤30,且<i>x</i>∈<b>N</b></p>
            <p>D.<i>y</i>=30<i>x</i></p>
            <p>(2) 若函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <msup>
                          <mi>x</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≤</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mn>2</mn>
                        <mi>x</mi>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>></mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>,则<i>f</i>(-1)+<i>f</i>(1)=( ).</p>
            <p>A.0</p>
            <p>B.2</p>
            <p>C.3</p>
            <p>D.4</p>
            <p>2.市场上新上市的苹果价格是7.2元/kg,用解析法表示购买苹果应付款<i>y</i>(元)与购买质量<i>x</i>(kg )的函数关系.</p>
            <p>3.某快递公司在<i>A</i>城内的运费价格如表3-9所示,用<i>x</i>(kg )表示物品的质量,<i>y</i>(元)表示快递物品的运费.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 083 -->
@@ -208,10 +1400,95 @@
            <p><span>083</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p class="img">表3-9</p>
            <p class="center"><img class="img-a" alt="" src="../../assets/images/0094-1.jpg" /></p>
            <p>(1) 某顾客在<i>A</i>城内快递物品,如果质量是2.5 kg,那么他应付快递费多少元?</p>
            <p>(2) 用解析法表示函数<i>y</i>=<i>f</i>(<i>x</i>).</p>
            <p>(3) 画出函数<i>y</i>=<i>f</i>(<i>x</i>)的图像.</p>
            <p>4.某城市公交车2号线路共设置10站,乘车收费标准为:乘客若乘坐不超过6站则收费2元;若乘坐超过6 站则收费4元.用<i>x</i>表示乘车的站数,<i>y</i>表示收费金额.</p>
            <p>(1) 用列表法表示公交车收费<i>y</i>与乘车的站数<i>x</i>之间的函数关系;</p>
            <p>(2) 用解析法表示函数<i>y</i>=<i>f</i>(<i>x</i>);</p>
            <p>(3) 画出函数<i>y</i>=<i>f</i>(<i>x</i>)的图像.</p>
            <p>5.某商户以每千克30元的价格购入100 kg
              某种野生菌,并把野生菌放入冷库中,但最多只能存放15天.据预测,这批野生菌的单价每天将上涨0.2元.在不考虑其他因素的情况下,这批野生菌的售价<i>y</i>(元)是存放天数<i>x</i>的函数.</p>
            <p>(1) 写出函数的定义域;</p>
            <p>(2) 用解析法表示<i>y</i>与<i>x</i>的函数关系;</p>
            <p>(3) 设一次性出售这批野生菌可获利<i>P</i>元,用解析法表示<i>P</i>与<i>x</i>的函数关系.</p>
            <p><span class="bj-sp"><b>水平二</b></span></p>
            <p>1.已知函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mi>x</mi>
                        <mo>+</mo>
                        <mn>2</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≤</mo>
                        <mo>−</mo>
                        <mn>1</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <msup>
                          <mi>x</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo>,</mo>
                        <mo>−</mo>
                        <mn>1</mn>
                        <mo><</mo>
                        <mi>x</mi>
                        <mo><</mo>
                        <mn>2</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mn>3</mn>
                        <mi>x</mi>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≥</mo>
                        <mn>2.</mn>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>.</p>
            <p>(1) 求<i>f</i>(0)+<i>f</i>(4)的值;</p>
            <p>(2) 若<i>f</i>(<i>x</i>)=3,求<i>x</i>的值.</p>
            <p>2.某市出租车的计价标准:按出租车实际行驶路程计费,4 km及以下收费10元,超过4 km的部分按2元/km计费.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 084 -->
    <div class="page-box" page="91">
      <div v-if="showPageList.indexOf(91) > -1">
@@ -220,7 +1497,25 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>(1) 如果某人搭乘出租车行驶了20 km,那么他需要付费多少元?</p>
            <p>(2) 请表示出租车收费<i>y</i>(元)与行驶的路程<i>x</i>(km) 之间的函数关系;</p>
            <p>(3) 画出(2) 中函数的图像.</p>
            <p>3.为鼓励居民节约用水,某自来水公司按表3-10的收费标准收取每户居民家庭每月水费.</p>
            <p class="img">表3-10</p>
            <p class="center"><img class="img-a" alt="" src="../../assets/images/0095-1.jpg" /></p>
            <p>(1) 小明家8月的用水量是13 <i>t</i>,小王家8月的用水量是16 <i>t</i>,小明家和小王家分别应付水费多少元?</p>
            <p>(2) 写出每户家庭居民每月付水费<i>y</i>(元)与用水量<i>x</i>(<i>t</i>)的函数关系,并画出该函数的图像;</p>
            <p>(3) 若小李家9月付水费66元,则他家这个月的用水量是多少?</p>
          </div>
          <h2 id="b017">3.3 函数的单调性和奇偶性<span class="fontsz1">>>>>>>>></span></h2>
          <h3 id="c030">3.3.1 函数的单调性<span class="fontsz2">>>></span></h3>
          <p>函数是描述事物运动变化规律的模型,我们可以通过研究函数的性质来把握客观世界中事物的变化规律.</p>
          <p>
            比如,1970年4月24日我国发射了第一颗人造卫星“东方红一号”.2003年10月15日9:00,我国自行研制的“神舟”五号载人飞船在酒泉卫星发射中心成功发射升空,历时9时9分50秒后进入预定轨道,飞船绕地球飞行14圈,经过21小时23分钟后,于16日6:23载着英雄杨利伟成功着陆.在发射过程中,随着时间的变化,“长征”运载火箭飞行的高度越来越高;“神舟”五号飞船着陆过程中,随着时间的变化,飞船离地面的高度越来越低.发射升空的运载火箭(或着陆的载人飞船)离地面的高度是飞行时间的函数.科技工作者研究这些函数后,才能够把飞船按计划送入预定轨道或确保飞船安全着陆.这是我们认识客观规律的重要方法和途径.
          </p>
        </div>
      </div>
    </div>
    <!-- 085 -->
@@ -234,7 +1529,37 @@
            <p><span>085</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" /></p>
          <p>
            在初中,我们曾经利用函数图像探究函数值<i>y</i>随着自变量<i>x</i>的增大而增大(或减小)的变化规律.仔细观察图3-8的函数图像,随着自变量<i>x</i>的增大,函数值<i>y</i>的变化趋势分别是怎样的?
          </p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0096-1.jpg" /></p>
          <p class="img">图3-8</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>观察图3-8,函数<i>y</i>=<i>x</i>和<i>y</i>=-<i>x</i>的定义域是<b>R</b>.当自变量<i>x</i>的值逐渐增大时,图3-8(1)
            中,函数图像从左到右是上升的,函数值<i>y</i>随着自变量<i>x</i>的增大而增大.图3-8(2) 中,函数图像从左到右是下降的,函数值<i>y</i>随着自变量<i>x</i>的增大而减小.图3-8(3)
            中,函数<i>y</i>=<i>x</i><sup>2</sup>的定义域是<b>R</b>.可以看出,在(-∞,0)内,函数图像从左到右是下降的,函数值<i>y</i>随着自变量<i>x</i>的增大而减小;在(0,+∞)内,函数图像从左到右是上升的,函数值<i>y</i>随着自变量<i>x</i>的增大而增大.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/gn.jpg" /></p>
            </div>
            <p class="block">单调性</p>
            <p class="block">增函数</p>
            <p class="block">减函数</p>
            <p class="block">单调区间</p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>像上述情形,在某个区间内,函数值随自变量的增大而增大(或减小)的性质叫作函数的<b>单调性</b>.</p>
          <p>一般地,设函数的定义域为<i>D</i>,区间<i>A</i>⊆<i>D</i>.</p>
          <p>(1)
            如果对任意<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>∈<i>A</i>,当<i>x</i>1<<i>x</i>2时,都有<i>f</i>(<i>x</i><sub>1</sub>)<<i>f</i>(<i>x</i><sub>2</sub>),那么就称函数<i>f</i>(<i>x</i>)在区间<i>A</i>上<b>单调递增</b>,如图3-9所示.特别地,当函数<i>f</i>(<i>x</i>)在它的定义域上单调递增时,我们就称它是<b>增函数</b>.
          </p>
          <p>(2)
            如果对任意<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>∈<i>A</i>,当<i>x</i><sub>1</sub><<i>x</i><sub>2</sub>时,都有<i>f</i>(<i>x</i><sub>1</sub>)><i>f</i>(<i>x</i><sub>2</sub>),那么就称函数<i>f</i>(<i>x</i>)在区间<i>A</i>上<b>单调递减</b>,如图3-10所示.特别地,当函数<i>f</i>(<i>x</i>)在它的定义域上单调递减时,我们就称它是<b>减函数</b>.
          </p>
        </div>
      </div>
    </div>
    <!-- 086 -->
@@ -245,10 +1570,29 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            如果函数<i>y</i>=<i>f</i>(<i>x</i>)在区间<i>A</i>上单调递增或单调递减,那么就称函数<i>y</i>=<i>f</i>(<i>x</i>)在区间<i>A</i>上具有(严格的)单调性,并且区间<i>A</i>叫作函数<i>y</i>=<i>f</i>(<i>x</i>)的<b>单调区间</b>.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0097-1.jpg" /></p>
          <p class="img">图3-9</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0097-2.jpg" /></p>
          <p class="img">图3-10</p>
          <p>
            例如,图3-8中函数<i>y</i>=<i>x</i>是<b>R</b>上的增函数,区间(-∞,+∞)是函数<i>y</i>=<i>x</i>的增区间;函数<i>y</i>=-<i>x</i>是<b>R</b>上的减函数,区间(-∞,+∞)是函数<i>y</i>=-<i>x</i>的减区间;函数<i>y</i>=<i>x</i><sup>2</sup>在区间(-∞,0)上是减函数,在区间(0,+∞)上是增函数,区间(-∞,0)和(0,+∞)分别是函数<i>y</i>=<i>x</i><sup>2</sup>的减区间、增区间.
          </p>
          <p><span class="zt-ls"><b>例1</b></span> 图3-11是函数<i>y</i>=<i>f</i>(<i>x</i>),<i>x</i>∈[-1,8]的图像,根据图像回答下列问题.</p>
          <p>(1) 当<i>x</i>取何值时,函数值最大,最大值是多少?当<i>x</i>取何值时,函数值最小,最小值是多少?</p>
          <p>(2) 说明该函数的单调区间及在每一个区间上的单调性.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0097-3.jpg" /></p>
          <p class="img">图3-11</p>
          <p><span class="zt-ls"><b>解</b></span>(1) 由图可知,当<i>x</i>=2时,函数值最大,最大值是3;当<i>x</i>=6时,函数值最小,最小值是-3.</p>
          <p>(2)
            函数<i>y</i>=<i>f</i>(<i>x</i>)的单调区间有[-1,2],[2,6],[6,8].函数<i>y</i>=<i>f</i>(<i>x</i>)在区间[-1,2]和[6,8]上都是增函数,在区间[2,6]上是减函数.
          </p>
        </div>
      </div>
    </div>
    <!-- 087 -->
    <div class="page-box" page="94">
      <div v-if="showPageList.indexOf(94) > -1">
@@ -260,7 +1604,171 @@
            <p><span>087</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0098-1.jpg" /></p>
          <p class="img">图3-12</p>
          <p><span class="zt-ls"><b>例2</b></span> 二次函数<i>f</i>(<i>x</i>)=-<i>x</i><sup>2</sup>+2<i>x</i>+3的图像如图3-12所示.
          </p>
          <p>(1) 求函数<i>f</i>(<i>x</i>)的对称轴方程、顶点坐标;</p>
          <p>(2) 找出函数<i>f</i>(<i>x</i>)的单调区间;</p>
          <p>(3) 当<i>x</i>∈[2,5]时,求函数<i>f</i>(<i>x</i>)的最大值和最小值.</p>
          <p><span class="zt-ls"><b>解</b></span>(1) 二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>的对称轴方程是<math
              display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>b</mi>
                <mrow>
                  <mn>2</mn>
                  <mi>a</mi>
                </mrow>
              </mfrac>
            </math>,顶点坐标是<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>b</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                    <mi>c</mi>
                    <mo>−</mo>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,则</p>
          <math display="block">
            <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mo>−</mo>
                  <mfrac>
                    <mi>b</mi>
                    <mrow>
                      <mn>2</mn>
                      <mi>a</mi>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mn>2</mn>
                    <mrow>
                      <mn>2</mn>
                      <mo>×</mo>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>1</mn>
                      <mo stretchy="false">)</mo>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mn>1,</mn>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mi>a</mi>
                      <mi>c</mi>
                      <mo>−</mo>
                      <msup>
                        <mi>b</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mrow>
                      <mn>4</mn>
                      <mi>a</mi>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mo>×</mo>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>1</mn>
                      <mo stretchy="false">)</mo>
                      <mo>×</mo>
                      <mn>3</mn>
                      <mo>−</mo>
                      <msup>
                        <mn>2</mn>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mrow>
                      <mn>4</mn>
                      <mo>×</mo>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>1</mn>
                      <mo stretchy="false">)</mo>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mn>4</mn>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p>因此,函数<i>f</i>(<i>x</i>)的对称轴方程是<i>x</i>=1,顶点坐标是(1,4).</p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" /></p>
            </div>
            <p class="block">函数的单调性是对定义域内某个区间而言的.一个函数在其定义域上不一定具有单调性,但是在定义域内的子区间上可能具有单调性,这就是函数单调性的局部性质.</p>
          </div>
          <p>(2) 由图像可知,函数<i>f</i>(<i>x</i>)的增区间是(-∞,1],减区间是[1,+∞).</p>
          <p>(3) 因为[2,5]⫋[1,+∞),且函数在区间[1,+∞)上是减函数,所以当<i>x</i>∈[2,5]时,</p>
          <p>函数<i>f</i>(<i>x</i>)的最大值是<i>f</i>(2)=-2<sup>2</sup>+2×2+3=3,</p>
          <p>函数<i>f</i>(<i>x</i>)的最小值是<i>f</i>(5)=-5<sup>2</sup>+2×5+3=-12.</p>
          <p><span class="zt-ls"><b>例3</b></span> 判断函数<i>f</i>(<i>x</i>)=<i>x</i>+1在(-∞,+∞)上的单调性.</p>
          <p><span class="zt-ls"><b>解</b></span>
            任取<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>∈(-∞,+∞),且<i>x</i><sub>1</sub><<i>x</i><sub>2</sub>,那么</p>
          <p class="center">
            <i>f</i>(<i>x</i><sub>1</sub>)=<i>x</i><sub>1</sub>+1,<i>f</i>(<i>x</i><sub>2</sub>)=<i>x</i><sub>2</sub>+1,
          </p>
          <p>则</p>
          <p class="center">
            <i>f</i>(<i>x</i><sub>1</sub>)-<i>f</i>(<i>x</i><sub>2</sub>)=<i>x</i><sub>1</sub>+1-<i>x</i><sub>2</sub>-1=<i>x</i><sub>1</sub>-<i>x</i><sub>2</sub><0,
          </p>
          <p>
            所以<i>f</i>(<i>x</i><sub>1</sub>)<<i>f</i>(<i>x</i><sub>2</sub>),函数<i>f</i>(<i>x</i>)=<i>x</i>+1在(-∞,+∞)上是增函数.
          </p>
          <p>当<i>k</i>>0时,函数<i>f</i>(<i>x</i>)=<i>kx</i>+<i>b</i>在区间(-∞,+∞)上是增函数,如图3-13(1)
            所示;当<i>k</i><0时,函数<i>f</i>(<i>x</i>)=<i>kx</i>+<i>b</i>在区间(-∞,+∞)上是减函数,如图3-13(2) 所示.</p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0098-5.jpg" /></p>
          <p class="img">图3-13</p>
        </div>
      </div>
    </div>
    <!-- 088 -->
@@ -271,7 +1779,13 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[95]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 089 -->
@@ -285,10 +1799,53 @@
            <p><span>089</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c031">
            3.3.2 函数的奇偶性<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            函数<i>f</i>(<i>x</i>)=|<i>x</i>|和<i>g</i>(<i>x</i>)=<i>x</i><sup>2</sup>的图像的对称性如何?
          </p>
          <textarea cols="30" rows="4" v-model="chapterData.txtOne" placeholder="请输入内容" class="w100 ta-br textarea-text"
            @input="handleChapterData"></textarea>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/tjfx.jpg" />
          </p>
          <p>
            列出表3-11和表3-12,画出函数<i>f</i>(<i>x</i>)=|<i>x</i>|
            和<i>g</i>(<i>x</i>)=<i>x</i><sup>2</sup>的图像,如图3-14(1)
            和(2) 所示.
          </p>
          <p class="img">表3-11</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0100-1.jpg" />
          </p>
          <p class="img">表3-12</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0100-2.jpg" />
          </p>
          <iframe src="https://www.geogebra.org/calculator" frameborder="0" class="iframe-box"></iframe>
          <p class="center openImgBox">
            <img class="img-b" alt="" src="../../assets/images/0100-3.jpg" />
          </p>
          <p class="img">图3-14</p>
          <p>
            观察图3-14(1)
            发现,函数<i>f</i>(<i>x</i>)=|<i>x</i>|的定义域是(-∞,+∞),函数图像关于<i>y</i>轴对称.从表3-11中还发现,当自变量取一对相反数时,对应的函数值相等,如<i>f</i>(-1)=<i>f</i>(1)=1,<i>f</i>(-2)=<i>f</i>(2)=2,<i>f</i>(-3)=<i>f</i>(3)=3,…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>f</i>(-<i>x</i>)=|-<i>x</i>|=|<i>x</i>|=<i>f</i>(<i>x</i>),即<i>f</i>(-<i>x</i>)=<i>f</i>(<i>x</i>).
          </p>
          <p>
            图3-14(2)
            中,函数<i>g</i>(<i>x</i>)=<i>x</i><sup>2</sup>的定义域是(-∞,+∞),函数图像也关于<i>y</i>轴对称.表3-12中,当自变量取一对相反数时,对应的函数值相等,如<i>g</i>(-1)=<i>g</i>(1)=1,<i>g</i>(-2)=<i>g</i>(2)=4,<i>g</i>(-3)=<i>g</i>(3)=9,…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>g</i>(-<i>x</i>)=(-<i>x</i>)<sup>2</sup>=<i>x</i><sup>2</sup>=<i>g</i>(<i>x</i>),即<i>g</i>(-<i>x</i>)=<i>g</i>(<i>x</i>).
          </p>
          <p>
            这两个函数的图像都关于 <i>y</i> 轴对称;当自变量取定义域中任意一对相
          </p>
        </div>
      </div>
    </div>
    <!-- 090 -->
    <div class="page-box" page="97">
      <div v-if="showPageList.indexOf(97) > -1">
@@ -297,7 +1854,66 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">反数时,对应的函数值都相等,这种函数就是偶函数.</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,设函数<i>f</i>(<i>x</i>)的定义域为<i>D</i>,如果对于<span class="u">任意</span><i>x</i>∈<i>D</i>,<span
              class="u">都有</span>-<i>x</i>∈<i>D</i>,且<i>f</i>(-<i>x</i>)=<i>f</i>(<i>x</i>),那么函数<i>f</i>(<i>x</i>)就叫作<b>偶函数</b>,如图3-15所示.<b>偶函数的图像关于<i>y</i>轴对称</b>.
          </p>
          <p>
            我们可以由函数的图像是否关于<i>y</i>轴对称来判断函数是不是偶函数.
          </p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/images/0101-1.jpg" style="width: 40%" />
          </p>
          <p class="img fl fl-cn ju-cn">
            <span>图3-15</span>
            <el-tooltip class="item" effect="dark" :content="chapterData.isCollectImg ? '点击取消' : '点击收藏'"
              placement="top-start">
              <img :src="collectResourceList.findIndex(item => item.id == '722FE833') > -1 ? collectCheck : collectImg"
                alt="" class="collect-btn" @click="handleCollect('img')" />
            </el-tooltip>
          </p>
          <video :src="videoPath" webkit-playsinline="true" x-webkit-airplay="true" playsinline="true"
            x5-video-orientation="h5" x5-video-player-fullscreen="true" x5-playsinline="" controls
            controlslist="nodownload" class="video-border w100"></video>
          <p class="img fl fl-cn ju-cn">
            <span>视频:判数函数奇偶性的方法和步骤 </span>
            <el-tooltip class="item" effect="dark" :content="chapterData.isCollectVideo ? '点击取消' : '点击收藏'"
              placement="top-start">
              <img
                :src="collectResourceList.findIndex(item => item.id == 'a28cd862d61b5df2201406b76e9f01b0') > -1 ? collectCheck : collectImg"
                alt="" class="collect-btn" @click="handleCollect('video')" />
            </el-tooltip>
          </p>
          <p class="fl">
            <span>
              <span class="zt-ls"><b>例1</b></span> 根据图3-16中函数的图像,判断哪些函数是偶函数.
            </span>
            <span class="btn-box" @click="isShowExampleOne = !isShowExampleOne">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="center openImgBox">
            <img class="img-b" alt="" src="../../assets/images/0101-2.jpg" />
          </p>
          <p class="img">图3-16</p>
          <div v-if="isShowExampleOne">
            <p>
              <span class="zt-ls"><b>解</b></span> 在四个函数图像中,图3-16(1)
              和图3-16(4) 的函数图像关于<i>y</i>轴对称;图3-16(2)
              和图3-16(3)
              的函数图像不关于<i>y</i>轴对称.根据偶函数的图像具有关于<i>y</i>轴对称的特点,图3-16(1)和图3-16(4)的函数是偶函数,图3-16(2)和图3-16(3)的函数不是偶函数.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 091 -->
@@ -311,7 +1927,193 @@
            <p><span>091</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="fl">
            <span>
              <span class="zt-ls"><b>例2</b></span>
               已知<i>f</i>(<i>x</i>)=|<i>x</i>|+1图像在<i>y</i>轴右边的部分如图3-17所示.试画出这个函数图像在<i>y</i>轴左边的部分.
            </span>
            <span class="btn-box" @click="isShowExampleTwo = !isShowExampleTwo">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/images/0102-1.jpg" style="width: 40%" />
          </p>
          <p class="img">图3-17</p>
          <p v-if="isShowExampleTwo">
            <span class="zt-ls"><b>解</b></span>
            函数<i>f</i>(<i>x</i>)=|<i>x</i>|+1的定义域是(-∞,+∞),因为它是偶函数,所以根据其图像关于<i>y</i>轴对称的特点,即可画出这个函数在<i>x</i>∈(-∞,0]上的图像.
          </p>
          <p>
            如图3-18所示,在<i>y</i>轴右边的图像上取两点<i>A</i>和<i>B</i>,分别画出它们关于<i>y</i>轴对称的点<i>A</i>′和<i>B</i>′,然后连线<i>A</i>′<i>B</i>′,就得到这个函数的图像在<i>y</i>轴左边的部分.
          </p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/images/0102-2.jpg" style="width: 40%" />
          </p>
          <p class="img">图3-18</p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              一个函数是不是偶函数,可以由函数的图像是否关于<i>y</i>轴对称来判断;当函数用解析法表示时,可以用偶函数的定义来判断.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例3</b></span> 判断下列函数是不是偶函数.
          </p>
          <ul>
            <li class="fl fl-cn">
              <p>(1) <i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>+1;</p>
              <span class="btn-box" @click="isShowExampleThree = !isShowExampleThree">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                </svg>
              </span>
              <span class="btn-box" @click="openThinkingDialog">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.545" height="18.112" viewBox="0 0 20.545 22.112">
                  <path class="a"
                    d="M3771.2-14311.889a2.356,2.356,0,0,1-1.727-.626c-.027-.054-.053-.1-.079-.148l0-.007c-.123-.224-.2-.371-.076-.629a.869.869,0,0,1,.784-.471.205.205,0,0,1,.158.079.205.205,0,0,0,.158.079.187.187,0,0,0,.038.1.143.143,0,0,0,.117.05h.158a.573.573,0,0,0,.471.158,2.2,2.2,0,0,0,.916-.3l.023-.011a.572.572,0,0,1,.471-.158.575.575,0,0,1,.626.626.526.526,0,0,1,.036.409.664.664,0,0,1-.349.375A3.582,3.582,0,0,1,3771.2-14311.889Zm-1.885-1.723h-.155a.718.718,0,0,1-.784-.63.38.38,0,0,1-.021-.3.976.976,0,0,1,.492-.485l4.86-1.252a1.047,1.047,0,0,1,.784.626c.151.3-.128.61-.471.784l-4.705,1.256Zm-.155-1.885H3769a.716.716,0,0,1-.784-.626c-.149-.3.129-.611.471-.784l4.234-1.1v-.158l-.021.007a7.808,7.808,0,0,1-1.861.31,5.3,5.3,0,0,1-3.137-.942,5.789,5.789,0,0,1-2.666-4.076,6.421,6.421,0,0,1,1.256-5.018,7.038,7.038,0,0,1,2.194-1.568,7.848,7.848,0,0,1,2.666-.472,6.43,6.43,0,0,1,2.979.784,4.958,4.958,0,0,1,2.2,2.194,5.522,5.522,0,0,1,.313,5.177,13.113,13.113,0,0,1-1.256,1.882l-.313.313a2.156,2.156,0,0,0-.78,1.244l0,.012a1.731,1.731,0,0,1-1.727,1.723l-.313.158-3.292.939Zm1.256-6.271v1.256h1.41v-1.256Zm.784-4.234c.718,0,1.1.271,1.1.784a.925.925,0,0,1-.316.783l-.468.156a2.235,2.235,0,0,0-.63.471l-.012.024a2.2,2.2,0,0,0-.3.918v.155h1.1v-.155a1.2,1.2,0,0,1,.313-.629.543.543,0,0,0,.315-.153c.007,0,.315,0,.315-.16a1.226,1.226,0,0,0,.626-.626,2.277,2.277,0,0,0,.313-1.1,1.409,1.409,0,0,0-.626-1.252,2.337,2.337,0,0,0-1.569-.471,2.258,2.258,0,0,0-2.507,2.353l1.252.154A1.121,1.121,0,0,1,3771.2-14326Zm-6.51,9.645a.769.769,0,0,1-.549-.237.772.772,0,0,1-.235-.549.772.772,0,0,1,.235-.548l.939-.939a.781.781,0,0,1,.55-.234.772.772,0,0,1,.547.234.772.772,0,0,1,.238.549.772.772,0,0,1-.238.549l-.939.938A.769.769,0,0,1,3764.686-14316.356Zm13.174-.157a.774.774,0,0,1-.549-.234l-.943-.942a.678.678,0,0,1-.233-.47.678.678,0,0,1,.233-.47.774.774,0,0,1,.549-.234.774.774,0,0,1,.549.234l.942.939a.427.427,0,0,1,.228.324.74.74,0,0,1-.228.618A.774.774,0,0,1,3777.859-14316.514Zm2.9-6.351h-1.414c-.469-.158-.784-.474-.784-.784a.743.743,0,0,1,.784-.784h1.414a.743.743,0,0,1,.784.784A.743.743,0,0,1,3780.761-14322.864Zm-17.566-.158h-1.41c-.469-.157-.784-.473-.784-.784a.743.743,0,0,1,.784-.784h1.41a.743.743,0,0,1,.784.784A.743.743,0,0,1,3763.195-14323.022Zm13.861-5.723a.759.759,0,0,1-.529-.237.776.776,0,0,1-.235-.549.772.772,0,0,1,.235-.549l.939-.938a.44.44,0,0,1,.413-.238.759.759,0,0,1,.529.238.772.772,0,0,1,.235.549.772.772,0,0,1-.235.548l-.942.939A.435.435,0,0,1,3777.055-14328.745Zm-11.429,0a.776.776,0,0,1-.55-.237l-.939-1.1a.678.678,0,0,1-.235-.469.678.678,0,0,1,.235-.47.772.772,0,0,1,.549-.238.772.772,0,0,1,.549.238l.939,1.1a.675.675,0,0,1,.238.47.675.675,0,0,1-.238.47A.767.767,0,0,1,3765.626-14328.745Zm5.724-2.273a.743.743,0,0,1-.784-.785v-1.413c.157-.469.473-.784.784-.784a.743.743,0,0,1,.784.784v1.413A.743.743,0,0,1,3771.35-14331.019Z"
                    transform="translate(-3761 14334.001)" />
                </svg>
              </span>
              <span class="btn-box" @click="stepDialog = true">
                <svg xmlns="http://www.w3.org/2000/svg" width="15.28" height="17.563" viewBox="0 0 19.28 20.563">
                  <g transform="translate(-109.056 -82.941)">
                    <path class="a"
                      d="M3439.656-15185.7h-12.643a1.815,1.815,0,0,1-1.816-1.81v-16.944a1.83,1.83,0,0,1,1.816-1.809h15.674a1.8,1.8,0,0,1,1.79,1.809v13.93h-4.217a.6.6,0,0,0-.6.6v4.217h0Zm-9.819-2.764a.5.5,0,0,0-.5.5.5.5,0,0,0,.5.5h4a.5.5,0,0,0,.5-.5.5.5,0,0,0-.5-.5Zm0-2a.5.5,0,0,0-.5.5.5.5,0,0,0,.5.5h4a.5.5,0,0,0,.5-.5.5.5,0,0,0-.5-.5Zm1.393-8.525a2.416,2.416,0,0,0-2.416,2.411,2.421,2.421,0,0,0,2.416,2.42h.111a1.8,1.8,0,0,0,1.1,1.1,1.809,1.809,0,0,0,.6.107,1.808,1.808,0,0,0,1.7-1.206h4.072l-.172.172a.635.635,0,0,0-.179.454.569.569,0,0,0,.179.4.637.637,0,0,0,.435.176.6.6,0,0,0,.424-.176l1.2-1.214a.618.618,0,0,0,0-.858l-1.2-1.187a.619.619,0,0,0-.431-.176.6.6,0,0,0-.427.176.615.615,0,0,0,0,.854l.172.176h-4.072a1.8,1.8,0,0,0-1.1-1.1,1.755,1.755,0,0,0-.6-.1,1.808,1.808,0,0,0-1.7,1.206h-.111a.554.554,0,0,1-.145-.016,1.2,1.2,0,0,1-.84-.4,1.217,1.217,0,0,1-.3-.878,1.2,1.2,0,0,1,1.206-1.137.407.407,0,0,1,.069,0h3.729a1.807,1.807,0,0,0,1.118,1.114,1.816,1.816,0,0,0,.576.091,1.789,1.789,0,0,0,1.7-1.205h.309a2.415,2.415,0,0,0,1.679-.775,2.407,2.407,0,0,0,.637-1.729,2.411,2.411,0,0,0-2.419-2.324h-6.213a1.821,1.821,0,0,0-1.107-1.1,1.8,1.8,0,0,0-.6-.1,1.814,1.814,0,0,0-1.706,1.2,1.8,1.8,0,0,0,.077,1.389,1.787,1.787,0,0,0,1.026.92,1.841,1.841,0,0,0,.6.1,1.807,1.807,0,0,0,1.706-1.2h6.266a1.179,1.179,0,0,1,.836.4,1.22,1.22,0,0,1,.305.874,1.213,1.213,0,0,1-1.214,1.146h-.172a1.8,1.8,0,0,0-1.118-1.118,1.711,1.711,0,0,0-.576-.1,1.8,1.8,0,0,0-1.706,1.214Z"
                      transform="translate(-3316.14 15289.201)" />
                    <path class="a"
                      d="M316.806,239.727a.6.6,0,1,0,.6-.6A.6.6,0,0,0,316.806,239.727Zm-5.421-4.207a.6.6,0,1,0,.6.6A.587.587,0,0,0,311.385,235.52Zm2.4,8.438a.607.607,0,1,0-.6-.613A.621.621,0,0,0,313.789,243.958Z"
                      transform="translate(-196.896 -148.921)" />
                    <path class="a" d="M763.392,793.79l3.262-3.262h-3.262Z" transform="translate(-638.661 -690.634)" />
                  </g>
                </svg>
              </span>
              <span class="btn-box" @click="openMathDiaolog">
                <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="15.323"
                  height="15.939" viewBox="0 0 18.323 15.939">
                  <g transform="translate(-398 -946)">
                    <path class="a"
                      d="M11.985,1.241a.894.894,0,0,1-.242.623.79.79,0,0,1-.6.263.644.644,0,0,1-.547-.229,3.034,3.034,0,0,1-.339-.741A.935.935,0,0,0,10.1.846a.4.4,0,0,0-.291-.1.36.36,0,0,0-.333.18,1.836,1.836,0,0,0-.2.478L8.251,4.753H9.7l-.27.79H8.043l-1.51,4.849a27.9,27.9,0,0,1-1.06,2.93,5.5,5.5,0,0,1-1.316,1.857,3.11,3.11,0,0,1-2.189.755,2.258,2.258,0,0,1-1.455-.409A1.192,1.192,0,0,1,0,14.618a.97.97,0,0,1,.27-.693.894.894,0,0,1,.693-.291.741.741,0,0,1,.693.27,1.815,1.815,0,0,1,.2.693c0,.381.2.575.492.575a.817.817,0,0,0,.693-.478,6.983,6.983,0,0,0,.568-1.469L6,5.543H4.5l.236-.776h1.5l.159-.54a14.548,14.548,0,0,1,.693-2.016A4.544,4.544,0,0,1,8.313.694,2.91,2.91,0,0,1,10.281,0a2.425,2.425,0,0,1,.8.145,1.5,1.5,0,0,1,.693.429.963.963,0,0,1,.236.693Z"
                      transform="translate(398 948)" />
                    <path class="b"
                      d="M18.323,5.668a3.505,3.505,0,0,1-.152,1.046H17.36a3.969,3.969,0,0,0,.166-1.06.5.5,0,0,0-.062-.236.27.27,0,0,0-.249-.132.346.346,0,0,0-.229.076c-.069.055-.222.208-.471.471L14.936,7.489a22.329,22.329,0,0,0-1.552,1.621l-1.815,1.974a2.168,2.168,0,0,1-1.385.859c-.492,0-.741-.333-.741-.991a3.575,3.575,0,0,1,.3-1.385h.914a4.766,4.766,0,0,0-.263,1.1c0,.18.048.263.159.263s.242-.111.464-.333l2.147-2.286c-.006-.033,1.525-1.611,1.524-1.6l1.3-1.385a2.078,2.078,0,0,1,1.385-.8.755.755,0,0,1,.776.388,1.9,1.9,0,0,1,.173.776Z"
                      transform="translate(398 948)" />
                    <path class="a"
                      d="M14.936,7.489l.693,2.251a5.154,5.154,0,0,0,.236.61c.083.159.18.242.3.242a.82.82,0,0,0,.533-.457,4.849,4.849,0,0,0,.339-.817H17.8a4.849,4.849,0,0,1-.693,1.51,2.813,2.813,0,0,1-.873.852,1.766,1.766,0,0,1-.88.27,1.178,1.178,0,0,1-1.018-.464,4.357,4.357,0,0,1-.623-1.309l-.326-1.067a6.4,6.4,0,0,0-.222-.8L12.747,7c-.083-.27-.152-.478-.2-.6a1.136,1.136,0,0,0-.194-.312.4.4,0,0,0-.284-.118c-.326,0-.6.423-.817,1.261h-.769a6.671,6.671,0,0,1,.6-1.5,3.034,3.034,0,0,1,.81-.873,1.663,1.663,0,0,1,.942-.312,1.344,1.344,0,0,1,1.067.471,3.692,3.692,0,0,1,.644,1.268l.139.436C14.672,6.7,14.936,7.489,14.936,7.489Z"
                      transform="translate(398 948)" />
                  </g>
                </svg>
              </span>
            </li>
            <li class="fl fl-cn">
              <p>(2) <i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>;</p>
              <span class="btn-box" @click="isShowExampleFour = !isShowExampleFour">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                </svg>
              </span>
              <span class="btn-box" @click="openMathDiaolog">
                <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="15.323"
                  height="15.939" viewBox="0 0 18.323 15.939">
                  <g transform="translate(-398 -946)">
                    <path class="a"
                      d="M11.985,1.241a.894.894,0,0,1-.242.623.79.79,0,0,1-.6.263.644.644,0,0,1-.547-.229,3.034,3.034,0,0,1-.339-.741A.935.935,0,0,0,10.1.846a.4.4,0,0,0-.291-.1.36.36,0,0,0-.333.18,1.836,1.836,0,0,0-.2.478L8.251,4.753H9.7l-.27.79H8.043l-1.51,4.849a27.9,27.9,0,0,1-1.06,2.93,5.5,5.5,0,0,1-1.316,1.857,3.11,3.11,0,0,1-2.189.755,2.258,2.258,0,0,1-1.455-.409A1.192,1.192,0,0,1,0,14.618a.97.97,0,0,1,.27-.693.894.894,0,0,1,.693-.291.741.741,0,0,1,.693.27,1.815,1.815,0,0,1,.2.693c0,.381.2.575.492.575a.817.817,0,0,0,.693-.478,6.983,6.983,0,0,0,.568-1.469L6,5.543H4.5l.236-.776h1.5l.159-.54a14.548,14.548,0,0,1,.693-2.016A4.544,4.544,0,0,1,8.313.694,2.91,2.91,0,0,1,10.281,0a2.425,2.425,0,0,1,.8.145,1.5,1.5,0,0,1,.693.429.963.963,0,0,1,.236.693Z"
                      transform="translate(398 948)" />
                    <path class="b"
                      d="M18.323,5.668a3.505,3.505,0,0,1-.152,1.046H17.36a3.969,3.969,0,0,0,.166-1.06.5.5,0,0,0-.062-.236.27.27,0,0,0-.249-.132.346.346,0,0,0-.229.076c-.069.055-.222.208-.471.471L14.936,7.489a22.329,22.329,0,0,0-1.552,1.621l-1.815,1.974a2.168,2.168,0,0,1-1.385.859c-.492,0-.741-.333-.741-.991a3.575,3.575,0,0,1,.3-1.385h.914a4.766,4.766,0,0,0-.263,1.1c0,.18.048.263.159.263s.242-.111.464-.333l2.147-2.286c-.006-.033,1.525-1.611,1.524-1.6l1.3-1.385a2.078,2.078,0,0,1,1.385-.8.755.755,0,0,1,.776.388,1.9,1.9,0,0,1,.173.776Z"
                      transform="translate(398 948)" />
                    <path class="a"
                      d="M14.936,7.489l.693,2.251a5.154,5.154,0,0,0,.236.61c.083.159.18.242.3.242a.82.82,0,0,0,.533-.457,4.849,4.849,0,0,0,.339-.817H17.8a4.849,4.849,0,0,1-.693,1.51,2.813,2.813,0,0,1-.873.852,1.766,1.766,0,0,1-.88.27,1.178,1.178,0,0,1-1.018-.464,4.357,4.357,0,0,1-.623-1.309l-.326-1.067a6.4,6.4,0,0,0-.222-.8L12.747,7c-.083-.27-.152-.478-.2-.6a1.136,1.136,0,0,0-.194-.312.4.4,0,0,0-.284-.118c-.326,0-.6.423-.817,1.261h-.769a6.671,6.671,0,0,1,.6-1.5,3.034,3.034,0,0,1,.81-.873,1.663,1.663,0,0,1,.942-.312,1.344,1.344,0,0,1,1.067.471,3.692,3.692,0,0,1,.644,1.268l.139.436C14.672,6.7,14.936,7.489,14.936,7.489Z"
                      transform="translate(398 948)" />
                  </g>
                </svg>
              </span>
            </li>
            <li class="fl fl-cn">
              <p>(3) <i>f</i>(<i>x</i>)=5<i>x</i>+2.</p>
              <span class="btn-box" @click="isShowExampleFive = !isShowExampleFive">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                </svg>
              </span>
              <span class="btn-box" @click="openMathDiaolog">
                <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="15.323"
                  height="15.939" viewBox="0 0 18.323 15.939">
                  <g transform="translate(-398 -946)">
                    <path class="a"
                      d="M11.985,1.241a.894.894,0,0,1-.242.623.79.79,0,0,1-.6.263.644.644,0,0,1-.547-.229,3.034,3.034,0,0,1-.339-.741A.935.935,0,0,0,10.1.846a.4.4,0,0,0-.291-.1.36.36,0,0,0-.333.18,1.836,1.836,0,0,0-.2.478L8.251,4.753H9.7l-.27.79H8.043l-1.51,4.849a27.9,27.9,0,0,1-1.06,2.93,5.5,5.5,0,0,1-1.316,1.857,3.11,3.11,0,0,1-2.189.755,2.258,2.258,0,0,1-1.455-.409A1.192,1.192,0,0,1,0,14.618a.97.97,0,0,1,.27-.693.894.894,0,0,1,.693-.291.741.741,0,0,1,.693.27,1.815,1.815,0,0,1,.2.693c0,.381.2.575.492.575a.817.817,0,0,0,.693-.478,6.983,6.983,0,0,0,.568-1.469L6,5.543H4.5l.236-.776h1.5l.159-.54a14.548,14.548,0,0,1,.693-2.016A4.544,4.544,0,0,1,8.313.694,2.91,2.91,0,0,1,10.281,0a2.425,2.425,0,0,1,.8.145,1.5,1.5,0,0,1,.693.429.963.963,0,0,1,.236.693Z"
                      transform="translate(398 948)" />
                    <path class="b"
                      d="M18.323,5.668a3.505,3.505,0,0,1-.152,1.046H17.36a3.969,3.969,0,0,0,.166-1.06.5.5,0,0,0-.062-.236.27.27,0,0,0-.249-.132.346.346,0,0,0-.229.076c-.069.055-.222.208-.471.471L14.936,7.489a22.329,22.329,0,0,0-1.552,1.621l-1.815,1.974a2.168,2.168,0,0,1-1.385.859c-.492,0-.741-.333-.741-.991a3.575,3.575,0,0,1,.3-1.385h.914a4.766,4.766,0,0,0-.263,1.1c0,.18.048.263.159.263s.242-.111.464-.333l2.147-2.286c-.006-.033,1.525-1.611,1.524-1.6l1.3-1.385a2.078,2.078,0,0,1,1.385-.8.755.755,0,0,1,.776.388,1.9,1.9,0,0,1,.173.776Z"
                      transform="translate(398 948)" />
                    <path class="a"
                      d="M14.936,7.489l.693,2.251a5.154,5.154,0,0,0,.236.61c.083.159.18.242.3.242a.82.82,0,0,0,.533-.457,4.849,4.849,0,0,0,.339-.817H17.8a4.849,4.849,0,0,1-.693,1.51,2.813,2.813,0,0,1-.873.852,1.766,1.766,0,0,1-.88.27,1.178,1.178,0,0,1-1.018-.464,4.357,4.357,0,0,1-.623-1.309l-.326-1.067a6.4,6.4,0,0,0-.222-.8L12.747,7c-.083-.27-.152-.478-.2-.6a1.136,1.136,0,0,0-.194-.312.4.4,0,0,0-.284-.118c-.326,0-.6.423-.817,1.261h-.769a6.671,6.671,0,0,1,.6-1.5,3.034,3.034,0,0,1,.81-.873,1.663,1.663,0,0,1,.942-.312,1.344,1.344,0,0,1,1.067.471,3.692,3.692,0,0,1,.644,1.268l.139.436C14.672,6.7,14.936,7.489,14.936,7.489Z"
                      transform="translate(398 948)" />
                  </g>
                </svg>
              </span>
            </li>
          </ul>
          <div v-if="isShowExampleThree">
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              函数<i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>+1的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,
            </p>
            <p>而</p>
            <p class="center">
              <i>f</i>(-<i>x</i>)=3(-<i>x</i>)<sup>2</sup>+1=3<i>x</i><sup>2</sup>+1=<i>f</i>(<i>x</i>),
            </p>
            <p>
              所以,函数<i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>+1是偶函数.
            </p>
          </div>
          <div v-if="isShowExampleFour">
            <p>
              (2)
              函数<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,而
            </p>
            <p class="center">
              <i>f</i>(-<i>x</i>)=(-<i>x</i>)<sup>2</sup>+(-<i>x</i>)=<i>x</i><sup>2</sup>-<i>x</i>≠<i>f</i>(<i>x</i>),
            </p>
            <p>
              所以,函数<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>不是偶函数.
            </p>
          </div>
          <div v-if="isShowExampleFive">
            <p>
              (3)
              函数<i>f</i>(<i>x</i>)=5<i>x</i>+2的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<i>R</i>,而
            </p>
            <p class="center">
              <i>f</i>(-<i>x</i>)=5(-<i>x</i>)+2=-5<i>x</i>+2≠<i>f</i>(<i>x</i>),
            </p>
            <p>所以,函数<i>f</i>(<i>x</i>)=5<i>x</i>+2不是偶函数.</p>
          </div>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[98]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 092 -->
@@ -322,7 +2124,25 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj" >
            <examinations :cardList="questionData[99]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
            <p class="gr-title">
              四、函数 f(x)=x’-3 的图像在
              轴左边的部分如图所示,请你画出这个函数图像在 y轴右边的部分.
            </p>
            <div>
              <paint
                :page="99"
                :imgUrl="
                  this.config.activeBook.resourceUrl + '/images/0103-2.jpg'
                "
              />
            </div>
          </div>
        </div>
      </div>
    </div>
    <!-- 093 -->
@@ -336,7 +2156,24 @@
            <p><span>093</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>函数<i>f</i>(<i>x</i>)=2<i>x</i>和<i>g</i>(<i>x</i>)=<i>x</i><sup>3</sup>的图像有何对称性呢?</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/tjfx.jpg" /></p>
          <p>列出表3-13和表3-14,画出函数<i>f</i>(<i>x</i>)=2<i>x</i>和<i>g</i>(<i>x</i>)=<i>x</i><sup>3</sup>的图像,如图3-19所示.</p>
          <p class="img">表3-13</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0104-1.jpg" /></p>
          <p class="img">表3-14</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0104-2.jpg" /></p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0104-3.jpg" /></p>
          <p class="img">图3-19</p>
          <p>图3-19(1)
            中,函数<i>f</i>(<i>x</i>)=2<i>x</i>的定义域是(-∞,+∞),函数图像关于原点中心对称.表3-13中,当自变量取一对相反数时,对应的函数值是一对相反数,如<i>f</i>(-1)=-2=-<i>f</i>(1),<i>f</i>(-2)=-4=-<i>f</i>(2),<i>f</i>(-3)=-6=-<i>f</i>(3),…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>f</i>(-<i>x</i>)=2×(-<i>x</i>)=-2<i>x</i>=-<i>f</i>(<i>x</i>),即<i>f</i>(-<i>x</i>)=-<i>f</i>(<i>x</i>).
          </p>
          <p>图3-19(2)
            中,函数<i>g</i>(<i>x</i>)=<i>x</i><sup>3</sup>的定义域是(-∞,+∞),函数图像也关于原点中心对称.表3-14中,当自变量取一对相反数时,对应的函数值也是一对相反数,如
          </p>
        </div>
      </div>
    </div>
    <!-- 094 -->
@@ -347,7 +2184,24 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">
            <i>g</i>(-1)=-1=-<i>g</i>(1),<i>g</i>(-2)=-8=-<i>g</i>(2),<i>g</i>(-3)=-27=-<i>g</i>(3),…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>g</i>(-<i>x</i>)=(-<i>x</i>)<sup>3</sup>=-<i>x</i><sup>3</sup>=-<i>g</i>(<i>x</i>),即<i>g</i>(-<i>x</i>)=-<i>g</i>(<i>x</i>).
          </p>
          <p>这两个函数的图像分别关于原点中心对称;当自变量取定义域中任意一对相反数时,对应的函数值也是一对相反数,这种函数就是奇函数.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>一般地,设函数<i>f</i>(<i>x</i>)的定义域为<i>D</i>,如果对于<span class="u">任意</span><i>x</i>∈<i>D</i>,<span
              class="u">都有</span>-<i>x</i>∈<i>D</i>,且<i>f</i>(-<i>x</i>)=-<i>f</i>(<i>x</i>),那么函数<i>f</i>(<i>x</i>)就叫作<b>奇函数</b>,如图3-20所示.<b>奇函数的图像关于原点中心对称</b>.
          </p>
          <p>我们也可以由函数图像是否关于原点中心对称来判断函数是不是奇函数.</p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0105-1.jpg" /></p>
          <p class="img">图3-20</p>
          <p><span class="zt-ls"><b>例4</b></span> 根据图3-21中函数的图像,判断哪些函数是奇函数.</p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0105-2.jpg" /></p>
          <p class="img">图3-21</p>
          <p><span class="zt-ls"><b>解</b></span> 在四个函数图像中,图3-21(1) 、图3-21(2) 和图3-21(3) 的函数图像关于原点中心对称;图3-21(4)
            的函数图像不是关于原点中心对称的.根据奇函数的图像具有关于原点中心对称的特点,图3-21(1) 、图3-21(2) 和图3-21(3) 的函数是奇函数,图3-21(4) 的函数不是奇函数.</p>
        </div>
      </div>
    </div>
    <!-- 095 -->
@@ -361,10 +2215,128 @@
            <p><span>095</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><span class="zt-ls"><b>例5</b></span> 已知函数<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>图像在<i>y</i>轴右边的部分如图3-22所示.试画出这个函数图像在<i>y</i>轴左边的部分.</p>
          <p><span class="zt-ls"><b>解</b></span> 函数<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>的定义域是(-∞,0)∪(0+∞),因为它是奇函数,所以根据其图像关于原点中心对称的特点,即可画出这个函数在<i>x</i>∈(-∞,0)上的图像.</p>
          <p>
            如图3-23所示,在<i>y</i>轴右边的图像上取三个不同点<i>A</i>,<i>B</i>和<i>C</i>,并画出它们分别关于原点对称的点<i>A</i>′,<i>B</i>′和<i>C</i>′,然后按相同方式用光滑的曲线连线,就得到这个函数的图像在<i>y</i>轴左边的部分.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0106-3.jpg" /></p>
          <p class="img">图3-22</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0106-4.jpg" /></p>
          <p class="img">图3-23</p>
          <p>与偶函数的判定方法类似,除了借助函数的图像来判断函数是不是奇函数,也可用定义判断函数是不是奇函数.</p>
          <p><span class="zt-ls"><b>例6</b></span> 判断下列函数是不是奇函数.</p>
          <p>(1) <i>f</i>(<i>x</i>)=<i>x</i><sup>3</sup>+<i>x</i>;(2) <math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>;(3) <i>f</i>(<i>x</i>)=<i>x</i>+|<i>x</i>|.</p>
          <p><span class="zt-ls"><b>解</b></span>(1)
            函数<i>f</i>(<i>x</i>)=<i>x</i><sup>3</sup>+<i>x</i>的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,且
          </p>
          <p class="center">
            <i>f</i>(-<i>x</i>)=(-<i>x</i>)<sup>3</sup>+(-<i>x</i>)=-<i>x</i><sup>3</sup>-<i>x</i>=-(<i>x</i><sup>3</sup>+<i>x</i>)=-<i>f</i>(<i>x</i>).
          </p>
          <p>所以,函数<i>f</i>(<i>x</i>)=<i>x</i><sup>3</sup>+<i>x</i>是奇函数.</p>
          <p>(2)
            要使函数<i>f</i>(<i>x</i>)有意义,必须满足<i>x</i>≠0,所以函数<i>f</i>(<i>x</i>)的定义域是<i>D</i>={<i>x</i>|<i>x</i>≠0},对任意<i>x</i>∈<i>D</i>,都有-<i>x</i>∈<i>D</i>,且
          </p>
          <math display="block">
            <mi>f</mi>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mi>x</mi>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>=</mo>
            <mo>−</mo>
            <mi>x</mi>
            <mo>+</mo>
            <mfrac>
              <mn>1</mn>
              <mrow>
                <mo>−</mo>
                <mi>x</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>=</mo>
            <mo>−</mo>
            <mi>f</mi>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>.</mo>
          </math>
          <p>所以,函数<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>是奇函数.</p>
          <p>(3) 函数<i>f</i>(<i>x</i>)=<i>x</i>+|<i>x</i>|的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,但是</p>
        </div>
      </div>
    </div>
    <!-- 096 -->
    <div class="page-box" page="103">
      <div v-if="showPageList.indexOf(103) > -1">
@@ -373,7 +2345,148 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center">
            <i>f</i>(-<i>x</i>)=(-<i>x</i>)+|-<i>x</i>|=-<i>x</i>+|<i>x</i>|=-(<i>x</i>-|<i>x</i>|)≠-<i>f</i>(<i>x</i>).
          </p>
          <p>所以,函数<i>f</i>(<i>x</i>)=<i>x</i>+|<i>x</i>|不是奇函数.</p>
          <p>如果一个函数是奇函数或偶函数,那么就称这个函数具有<b>奇偶性</b>.否则,函数不具有奇偶性.</p>
          <p><span class="zt-ls"><b>例7</b></span> 判断下列函数的奇偶性.</p>
          <p>(1) <i>f</i>(<i>x</i>)=<i>x</i><sup>4</sup>;(2) <math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>;</p>
          <p>(3) <i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>;(4)<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mrow>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>1</mn>
                </mrow>
              </mfrac>
            </math>.</p>
          <p><span class="zt-ls"><b>解</b></span>(1)
            <i>f</i>(<i>x</i>)的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,且
          </p>
          <p class="center"><i>f</i>(-<i>x</i>)=(-<i>x</i>)<sup>4</sup>=<i>x</i><sup>4</sup>=<i>f</i>(<i>x</i>),</p>
          <p>所以,函数<i>f</i>(<i>x</i>)=<i>x</i><sup>4</sup>是偶函数.</p>
          <p>(2)
            要使函数<i>f</i>(<i>x</i>)有意义,必须满足<i>x</i>≠0,所以函数<i>f</i>(<i>x</i>)的定义域是<i>D</i>={<i>x</i>|<i>x</i>≠0},对任意<i>x</i>∈<i>D</i>,都有-<i>x</i>∈<i>D</i>,
            且</p>
          <math display="block">
            <mi>f</mi>
            <mo stretchy="false">(</mo>
            <mo>−</mo>
            <mi>x</mi>
            <mo stretchy="false">)</mo>
            <mo>=</mo>
            <mo>−</mo>
            <mi>x</mi>
            <mo>−</mo>
            <mfrac>
              <mn>1</mn>
              <mrow>
                <mo>−</mo>
                <mi>x</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>x</mi>
            <mo>+</mo>
            <mfrac>
              <mn>1</mn>
              <mi>x</mi>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>=</mo>
            <mo>−</mo>
            <mi>f</mi>
            <mo stretchy="false">(</mo>
            <mi>x</mi>
            <mo stretchy="false">)</mo>
            <mo>,</mo>
          </math>
          <p>所以,函数<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>是奇函数.</p>
          <p>(3)
            函数<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,且
          </p>
          <p class="center"><i>f</i>(-<i>x</i>)=(-<i>x</i>)<sup>2</sup>+(-<i>x</i>)=<i>x</i><sup>2</sup>-<i>x</i>,</p>
          <p>但 <i>f</i>(-<i>x</i>)≠<i>f</i>(<i>x</i>),且<i>f</i>(-<i>x</i>)≠-<i>f</i>(<i>x</i>),</p>
          <p>所以,函数<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>既不是奇函数,也不是偶函数.</p>
          <p>(4)
            要使函数<i>f</i>(<i>x</i>)有意义,必须满足<i>x</i>-1≠0,所以函数<i>f</i>(<i>x</i>)的定义域是<i>D</i>={<i>x</i>|<i>x</i>≠1},对任意<i>x</i>∈<i>D</i>,不都有-<i>x</i>∈<i>D</i>成立.
          </p>
          <p>所以,函数<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mrow>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>1</mn>
                </mrow>
              </mfrac>
            </math>不具有奇偶性,它既不是奇函数也不是偶函数.</p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left"><img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" /></p>
            </div>
            <examinations :cardList="questionData[103]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 097 -->
@@ -387,19 +2500,18 @@
            <p><span>097</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[104]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 098 -->
    <div class="page-box" page="105">
      <div v-if="showPageList.indexOf(105) > -1">
        <ul class="page-header-odd fl al-end">
          <li>098</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="105">
    </div>
    <!-- 099 -->
    <div class="page-box" page="106">
@@ -409,10 +2521,21 @@
            <p>第三单元 函数</p>
          </li>
          <li>
            <p><span>099</span></p>
            <p><span>098-099</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c032">习题3.3<span class="fontsz2">>>></span></h3>
          <div class="bj" >
            <examinations :cardList="questionData[105]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
          <h2 id="b018">3.4 函数的应用<span class="fontsz1">>>>>>>>></span></h2>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/tjfx.jpg" /></p>
          <p>
            函数是刻画变量之间对应关系的数学模型和工具,在社会生活、生产中,函数关系随处可见,函数的应用也非常广泛.例如,物体运动的路程是时间的函数,购买物品费用是物品数量的函数,圆的面积是半径的函数,居民生活用水(电、燃气)费用是用水(电、燃气)量的函数等.
          </p>
        </div>
      </div>
    </div>
    <!-- 100 -->
@@ -423,7 +2546,103 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><span class="zt-ls"><b>例1</b></span> 住在A城的小李早晨8:00出发,驾驶小轿车从A城以80 km/h 的速度到200 km处的B城,他在B城停留了3 h 后,再以100
            km/h的速度返回A城.在不考虑堵车等其他因素的情况下,设小李从A城出发<i>x</i>(h)后,小李与A城的距离是<i>y</i>(km).</p>
          <p>(1) 用解析法表示函数<i>y</i>=<i>f</i>(<i>x</i>);</p>
          <p>(2) 画出函数<i>y</i>=<i>f</i>(<i>x</i>)的图像;</p>
          <p>(3) 小李在返回A城途中,15:00刚好接到家人的电话,这时他距离A城多少千米?</p>
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 首先求出小李从A城到B城和从B城返回A城共花费的时间,明确函数的定义域.小李去B城和返回A城的过程中,<i>y</i>与<i>x</i>分别对应的解析式不相同,所以该函数需用分段函数表示.
          </p>
          <p><span class="zt-ls"><b>解</b></span>(1) 小李从A城出发到B 城用时<math display="0">
              <mfrac>
                <mn>200</mn>
                <mn>80</mn>
              </mfrac>
              <mo>=</mo>
              <mn>2.5</mn>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>h</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,<i>x</i>的取值范围是{<i>x</i>|0<<i>x</i>≤2.5},<i>y</i>与<i>x</i>的对应关系是<i>y</i>=80<i>x</i>;</p>
          <p>小李到B城后停留3 h,x的取值范围是{<i>x</i>|2.5<<i>x</i>≤5.5},对应关系是<i>y</i>=200;</p>
          <p>小李从<i>B</i>城返回<i>A</i>城用时<math display="0">
              <mfrac>
                <mn>200</mn>
                <mn>100</mn>
              </mfrac>
              <mo>=</mo>
              <mn>2</mn>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>h</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,<i>x</i>的取值范围是{<i>x</i>|5.5<<i>x</i>≤7.5},<i>y</i>与<i>x</i>的对应关系是<i>y</i>=200-100(<i>x</i>-5.5),即<i>y</i>=-100<i>x</i>+750.
          </p>
          <p>因此,用解析法将函数<i>f</i>(<i>x</i>)表示为<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnalign="left left" columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mn>80</mn>
                      <mi>x</mi>
                      <mo>,</mo>
                    </mtd>
                    <mtd>
                      <mn>0</mn>
                      <mo>&lt;</mo>
                      <mi>x</mi>
                      <mo>⩽</mo>
                      <mn>2.5</mn>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mn>200</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd>
                      <mn>2.5</mn>
                      <mo>&lt;</mo>
                      <mi>x</mi>
                      <mo>⩽</mo>
                      <mn>5.5</mn>
                      <mo>,</mo>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mo>−</mo>
                      <mn>100</mn>
                      <mi>x</mi>
                      <mo>+</mo>
                      <mn>750</mn>
                      <mo>,</mo>
                      <mn>5.5</mn>
                      <mo>&lt;</mo>
                      <mi>x</mi>
                      <mo>⩽</mo>
                      <mn>7.5</mn>
                    </mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math>.</p>
          <p>(2) 函数<i>y</i>=<i>f</i>(<i>x</i>)的图像如图3-24所示.</p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0111-4.jpg" /></p>
          <p class="img">图3-24</p>
          <p>(3) 小李从早晨8:00出发到15:00,共经过了7h,所以<i>x</i>=7,由(1) 中解析式得小李与<i>A</i>城的距离为</p>
          <p class="center">-100×7+750=50(km).</p>
          <p>所以,小李返回A城途中接到家人电话时,距离A城刚好50 km.</p>
        </div>
      </div>
    </div>
    <!-- 101 -->
@@ -437,11 +2656,61 @@
            <p><span>101</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><span class="zt-ls"><b>例2</b></span> 某农户要用6 000块砖建造三间面积相等的饲养室,如图3-25所示,其中<i>AB</i>,<i>AD</i>两面靠墙,每修筑长度1
            m的新墙需要砖200块.当<i>AB</i>为多少米时,修建的三间饲养室的总面积最大?最大面积是多少?</p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0112-1.jpg" /></p>
          <p class="img">图3-25</p>
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 首先需要计算备用材料可修建饲养室新墙的总长;因每间饲养室的周长是定值,所以设<i>AB</i>的长为<i>x</i>(m),就可以用含<i>x</i>的代数式表示<i>BC</i>的长;再用解析法表示总面积<i>y</i>(m<sup>2</sup>)与<i>x</i>(m)的函数关系;然后利用函数的性质来解决问题.
          </p>
          <p><span class="zt-ls"><b>解</b></span> 因为每修筑长度1 m的新墙需要砖200块,所以6 000块砖可以修筑新墙的总长度是6
            000÷200=30(m).设<i>AB</i>为<i>x</i>(m),则<i>BC</i>为(30-3<i>x</i>)(m),三间饲养室的总面积为<i>y</i>(m<sup>2</sup>).</p>
          <p>于是<i>y</i>=(30-3<i>x</i>)<i>x</i>,要有实际意义,必须满足<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mi>x</mi>
                      <mo>></mo>
                      <mn>0</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mn>30</mn>
                      <mo>−</mo>
                      <mn>3</mn>
                      <mi>x</mi>
                      <mo>></mo>
                      <mn>0</mn>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math>.</p>
          <p>所以,<i>y</i>与<i>x</i>的函数关系是<i>y</i>=-3<i>x</i><sup>2</sup>+30<i>x</i>,0<<i>x</i><10.</p>
          <p>整理得<i>y</i>=-3(<i>x</i>-5)<sup>2</sup>+75.</p>
          <p>所以,当<i>x</i>=5时,<i>y</i>值最大,最大值为75.</p>
          <p>即当<i>AB</i>为5 m时,三间饲养室的总面积最大,最大面积是75 m<sup>2</sup>.</p>
          <p>在实际生活中,很多与二次函数有关的最值问题都可通过分析、研究后,建立相应二次函数的数学模型,并运用二次函数的图像性质求最值.</p>
          <p><span class="zt-ls"><b>例3</b></span> 某批发商购入一批30元/kg的绿色食品,若以40元/kg销售,则每月可批发销售400
            kg.由批发销售经验知道,每月销售量<i>y</i>(kg
            )是销售单价<i>x</i>(元)的一次函数,其图像如图3-26所示.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0112-3.jpg" /></p>
          <p class="img"> 图3-26</p>
          <p>(1) 用解析法表示函数<i>y</i>=<i>f</i>(<i>x</i>);</p>
          <p>(2) 该批发商不低于购入价进行销售,设该批发商每月销售这批绿色食品可获得利润为<i>w</i>元,用解析法表示函数<i>w</i>=<i>g</i>(<i>x</i>);</p>
          <p>(3) 当销售单价为多少时,该批发商每月可获得最大利润?最大利润是多少?</p>
        </div>
      </div>
    </div>
    <!-- 102 -->
    <div class="page-box" page="109">
      <div v-if="showPageList.indexOf(109) > -1">
        <ul class="page-header-odd fl al-end">
@@ -449,7 +2718,82 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 先由图像求出一次函数的解析式,再根据每月所获利润=(销售单价-进价)×每月销售量,列出每月所获利润<i>w</i>与销售单价<i>x</i>的函数关系.
          </p>
          <p><span class="zt-ls"><b>解</b></span>(1) 设函数<i>y</i>=<i>f</i>(<i>x</i>)的解析式是<i>y</i>=<i>kx</i>+<i>b</i>,则</p>
          <p><math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mn>40</mn>
                      <mi>k</mi>
                      <mo>+</mo>
                      <mi>b</mi>
                      <mo>=</mo>
                      <mn>400</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mn>50</mn>
                      <mi>k</mi>
                      <mo>+</mo>
                      <mi>b</mi>
                      <mo>=</mo>
                      <mn>200</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math>,解得<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mi>k</mi>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mn>20</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mi>b</mi>
                      <mo>=</mo>
                      <mn>1200.</mn>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math></p>
          <p>即<i>y</i>=-20<i>x</i>+1 200.</p>
          <p>根据题意,当30≤<i>x</i>≤60时,函数<i>y</i>=-20<i>x</i>+1 200才有实际意义.</p>
          <p>所以,函数<i>y</i>=<i>f</i>(<i>x</i>)的解析式可表示为</p>
          <p class="center"><i>y</i>=-20<i>x</i>+1 200,30≤<i>x</i>≤60.</p>
          <p>(2) 由题意得,<i>w</i>=(<i>x</i>-30)<i>y</i></p>
          <p>        =(<i>x</i>-30)(-20<i>x</i>+1 200)</p>
          <p>        =-20<i>x</i><sup>2</sup>+1 800<i>x</i>-36 000,</p>
          <p>所以,函数<i>w</i>=<i>g</i>(<i>x</i>)的解析式可表示为</p>
          <p class="center"><i>w</i>=-20<i>x</i><sup>2</sup>+1 800<i>x</i>-36 000,30≤<i>x</i>≤60.</p>
          <p>(3) 由(2) 知,<i>w</i>=-20<i>x</i><sup>2</sup>+1 800<i>x</i>-36 000,30≤<i>x</i>≤60,配方得</p>
          <p class="center"><i>w</i>=-20(<i>x</i>-45)<sup>2</sup>+4 500.</p>
          <p>所以,当<i>x</i>=45时,<i>w</i>的值最大,最大值是4 500.</p>
          <p>答:当销售单价为45元时,该批发商每月可获得最大利润,最大利润是4 500元.</p>
        </div>
      </div>
    </div>
    <!-- 103 -->
@@ -463,47 +2807,38 @@
            <p><span>103</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[110]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 104 -->
    <div class="page-box" page="111">
      <div v-if="showPageList.indexOf(111) > -1">
        <ul class="page-header-odd fl al-end">
          <li>104</li>
          <li>104-106</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c033">习题3.4<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[111]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 105 -->
    <div class="page-box" page="112">
      <div v-if="showPageList.indexOf(112) > -1">
        <ul class="page-header-box">
          <li>
            <p>第三单元 函数</p>
          </li>
          <li>
            <p><span>105</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="112">
    </div>
    <!-- 106 -->
    <div class="page-box" page="113">
      <div v-if="showPageList.indexOf(113) > -1">
        <ul class="page-header-odd fl al-end">
          <li>106</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="113">
    </div>
    <!-- 107 -->
    <div class="page-box" page="114">
@@ -516,10 +2851,28 @@
            <p><span>107</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b019">数学园地<span class="fontsz1">>>>>>>>></span></h2>
          <p class="center">函数概念及符号的形成与发展</p>
          <p>我们已经系统学习了函数的概念、表示方法、性质等,现在我们一起来了解函数概念的形成与发展过程.</p>
          <p>17世纪,意大利科学家伽利略在《关于两门新科学的对话》一书中,提出了函数或变量关系的概念,借助文字和比例关系表达函数的关系.法国数学家笛卡儿在他的解析几何中注意到了一个变量对于另一个变量的依赖关系.</p>
          <p>1673年,德国数学家莱布尼茨首次使用“函数”表示“幂”,同时牛顿在微积分的讨论中,使用“流量”来表示变量间的关系,这时的函数概念还较为模糊.</p>
          <p>
            1718年,瑞士数学家伯努利在莱布尼茨函数概念的基础上,从解析的角度提出了函数的概念:“由变量<i>x</i>和常数所构成的式子叫作<i>x</i>的函数”,记作<i>Χ</i>或ξ,后来他又改用<i>Φx</i>表示<i>x</i>的函数.
          </p>
          <p>1734 年,瑞士数学家欧拉以<i>f</i>()
            表示函数,这是数学史上函数首次以“<i>f</i>”符号表示!他把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随之变化,我们把前面的变量称为后面变量的函数.”并采用大写希腊字母<i>Πx</i>,<i>Φx</i>及<i>Δx</i>表示<i>x</i>的函数.
          </p>
          <p>1797年,法国数学家拉格朗日大力推动以<i>f</i>,<i>F</i>,<i>Φ</i>及<i>y</i>表示函数,并且沿用至今!</p>
          <p>1821年,法国数学家柯西给出函数的定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随之而确定时,则将最初的变数叫自变量,其他各变数叫函数.”</p>
          <p>1822年,法国数学家傅立叶发现某些函数可用曲线表示,也可以用一个式子表示,或用多个式子表示,他把对函数的认识又推进到了一个新的层次.</p>
          <p>1893年,意大利数学家皮亚诺开始采用符号<i>y</i>=<i>f</i>(<i>x</i>)表示函数,这就是我们今天见到的函数符号!</p>
          <p>
            后来,数学家们用“集合”和“对应”给出了近代函数的概念,把函数的对应关系、定义域及值域进一步具体化:“若对集合<i>M</i>的任意元素<i>x</i>,总有集合<i>N</i>中确定的元素<i>y</i>与之对应,则称在集合<i>M</i>上定义一个函数,记为<i>y</i>=<i>f</i>(<i>x</i>).”
          </p>
        </div>
      </div>
    </div>
    <!-- 108 -->
    <div class="page-box" page="115">
      <div v-if="showPageList.indexOf(115) > -1">
@@ -528,10 +2881,27 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b020">单元小结<span class="fontsz1">>>>>>>>></span></h2>
          <p class="bj2"><b>学习导图</b></p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0119-1.jpg" /></p>
          <p class="bj2"><b>学习指导</b></p>
          <p>1.函数的概念.</p>
          <p>(1) 函数的定义:一般地, 设<i>A</i>,<i>B</i>是非空数集, 如果存在一个对应关系<i>f</i>,使对于集合 <i>A</i> 中的每一个数<i>x</i>,在集合<i>B</i>
            中都有唯一确定的数<i>y</i>
            和它对应,那么就把对应关系<i>f</i>称为定义在集合<i>A</i>上的一个<b>函数</b>,记作<i>y</i>=<i>f</i>(<i>x</i>),<i>x</i>∈<i>A</i>.其中,<i>x</i>叫作自变量,<i>x</i>的取值范围<i>A</i>叫作函数的<b>定义域</b>;与<i>x</i>的值相对应的<i>y</i>值叫作函数值,函数值的集合{<i>f</i>(<i>x</i>)|<i>x</i>∈<i>A</i>}叫作函数的<b>值域</b>.
          </p>
          <p>定义域和对应关系是函数的两个要素,值域是由定义域与函数关系所决定的.</p>
          <p>(2) 求函数定义域时,首先要考虑问题的实际意义.</p>
          <p>2.函数的表示方法.</p>
          <p>(1) 函数有三种表示方法:列表法、图像法和解析法.在解决问题时,应根据需要选择恰当的表示方法.</p>
          <p>(2) 分段函数:分段函数是在自变量不同的取值范围内,采用不同的对应关系的一种函数,分段函数仍然是一个函数.</p>
          <p>3.函数的单调性和奇偶性.</p>
          <p>函数的单调性和奇偶性是函数的两个基本性质.</p>
          <p>(1) 函数的单调性反映了函数值变化的趋势.单调性是相对于函数定义域的某个区间(区间是定义域的子集)而言的,所以研究函数的单调性时,必须指明单调</p>
        </div>
      </div>
    </div>
    <!-- 109 -->
    <div class="page-box" page="116">
      <div v-if="showPageList.indexOf(116) > -1">
@@ -543,50 +2913,160 @@
            <p><span>109</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">区间.</p>
          <p>(2)
            函数的奇偶性反映函数图像的对称性.奇函数、偶函数的定义域一定是关于原点对称的.若函数图像关于<i>y</i>轴对称,则该函数是偶函数;若函数图像关于原点对称,则该函数是奇函数.反之,偶函数一定关于<i>y</i>轴对称;奇函数一定关于原点对称.
          </p>
          <p>4.函数的实际应用.</p>
          <p>函数的实际应用问题主要抓住以下几个步骤:一是读懂题意;二是正确建立函数关系(分段函数、二次函数等);三是转化为函数问题;四是做好最后的解答.</p>
        </div>
      </div>
    </div>
    <!-- 110 -->
    <div class="page-box" page="117">
      <div v-if="showPageList.indexOf(117) > -1">
        <ul class="page-header-odd fl al-end">
          <li>110</li>
          <li>110-112</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b021">单元检测<span class="fontsz1">>>>>>>>></span></h2>
          <div class="bj" >
            <examinations :cardList="questionData[117]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 111 -->
    <div class="page-box" page="118">
      <div v-if="showPageList.indexOf(118) > -1">
        <ul class="page-header-box">
          <li>
            <p>第三单元 函数</p>
          </li>
          <li>
            <p><span>111</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="118">
    </div>
    <!-- 112 -->
    <div class="page-box" page="119">
      <div v-if="showPageList.indexOf(119) > -1">
        <ul class="page-header-odd fl al-end">
          <li>112</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="119">
    </div>
        <!-- 函数控件弹窗 -->
    <el-dialog :visible.sync="dialogVisible" width="60%" :append-to-body="true" :show-close="false">
      <div slot="title" style="padding: 0 0 15px 0;position: relative;">
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="dialogVisible = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
        </svg>
      </div>
      <iframe src="https://www.geogebra.org/calculator" frameborder="0" style="width: 100%; min-height: 800px"></iframe>
    </el-dialog>
    <!-- 解题思路弹窗 -->
    <el-dialog :visible.sync="thinkingDialog" width="40%" :append-to-body="true" :show-close="false">
      <div slot="title" style="padding: 0; text-align: center; color: #333;display:flex;justify-content: center;">
        <span style=""> 解题思路 </span>
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="thinkingDialog = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
        </svg>
      </div>
      <ul>
        <li v-for="(item, index) in thinkOne" :key="index">
          <div v-if="item.isShow" style="display: flex">
            <span style="position: relative">
              <span style="position: absolute; top: 16px; left: 13px; color: #fff">{{ index + 1 }}</span>
              <img src="../../assets/images/icon/blue-group.png" alt="" style="margin-right: 10px"
                v-if="index < thinkOne.length - 1" />
              <img src="../../assets/images/icon/blue.png" alt="" v-if="index == thinkOne.length - 1"
                style="margin-right: 10px" />
            </span>
            <p class="txt-p">{{ item.txt }}</p>
          </div>
        </li>
      </ul>
      <div @click="showNext(thinkIndex)" style="
          display: flex;
          flex-direction: column;
          align-items: center;
          justify-content: center;
        ">
        <img src="../../assets/images/icon/mouse.png" alt="" v-if="thinkIndex != 3" />
        <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" t="1710234570135"
          class="icon" viewBox="0 0 1024 1024" version="1.1" p-id="5067" width="15" height="15">
          <path
            d="M2.257993 493.371555 415.470783 906.584344 512 1003.113561 608.529217 906.584344 1021.742007 493.371555 925.212789 396.842337 512 810.055127 98.787211 396.842337Z"
            fill="#1296db" p-id="5068" />
          <path
            d="M2.257993 117.980154 415.470783 531.192944 512 627.722161 608.529217 531.192944 1021.742007 117.980154 925.212789 21.450937 512 434.663727 98.787211 21.450937Z"
            fill="#1296db" p-id="5069" />
        </svg>
      </div>
    </el-dialog>
    <!-- 解题步骤弹窗 -->
    <el-dialog class="stepDialog" title="解题步骤" :visible.sync="stepDialog" width="40%" :append-to-body="true"
      :show-close="false">
      <div slot="title" style="padding: 0; text-align: center; color: #333;display:flex;justify-content: center;">
        <span>
          解题步骤
        </span>
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="stepDialog = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
        </svg>
      </div>
      <ul>
        <li v-for="(item, index) in stepOne" :key="index">
          <div v-if="item.isShow" style="display: flex">
            <span style="position: relative">
              <span style="position: absolute; top: 16px; left: 13px; color: #fff">{{ index + 1 }}</span>
              <img src="../../assets/images/icon/blue-group.png" alt="" style="margin-right: 10px"
                v-if="index < stepOne.length - 1" />
              <img src="../../assets/images/icon/blue.png" alt="" v-if="index == stepOne.length - 1"
                style="margin-right: 10px" />
            </span>
            <p class="txt-p">{{ item.txt }}</p>
          </div>
        </li>
      </ul>
      <div @click="showNextChange(stepIndex)" style="
          display: flex;
          flex-direction: column;
          align-items: center;
          justify-content: center;
        ">
        <img src="../../assets/images/icon/mouse.png" alt="" v-if="stepIndex != 2" />
        <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" t="1710234570135"
          class="icon" viewBox="0 0 1024 1024" version="1.1" p-id="5067" width="15" height="15">
          <path
            d="M2.257993 493.371555 415.470783 906.584344 512 1003.113561 608.529217 906.584344 1021.742007 493.371555 925.212789 396.842337 512 810.055127 98.787211 396.842337Z"
            fill="#1296db" p-id="5068" />
          <path
            d="M2.257993 117.980154 415.470783 531.192944 512 627.722161 608.529217 531.192944 1021.742007 117.980154 925.212789 21.450937 512 434.663727 98.787211 21.450937Z"
            fill="#1296db" p-id="5069" />
        </svg>
      </div>
    </el-dialog>
  </div>
</template>
<script>
import paint from '@/components/paint/index.vue'
import examinations from '@/components/examinations/index.vue'
import { getResourcePath } from "@/assets/methods/resources";
import { getCollectResource, setCollectResource } from "@/assets/methods/resources";
export default {
  name: '',
  props: {
@@ -594,17 +3074,239 @@
      type: Array,
      default: [],
    },
    questionData: {
      type: Object,
    },
  },
  components: {},
  components: {examinations,paint},
  data() {
    return {}
    return {
      collectImg: require("../../assets/images/icon/heart.png"),
      collectCheck: require("../../assets/images/icon/heart-check.png"),
      isShowExampleOne: false,
      isShowExampleTwo: false,
      isShowExampleThree: false,
      isShowExampleFour: false,
      isShowExampleFive: false,
      dialogVisible: false,
      thinkingDialog: false,
      stepDialog: false,
      videoPath: "",
      stepIndex: 1,
      thinkIndex: 1,
      collectResourceList: [],
      chapterData: {
        isCollectImg: false,
        isCollectVideo: false,
        txtOne: "",
        txtTwo: "",
      },
      thinkOne: [
        {
          txt: "1:一个函数是不 是偶函数,可以由 函数的图像是否关 于y 轴 对 称 来 判 断;当函数用解析 法表示时,可以用 偶 函 数 的 定 义 来 判断。 偶函数:一般地,设函数f(x)的定义域为D,如果对于任意xED,都有XED,且f(-x)=f(x),那么函数f(x)就叫作偶函数",
          isShow: true,
        },
        {
          txt: "2:计算f(-x)",
          isShow: false,
        },
        {
          txt: "3:判断f(-x)是否等于f(x)",
          isShow: false,
        },
      ],
      stepOne: [
        {
          txt: "1:(1)函数f(x)=3x2+1的定义域是R,对任意XER,都有-XER",
          isShow: true,
        },
        {
          txt: "2:f(-x)=3(-x)2+1=3x2+1=f(x)",
          isShow: false,
        },
      ],
      dragQuestion: [
        {
          analysisCon: null,
          answer: ['A', 'B', 'C'],
          difficulty: 0,
          id: "7BC7B760",
          isCollect: false,
          isComplete: false,
          isRight: null,
          isUnfold: "",
          isUserAnswer: false,
          number: 1,
          option: [
            {
              img: "",
              index: "010311",
              txt: "胆小的",
              value: "A",
              isShow: true
            },
            {
              img: "",
              index: "010312",
              txt: "善良的",
              value: "B",
              isShow: true
            },
            {
              img: "",
              index: "010313",
              txt: "沉稳的",
              value: "C",
              isShow: true
            },
          ],
          optionStyle: "Txt",
          questionType: "drag",
          score: 2,
          stem: {
            0: "蚂蚁队长走路昂首挺胸、步伐坚定,它是一只(",
            1: {
              data: "span",
              num: 0
            },
            2: ")蚂蚁;小蚂蚁走起路来小心翼翼,眼神飘忽不定,它是一只(",
            3: {
              data: "span",
              num: 1
            },
            4: ")蚂蚁;蚂蚁小妹面带微笑,时刻愿意帮助大家,它是一只(",
            5: {
              data: "span",
              num: 2,
            },
            6: " )蚂蚁"
          },
          stemStyle: "RichTxt",
          type: "拖拽题",
          userAnswer: [
            {
              vlaue: '',
              txt: ''
            },
            {
              vlaue: '',
              txt: ''
            },
            {
              vlaue: '',
              txt: ''
            },
          ]
        },
      ]
    };
  },
  computed: {},
  watch: {},
  created() { },
  mounted() { },
  methods: {},
  async mounted() {
    const data = localStorage.getItem("math-chapterData");
    if (data) {
      this.chapterData = JSON.parse(data);
    }
    this.getPath();
    this.collectResourceList = await getCollectResource(this.config.activeBook.bookId)
   },
  methods: {
    async getPath() {
      this.videoPath = await getResourcePath(
        "a28cd862d61b5df2201406b76e9f01b0"
      );
    },
    handleChapterData() {
      localStorage.setItem(
        "math-chapterData",
        JSON.stringify(this.chapterData)
      );
    },
    handleCollect(type) {
      if (type == "img") {
        this.handleCollectResource("722FE833", "", 'images/0101-1.jpg', "图片", "json", '图3-15')
      } else if (type == "video") {
        this.handleCollectResource("a28cd862d61b5df2201406b76e9f01b0", "a28cd862d61b5df2201406b76e9f01b0", '', "视频", "bits", '视频:判数函数奇偶性的方法和步骤')
      }
      this.handleChapterData();
    },
        openMathDiaolog() {
      this.dialogVisible = true;
    },
    openThinkingDialog() {
      this.thinkingDialog = true;
    },
    showNext(num) {
      const number = this.thinkOne.findIndex((item, index) => index == num);
      console.log(number);
      this.thinkOne[number].isShow = true;
      if (this.thinkIndex <= 2) {
        this.thinkIndex++;
      }
    },
    showNextChange(num) {
      const number = this.stepOne.findIndex((item, index) => index == num);
      this.stepOne[number].isShow = true;
      if (this.stepIndex < 2) {
        this.stepIndex++;
      }
    },
    //资源收藏事件
    handleCollectResource(id, md5, resourcePath, resourceType, source, resourceName) {
      console.log(this.collectResourceList);
      let list = this.collectResourceList
      if (list.findIndex(item => item.id == id) > -1) {
        list = list.filter(item => item.id != id)
      } else {
        list.push({
          id,
          md5,
          resourcePath,
          resourceType,
          source,
          resourceName,
        })
      }
      this.collectResourceList = list
      setCollectResource(this.config.activeBook.bookId, this.collectResourceList)
    }
  },
}
</script>
<style lang="less" scoped></style>
<style lang="less" scoped>
.iframe-box {
  width: 100%;
  min-height: 800px;
  border: 1px solid #00a1e9;
  border-radius: 10px;
}
li {
  list-style: none;
}
.txt-p {
  margin-top: 0;
  padding: 10px 0;
}
.bottom-btn {
  display: flex;
  flex-direction: column;
  align-items: center;
  justify-content: center;
}
.step-num {
  position: relative;
  .step-num-box {
    position: absolute;
    top: 16px;
    left: 13px;
    color: #fff;
  }
}
</style>
src/books/mathBook/view/components/chapter004.vue
Diff too large
src/books/mathBook/view/components/chapter005.vue
Diff too large
src/books/mathBook/view/components/header.vue
@@ -76,30 +76,17 @@
    <div class="page-box" page="4">
      <div v-if="showPageList.indexOf(4) > -1">
        <div class="padding-116" style="padding-top:50px ;">
          <div class="publishTitle">
            <div>
              <div class="indentation">“十四五” 职业教育国家规划教材</div>
              <div class="indentation">(中等职业学校公共基础课程教材)出版说明</div>
              <div class="indentation" style="color: #000; font-size: 16px; letter-spacing: 10px;  ">
                ....................................</div>
            </div>
            <div style="margin-left: 15px;">
              >>>>
            </div>
          </div>
          <p style="margin-top: 30px; line-height: 30px; ">
            为贯彻党的二十大精神,落实《中华人民共和国职业教育法》规定,深化职业教育“三教”改革,全面提高技术技能型人才培养质量,按照《职业院校教材管理办法》《中等职业学校公共基础课程方案》和有关课程标准的要求,在国家教材委员会的统筹领导下,根据教育部职业教育与成人教育司安排,教育部职业教育发展中心组织有关出版单位完成对数学、英语、信息技术、体育与健康、艺术、物理、化学7门公共基础课程国家规划新教材修订工作,修订教材经专家委员会审核通过,统一标注“十四五”职业教育国家规划教材(中等职业学校公共基础课程教材)。
          </p>
@@ -109,7 +96,6 @@
          <p style=" line-height: 30px; ">
            各地要指导区域内中等职业学校开齐开足开好公共基础课程,认真贯彻实施《职业院校教材管理办法》,确保选用本次审核通过的国家规划修订教材。如使用过程中发现问题请及时反馈给出版单位,以推动编写、出版单位精益求精,不断提高教材质量。
          </p>
          <div class="information">
            <p>中等职业学校公共基础课程教材建设专家委员会</p>
            <p>2023年6月</p>
@@ -131,27 +117,19 @@
              >>>>>>>>
            </div>
          </div>
          <p>
            中等职业学校数学课程是中等职业学校各专业学生必修的公共基础课程,承载着落实立德树人根本任务、发展素质教育的功能,具有基础性、发展性、应用性和职业性等特点。本套教材是“十四五”职业教育国家规划教材(中等职业学校公共基础课程教材),依据《中等职业学校公共基础课程方案》和《中等职业学校数学课程标准》(以下简称“新课标”)编写。
          </p>
          <div class="zt-ls1" style="margin-top: 30px;">
            一、本套教材的主要内容
          </div>
          <p>
            本套教材注重提升学生数学运算、直观想象、逻辑推理、数学抽象、数据分析和数学建模六大数学学科核心素养;注重提高学生学习数学的兴趣,增强学生学好数学的主动性和自信心,使学生养成理性思维、敢于质疑、善于思考的科学精神和精益求精的工匠精神,加深对数学的科学价值、应用价值、文化价值和审美价值的认识;注重依据中职学生的实际情况,为不同需求的学生提供未来发展所需的数学知识,并培养其相应的数学能力。
          </p>
          <p>本套教材内容体系如下。</p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0004-1.jpg" />
            <img class="img-b" alt="" src="../../assets/images/0004-1.jpg" />
          </p>
          <!-- <p class="img">图3-16</p> -->
        </div>
      </div>
    </div>
@@ -160,9 +138,8 @@
      <div v-if="showPageList.indexOf(6) > -1">
        <div class="padding-116" style="padding-top:50px ;">
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/imgs/0005-1.jpg" />
            <img class="img-d" alt="" src="../../assets/images/0005-1.jpg" />
          </p>
          <div class="zt-ls1" style="margin-top: 30px;">
            二、本套教材的主要特色
          </div>
@@ -179,25 +156,18 @@
          <div class="textIndentation">
            本套教材充分考虑中等职业教育的教学规律、一线职业学校学生的实际情况和学生未来职业发展需求,注重创设贴近学生生活、未来职场的数学情境,生动自然地引入、呈现、展开数学知识的学习。数学情境多源自日常生活、社会生活或生产实践案例,注重在案例情境中提出数学问题,使学生学会运用数学知识和数学思维解决实际问题,提升学生的数学运用能力。
          </div>
          <p class="zt-ls1" style="margin-top: 30px;">
            ·新知生成旧知迁移,有机构建数学整体
          </p>
          <div class="textIndentation">
            本套教材注重数学新知识的自然生成,设置“知识回顾”“问题提出/观察思考”“分析理解”“抽象概括”等栏目,通过层层递进的符合逻辑规律的结构体例,让学生了解数学知识的来龙去脉。教材注意各部分知识之间的内在联系,通过类比、联想、知识的迁移和应用等手段,使学生体会知识之间的有机联系,感受数学的整体性,正确认识数学的本质。
          </div>
          <p class="zt-ls1" style="margin-top: 30px;">
            ·尊重学生主体地位,体现分层教学理念
          </p>
          <div class="textIndentation">
            本套教材注重数学新知识的自然生成,设置“知识回顾”“问题提出/本套教材坚持以学生为本,尊重学生主体地位,关注学生的个体差异。在例题选择、习题编排等方面均差别化设置难度,突出学业水平评价要素,体现分层教学的理念,既适应不同地区、不同专业类别、不同数学基础学生的特点,又兼顾学生升学和就业的需要。
          </div>
          <div class="zt-ls1" style="margin-top: 30px;">
            三、本套教材的配套资源
          </div>
@@ -209,11 +179,9 @@
    <div class="page-box" page="7">
      <div v-if="showPageList.indexOf(7) > -1">
        <div class="padding-116" style="padding-top:50px ;">
          <p>
            “京师E课”为本套教材配套资源服务平台,为教师开展多样化教学、学生开展个性化自主学习提供全方位的支持和服务。本套教材配备丰富的数字资源,资源类型包括教学课件、同步教案、重难点知识讲解视频、重难点习题讲解视频以及在线交互习题等。我们将继续开展其他优质数字教学资源的研发和建设,不断更新和丰富相关内容,做到与时俱进。师生可访问京师E课官方网站:https:∥jsek.bnuic.com,登录后搜索书名进行查看。
          </p>
          <div class="zt-ls1" style="margin-top: 30px;">
            四、本教材的编写团队及分工
          </div>
@@ -224,7 +192,6 @@
            除上述主要编者外,参加本教材讨论、修改和相关教学资源制作的还有(以姓氏笔画为序):王立东(北京师范大学),刘雷雷(重庆市北碚职业教育中心),严凯(上海市材料工程学校),张金玲(重庆市育才职业教育中心),林雪梅(上海市商业会计学校),柴光祥(绥阳县中等职业技术学校),徐永昌(长垣职业中等专业学校),高晓兵(北部湾职业技术学校),曾善鹏(杭州市电子信息职业学校)。同时,在教材前期的试教试用过程中,我们收到了很多省市数学教研员、教师的宝贵意见和建议,在此一并表示感谢!
          </p>
          <p>由于时间较为仓促,教材难免存在不足之处,我们诚恳地期待各位读者提出宝贵的修改意见和建议(请发邮件至yjp@bnupg.com)。</p>
        </div>
      </div>
    </div>
src/books/mathBook/view/components/index.vue
@@ -13,11 +13,11 @@
      </chapterOne>
      <chapterTwo v-if="showCatalogList.indexOf(3) > -1" :showPageList="loadPageList" :questionData="questionDataMap">
      </chapterTwo>
      <chapterThree v-if="showCatalogList.indexOf(4) > -1" :showPageList="loadPageList">
      <chapterThree v-if="showCatalogList.indexOf(4) > -1" :showPageList="loadPageList" :questionData="questionDataMap">
      </chapterThree>
      <chapterFour v-if="showCatalogList.indexOf(5) > -1" :showPageList="loadPageList">
      <chapterFour v-if="showCatalogList.indexOf(5) > -1" :showPageList="loadPageList" :questionData="questionDataMap">
      </chapterFour>
      <chapterFive v-if="showCatalogList.indexOf(6) > -1" :showPageList="loadPageList">
      <chapterFive v-if="showCatalogList.indexOf(6) > -1" :showPageList="loadPageList" :questionData="questionDataMap">
      </chapterFive>
    </div>
@@ -32,7 +32,6 @@
import chapterThree from "./chapter003.vue";
import chapterFour from './chapter004.vue'
import chapterFive from './chapter005.vue'
// import chapterSix from './chapter006.vue'
import NoteIcon from "@/assets/images/biji.png";
import _ from "lodash";
import Swiper from "swiper/bundle";
@@ -57,7 +56,7 @@
      renderSignMap: {},
      highlightData: null,
      questionId: {},
      collectId: []
      collectId: [],
    };
  },
  computed: {
@@ -162,8 +161,8 @@
    }, 500);
    // 测试页面跳转
    // setTimeout(() => {
    //   this.gotoPage(2, 8);
    setTimeout(() => {
      this.gotoPage(4, 157);
    //   //   setTimeout(() => {
    //   //     this.renderSign("Highlight", {
    //   //       id: "2ACA9359",
@@ -191,7 +190,7 @@
    //   //   txt: " 运动系统是由骨、骨连结和骨骼肌三部分组成的。全身的骨通过骨连结组成人体骨骼(见图1-1)。骨骼是人体的支架,具有保护内脏器官、供肌肉附着和作为肌肉运动的杠杆等作用。在神经系统的支配下,肌肉收缩牵动所附着的骨绕着关节转动,使身体产生各种动作。所以,运动系统具有运动、支持和保护等功能,幼年时期的骨骼还具有造血功能。 ",
    //   //   txtIndex: 57
    //   // });
    // }, 500);
    }, 500);
    // 获取题目id列表
    this.getQuestionId();
@@ -709,7 +708,6 @@
        pageHeader,
        chapterOne,
        chapterTwo,
        chapterThree,
        chapterFour,
        chapterFive,
@@ -820,11 +818,11 @@
        .get(this.config.activeBook.resourceUrl + "/question.json")
        .then((res) => {
          this.questionId = res.data.data;
        });
    },
    // 获取题目收藏id列表
    getCollect() {
      if(!localStorage.getItem(this.config.tokenKey)) return false
      this.MG.identity
        .getUserKey({
          domain: "collectData",
@@ -845,7 +843,6 @@
    },
    // 获取章节题目
    async getQuestion(num, page) {
      // debugger
      let cardList = [
        {
          catalogName: "单选题",
@@ -873,17 +870,10 @@
          const res = await axios.get(
            this.config.activeBook.resourceUrl + "/question-" + num + ".json"
          );
          console.log(1, res);
          // debugger
          if (!res.data) return [];
          // debugger
          for (let index = 0; index < res.data.data.length; index++) {
            const item = res.data.data[index];
            // debugger
            // 数学公式加类名去修改样式
            if (item.type && item.type == 'material') {
              if (!item.infoList.length) return false
@@ -894,7 +884,6 @@
              if (item.answer) item.answer = item.answer.replace(/\<math/gi, '<math class="examination-math"')
            }
            item.isCollect = this.collectId.indexOf(item.id) > -1 ? true : false
            // debugger
            if (this.questionId[num][page].indexOf(item.id) > -1) {
              if (item.type && item.type == "material") {
                cardList.push(item);
@@ -913,9 +902,6 @@
              }
            }
          }
          console.log(cardList.filter((item) => item.infoList.length > 0));
          return cardList.filter((item) => item.infoList.length > 0);
        }
      } else {
@@ -948,9 +934,7 @@
    chapterTwo,
    chapterThree,
    chapterFour,
    chapterFive
    chapterFive,
  },
};
</script>
src/books/mathBook/view/components/sample.vue
@@ -63,10 +63,17 @@
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            函数<i>f</i>(<i>x</i>)=|<i>x</i>|和<i>g</i>(<i>x</i>)=<i>x</i><sup>2</sup>的图像的对称性如何?
            函数<i>f</i>(<i>x</i>)=|<i>x</i>|和<i>g</i>(<i>x</i>)=<i>x</i
            ><sup>2</sup>的图像的对称性如何?
          </p>
          <textarea cols="30" rows="4" v-model="chapterData.txtOne" placeholder="请输入内容" class="w100 ta-br textarea-text"
            @input="handleChapterData"></textarea>
          <textarea
            cols="30"
            rows="4"
            v-model="chapterData.txtOne"
            placeholder="请输入内容"
            class="w100 ta-br textarea-text"
            @input="handleChapterData"
          ></textarea>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/tjfx.jpg" />
          </p>
@@ -83,7 +90,11 @@
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0100-2.jpg" />
          </p>
          <iframe src="https://www.geogebra.org/calculator" frameborder="0" class="iframe-box"></iframe>
          <iframe
            src="https://www.geogebra.org/calculator"
            frameborder="0"
            class="iframe-box"
          ></iframe>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/images/0100-3.jpg" />
          </p>
@@ -93,8 +104,12 @@
            发现,函数<i>f</i>(<i>x</i>)=|<i>x</i>|的定义域是(-∞,+∞),函数图像关于<i>y</i>轴对称.从表3-11中还发现,当自变量取一对相反数时,对应的函数值相等,如<i>f</i>(-1)=<i>f</i>(1)=1,<i>f</i>(-2)=<i>f</i>(2)=2,<i>f</i>(-3)=<i>f</i>(3)=3,…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>f</i>(-<i>x</i>)=|-<i>x</i>|=|<i>x</i>|=<i>f</i>(<i>x</i>),即<i>f</i>(-<i>x</i>)=<i>f</i>(<i>x</i>).
          </p>
          <p>
            图3-14(2)
            中,函数<i>g</i>(<i>x</i>)=<i>x</i><sup>2</sup>的定义域是(-∞,+∞),函数图像也关于<i>y</i>轴对称.表3-12中,当自变量取一对相反数时,对应的函数值相等,如<i>g</i>(-1)=<i>g</i>(1)=1,<i>g</i>(-2)=<i>g</i>(2)=4,<i>g</i>(-3)=<i>g</i>(3)=9,…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>g</i>(-<i>x</i>)=(-<i>x</i>)<sup>2</sup>=<i>x</i><sup>2</sup>=<i>g</i>(<i>x</i>),即<i>g</i>(-<i>x</i>)=<i>g</i>(<i>x</i>).
            图3-14(2) 中,函数<i>g</i>(<i>x</i>)=<i>x</i
            ><sup>2</sup
            >的定义域是(-∞,+∞),函数图像也关于<i>y</i>轴对称.表3-12中,当自变量取一对相反数时,对应的函数值相等,如<i>g</i>(-1)=<i>g</i>(1)=1,<i>g</i>(-2)=<i>g</i>(2)=4,<i>g</i>(-3)=<i>g</i>(3)=9,…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>g</i>(-<i>x</i>)=(-<i>x</i>)<sup>2</sup>=<i
              >x</i
            ><sup>2</sup
            >=<i>g</i>(<i>x</i>),即<i>g</i>(-<i>x</i>)=<i>g</i>(<i>x</i>).
          </p>
          <p>
            这两个函数的图像都关于 <i>y</i> 轴对称;当自变量取定义域中任意一对相
@@ -115,44 +130,96 @@
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,设函数<i>f</i>(<i>x</i>)的定义域为<i>D</i>,如果对于<span class="u">任意</span><i>x</i>∈<i>D</i>,<span
              class="u">都有</span>-<i>x</i>∈<i>D</i>,且<i>f</i>(-<i>x</i>)=<i>f</i>(<i>x</i>),那么函数<i>f</i>(<i>x</i>)就叫作<b>偶函数</b>,如图3-15所示.<b>偶函数的图像关于<i>y</i>轴对称</b>.
            一般地,设函数<i>f</i>(<i>x</i>)的定义域为<i>D</i>,如果对于<span
              class="u"
              >任意</span
            ><i>x</i>∈<i>D</i>,<span class="u">都有</span
            >-<i>x</i>∈<i>D</i>,且<i>f</i>(-<i>x</i>)=<i>f</i>(<i>x</i>),那么函数<i>f</i>(<i>x</i>)就叫作<b>偶函数</b>,如图3-15所示.<b>偶函数的图像关于<i>y</i>轴对称</b>.
          </p>
          <p>
            我们可以由函数的图像是否关于<i>y</i>轴对称来判断函数是不是偶函数.
          </p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/images/0101-1.jpg" style="width: 40%" />
            <img
              class="img-c"
              alt=""
              src="../../assets/images/0101-1.jpg"
              style="width: 40%"
            />
          </p>
          <p class="img fl fl-cn ju-cn">
            <span>图3-15</span>
            <el-tooltip class="item" effect="dark" :content="chapterData.isCollectImg ? '点击取消' : '点击收藏'"
              placement="top-start">
              <img :src="collectResourceList.findIndex(item => item.id == '722FE833') > -1 ? collectCheck : collectImg"
                alt="" class="collect-btn" @click="handleCollect('img')" />
            <el-tooltip
              class="item"
              effect="dark"
              :content="chapterData.isCollectImg ? '点击取消' : '点击收藏'"
              placement="top-start"
            >
              <img
                :src="
                  collectResourceList.findIndex(
                    (item) => item.id == '722FE833'
                  ) > -1
                    ? collectCheck
                    : collectImg
                "
                alt=""
                class="collect-btn"
                @click="handleCollect('img')"
              />
            </el-tooltip>
          </p>
          <video :src="videoPath" webkit-playsinline="true" x-webkit-airplay="true" playsinline="true"
            x5-video-orientation="h5" x5-video-player-fullscreen="true" x5-playsinline="" controls
            controlslist="nodownload" class="video-border w100"></video>
          <video
            :src="videoPath"
            webkit-playsinline="true"
            x-webkit-airplay="true"
            playsinline="true"
            x5-video-orientation="h5"
            x5-video-player-fullscreen="true"
            x5-playsinline=""
            controls
            controlslist="nodownload"
            class="video-border w100"
          ></video>
          <p class="img fl fl-cn ju-cn">
            <span>视频:判数函数奇偶性的方法和步骤 </span>
            <el-tooltip class="item" effect="dark" :content="chapterData.isCollectVideo ? '点击取消' : '点击收藏'"
              placement="top-start">
            <el-tooltip
              class="item"
              effect="dark"
              :content="chapterData.isCollectVideo ? '点击取消' : '点击收藏'"
              placement="top-start"
            >
              <img
                :src="collectResourceList.findIndex(item => item.id == 'a28cd862d61b5df2201406b76e9f01b0') > -1 ? collectCheck : collectImg"
                alt="" class="collect-btn" @click="handleCollect('video')" />
                :src="
                  collectResourceList.findIndex(
                    (item) => item.id == 'a28cd862d61b5df2201406b76e9f01b0'
                  ) > -1
                    ? collectCheck
                    : collectImg
                "
                alt=""
                class="collect-btn"
                @click="handleCollect('video')"
              />
            </el-tooltip>
          </p>
          <p class="fl">
            <span>
              <span class="zt-ls"><b>例1</b></span> 根据图3-16中函数的图像,判断哪些函数是偶函数.
              <span class="zt-ls"><b>例1</b></span
              > 根据图3-16中函数的图像,判断哪些函数是偶函数.
            </span>
            <span class="btn-box" @click="isShowExampleOne = !isShowExampleOne">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
              <svg
                xmlns="http://www.w3.org/2000/svg"
                width="16.501"
                height="16.501"
                viewBox="0 0 20.501 20.501"
              >
                <path
                  class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
                  transform="translate(-3327.144 15329)"
                />
              </svg>
            </span>
          </p>
@@ -188,15 +255,27 @@
               已知<i>f</i>(<i>x</i>)=|<i>x</i>|+1图像在<i>y</i>轴右边的部分如图3-17所示.试画出这个函数图像在<i>y</i>轴左边的部分.
            </span>
            <span class="btn-box" @click="isShowExampleTwo = !isShowExampleTwo">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
              <svg
                xmlns="http://www.w3.org/2000/svg"
                width="16.501"
                height="16.501"
                viewBox="0 0 20.501 20.501"
              >
                <path
                  class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
                  transform="translate(-3327.144 15329)"
                />
              </svg>
            </span>
          </p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/images/0102-1.jpg" style="width: 40%" />
            <img
              class="img-c"
              alt=""
              src="../../assets/images/0102-1.jpg"
              style="width: 40%"
            />
          </p>
          <p class="img">图3-17</p>
          <p v-if="isShowExampleTwo">
@@ -207,13 +286,22 @@
            如图3-18所示,在<i>y</i>轴右边的图像上取两点<i>A</i>和<i>B</i>,分别画出它们关于<i>y</i>轴对称的点<i>A</i>′和<i>B</i>′,然后连线<i>A</i>′<i>B</i>′,就得到这个函数的图像在<i>y</i>轴左边的部分.
          </p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/images/0102-2.jpg" style="width: 40%" />
            <img
              class="img-c"
              alt=""
              src="../../assets/images/0102-2.jpg"
              style="width: 40%"
            />
          </p>
          <p class="img">图3-18</p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
                <img
                  class="img-gn1"
                  alt=""
                  src="../../assets/images/tbts.jpg"
                />
              </p>
            </div>
            <p class="block">
@@ -221,103 +309,187 @@
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例3</b></span> 判断下列函数是不是偶函数.
            <span class="zt-ls"><b>例3</b></span
            > 判断下列函数是不是偶函数.
          </p>
          <ul>
            <li class="fl fl-cn">
              <p>(1) <i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>+1;</p>
              <span class="btn-box" @click="isShowExampleThree = !isShowExampleThree">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
              <span
                class="btn-box"
                @click="isShowExampleThree = !isShowExampleThree"
              >
                <svg
                  xmlns="http://www.w3.org/2000/svg"
                  width="16.501"
                  height="16.501"
                  viewBox="0 0 20.501 20.501"
                >
                  <path
                    class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                    transform="translate(-3327.144 15329)"
                  />
                </svg>
              </span>
              <span class="btn-box" @click="openThinkingDialog">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.545" height="18.112" viewBox="0 0 20.545 22.112">
                  <path class="a"
                <svg
                  xmlns="http://www.w3.org/2000/svg"
                  width="16.545"
                  height="18.112"
                  viewBox="0 0 20.545 22.112"
                >
                  <path
                    class="a"
                    d="M3771.2-14311.889a2.356,2.356,0,0,1-1.727-.626c-.027-.054-.053-.1-.079-.148l0-.007c-.123-.224-.2-.371-.076-.629a.869.869,0,0,1,.784-.471.205.205,0,0,1,.158.079.205.205,0,0,0,.158.079.187.187,0,0,0,.038.1.143.143,0,0,0,.117.05h.158a.573.573,0,0,0,.471.158,2.2,2.2,0,0,0,.916-.3l.023-.011a.572.572,0,0,1,.471-.158.575.575,0,0,1,.626.626.526.526,0,0,1,.036.409.664.664,0,0,1-.349.375A3.582,3.582,0,0,1,3771.2-14311.889Zm-1.885-1.723h-.155a.718.718,0,0,1-.784-.63.38.38,0,0,1-.021-.3.976.976,0,0,1,.492-.485l4.86-1.252a1.047,1.047,0,0,1,.784.626c.151.3-.128.61-.471.784l-4.705,1.256Zm-.155-1.885H3769a.716.716,0,0,1-.784-.626c-.149-.3.129-.611.471-.784l4.234-1.1v-.158l-.021.007a7.808,7.808,0,0,1-1.861.31,5.3,5.3,0,0,1-3.137-.942,5.789,5.789,0,0,1-2.666-4.076,6.421,6.421,0,0,1,1.256-5.018,7.038,7.038,0,0,1,2.194-1.568,7.848,7.848,0,0,1,2.666-.472,6.43,6.43,0,0,1,2.979.784,4.958,4.958,0,0,1,2.2,2.194,5.522,5.522,0,0,1,.313,5.177,13.113,13.113,0,0,1-1.256,1.882l-.313.313a2.156,2.156,0,0,0-.78,1.244l0,.012a1.731,1.731,0,0,1-1.727,1.723l-.313.158-3.292.939Zm1.256-6.271v1.256h1.41v-1.256Zm.784-4.234c.718,0,1.1.271,1.1.784a.925.925,0,0,1-.316.783l-.468.156a2.235,2.235,0,0,0-.63.471l-.012.024a2.2,2.2,0,0,0-.3.918v.155h1.1v-.155a1.2,1.2,0,0,1,.313-.629.543.543,0,0,0,.315-.153c.007,0,.315,0,.315-.16a1.226,1.226,0,0,0,.626-.626,2.277,2.277,0,0,0,.313-1.1,1.409,1.409,0,0,0-.626-1.252,2.337,2.337,0,0,0-1.569-.471,2.258,2.258,0,0,0-2.507,2.353l1.252.154A1.121,1.121,0,0,1,3771.2-14326Zm-6.51,9.645a.769.769,0,0,1-.549-.237.772.772,0,0,1-.235-.549.772.772,0,0,1,.235-.548l.939-.939a.781.781,0,0,1,.55-.234.772.772,0,0,1,.547.234.772.772,0,0,1,.238.549.772.772,0,0,1-.238.549l-.939.938A.769.769,0,0,1,3764.686-14316.356Zm13.174-.157a.774.774,0,0,1-.549-.234l-.943-.942a.678.678,0,0,1-.233-.47.678.678,0,0,1,.233-.47.774.774,0,0,1,.549-.234.774.774,0,0,1,.549.234l.942.939a.427.427,0,0,1,.228.324.74.74,0,0,1-.228.618A.774.774,0,0,1,3777.859-14316.514Zm2.9-6.351h-1.414c-.469-.158-.784-.474-.784-.784a.743.743,0,0,1,.784-.784h1.414a.743.743,0,0,1,.784.784A.743.743,0,0,1,3780.761-14322.864Zm-17.566-.158h-1.41c-.469-.157-.784-.473-.784-.784a.743.743,0,0,1,.784-.784h1.41a.743.743,0,0,1,.784.784A.743.743,0,0,1,3763.195-14323.022Zm13.861-5.723a.759.759,0,0,1-.529-.237.776.776,0,0,1-.235-.549.772.772,0,0,1,.235-.549l.939-.938a.44.44,0,0,1,.413-.238.759.759,0,0,1,.529.238.772.772,0,0,1,.235.549.772.772,0,0,1-.235.548l-.942.939A.435.435,0,0,1,3777.055-14328.745Zm-11.429,0a.776.776,0,0,1-.55-.237l-.939-1.1a.678.678,0,0,1-.235-.469.678.678,0,0,1,.235-.47.772.772,0,0,1,.549-.238.772.772,0,0,1,.549.238l.939,1.1a.675.675,0,0,1,.238.47.675.675,0,0,1-.238.47A.767.767,0,0,1,3765.626-14328.745Zm5.724-2.273a.743.743,0,0,1-.784-.785v-1.413c.157-.469.473-.784.784-.784a.743.743,0,0,1,.784.784v1.413A.743.743,0,0,1,3771.35-14331.019Z"
                    transform="translate(-3761 14334.001)" />
                    transform="translate(-3761 14334.001)"
                  />
                </svg>
              </span>
              <span class="btn-box" @click="stepDialog = true">
                <svg xmlns="http://www.w3.org/2000/svg" width="15.28" height="17.563" viewBox="0 0 19.28 20.563">
                <svg
                  xmlns="http://www.w3.org/2000/svg"
                  width="15.28"
                  height="17.563"
                  viewBox="0 0 19.28 20.563"
                >
                  <g transform="translate(-109.056 -82.941)">
                    <path class="a"
                    <path
                      class="a"
                      d="M3439.656-15185.7h-12.643a1.815,1.815,0,0,1-1.816-1.81v-16.944a1.83,1.83,0,0,1,1.816-1.809h15.674a1.8,1.8,0,0,1,1.79,1.809v13.93h-4.217a.6.6,0,0,0-.6.6v4.217h0Zm-9.819-2.764a.5.5,0,0,0-.5.5.5.5,0,0,0,.5.5h4a.5.5,0,0,0,.5-.5.5.5,0,0,0-.5-.5Zm0-2a.5.5,0,0,0-.5.5.5.5,0,0,0,.5.5h4a.5.5,0,0,0,.5-.5.5.5,0,0,0-.5-.5Zm1.393-8.525a2.416,2.416,0,0,0-2.416,2.411,2.421,2.421,0,0,0,2.416,2.42h.111a1.8,1.8,0,0,0,1.1,1.1,1.809,1.809,0,0,0,.6.107,1.808,1.808,0,0,0,1.7-1.206h4.072l-.172.172a.635.635,0,0,0-.179.454.569.569,0,0,0,.179.4.637.637,0,0,0,.435.176.6.6,0,0,0,.424-.176l1.2-1.214a.618.618,0,0,0,0-.858l-1.2-1.187a.619.619,0,0,0-.431-.176.6.6,0,0,0-.427.176.615.615,0,0,0,0,.854l.172.176h-4.072a1.8,1.8,0,0,0-1.1-1.1,1.755,1.755,0,0,0-.6-.1,1.808,1.808,0,0,0-1.7,1.206h-.111a.554.554,0,0,1-.145-.016,1.2,1.2,0,0,1-.84-.4,1.217,1.217,0,0,1-.3-.878,1.2,1.2,0,0,1,1.206-1.137.407.407,0,0,1,.069,0h3.729a1.807,1.807,0,0,0,1.118,1.114,1.816,1.816,0,0,0,.576.091,1.789,1.789,0,0,0,1.7-1.205h.309a2.415,2.415,0,0,0,1.679-.775,2.407,2.407,0,0,0,.637-1.729,2.411,2.411,0,0,0-2.419-2.324h-6.213a1.821,1.821,0,0,0-1.107-1.1,1.8,1.8,0,0,0-.6-.1,1.814,1.814,0,0,0-1.706,1.2,1.8,1.8,0,0,0,.077,1.389,1.787,1.787,0,0,0,1.026.92,1.841,1.841,0,0,0,.6.1,1.807,1.807,0,0,0,1.706-1.2h6.266a1.179,1.179,0,0,1,.836.4,1.22,1.22,0,0,1,.305.874,1.213,1.213,0,0,1-1.214,1.146h-.172a1.8,1.8,0,0,0-1.118-1.118,1.711,1.711,0,0,0-.576-.1,1.8,1.8,0,0,0-1.706,1.214Z"
                      transform="translate(-3316.14 15289.201)" />
                    <path class="a"
                      transform="translate(-3316.14 15289.201)"
                    />
                    <path
                      class="a"
                      d="M316.806,239.727a.6.6,0,1,0,.6-.6A.6.6,0,0,0,316.806,239.727Zm-5.421-4.207a.6.6,0,1,0,.6.6A.587.587,0,0,0,311.385,235.52Zm2.4,8.438a.607.607,0,1,0-.6-.613A.621.621,0,0,0,313.789,243.958Z"
                      transform="translate(-196.896 -148.921)" />
                    <path class="a" d="M763.392,793.79l3.262-3.262h-3.262Z" transform="translate(-638.661 -690.634)" />
                      transform="translate(-196.896 -148.921)"
                    />
                    <path
                      class="a"
                      d="M763.392,793.79l3.262-3.262h-3.262Z"
                      transform="translate(-638.661 -690.634)"
                    />
                  </g>
                </svg>
              </span>
              <span class="btn-box" @click="openMathDiaolog">
                <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="15.323"
                  height="15.939" viewBox="0 0 18.323 15.939">
                <svg
                  xmlns="http://www.w3.org/2000/svg"
                  xmlns:xlink="http://www.w3.org/1999/xlink"
                  width="15.323"
                  height="15.939"
                  viewBox="0 0 18.323 15.939"
                >
                  <g transform="translate(-398 -946)">
                    <path class="a"
                    <path
                      class="a"
                      d="M11.985,1.241a.894.894,0,0,1-.242.623.79.79,0,0,1-.6.263.644.644,0,0,1-.547-.229,3.034,3.034,0,0,1-.339-.741A.935.935,0,0,0,10.1.846a.4.4,0,0,0-.291-.1.36.36,0,0,0-.333.18,1.836,1.836,0,0,0-.2.478L8.251,4.753H9.7l-.27.79H8.043l-1.51,4.849a27.9,27.9,0,0,1-1.06,2.93,5.5,5.5,0,0,1-1.316,1.857,3.11,3.11,0,0,1-2.189.755,2.258,2.258,0,0,1-1.455-.409A1.192,1.192,0,0,1,0,14.618a.97.97,0,0,1,.27-.693.894.894,0,0,1,.693-.291.741.741,0,0,1,.693.27,1.815,1.815,0,0,1,.2.693c0,.381.2.575.492.575a.817.817,0,0,0,.693-.478,6.983,6.983,0,0,0,.568-1.469L6,5.543H4.5l.236-.776h1.5l.159-.54a14.548,14.548,0,0,1,.693-2.016A4.544,4.544,0,0,1,8.313.694,2.91,2.91,0,0,1,10.281,0a2.425,2.425,0,0,1,.8.145,1.5,1.5,0,0,1,.693.429.963.963,0,0,1,.236.693Z"
                      transform="translate(398 948)" />
                    <path class="b"
                      transform="translate(398 948)"
                    />
                    <path
                      class="b"
                      d="M18.323,5.668a3.505,3.505,0,0,1-.152,1.046H17.36a3.969,3.969,0,0,0,.166-1.06.5.5,0,0,0-.062-.236.27.27,0,0,0-.249-.132.346.346,0,0,0-.229.076c-.069.055-.222.208-.471.471L14.936,7.489a22.329,22.329,0,0,0-1.552,1.621l-1.815,1.974a2.168,2.168,0,0,1-1.385.859c-.492,0-.741-.333-.741-.991a3.575,3.575,0,0,1,.3-1.385h.914a4.766,4.766,0,0,0-.263,1.1c0,.18.048.263.159.263s.242-.111.464-.333l2.147-2.286c-.006-.033,1.525-1.611,1.524-1.6l1.3-1.385a2.078,2.078,0,0,1,1.385-.8.755.755,0,0,1,.776.388,1.9,1.9,0,0,1,.173.776Z"
                      transform="translate(398 948)" />
                    <path class="a"
                      transform="translate(398 948)"
                    />
                    <path
                      class="a"
                      d="M14.936,7.489l.693,2.251a5.154,5.154,0,0,0,.236.61c.083.159.18.242.3.242a.82.82,0,0,0,.533-.457,4.849,4.849,0,0,0,.339-.817H17.8a4.849,4.849,0,0,1-.693,1.51,2.813,2.813,0,0,1-.873.852,1.766,1.766,0,0,1-.88.27,1.178,1.178,0,0,1-1.018-.464,4.357,4.357,0,0,1-.623-1.309l-.326-1.067a6.4,6.4,0,0,0-.222-.8L12.747,7c-.083-.27-.152-.478-.2-.6a1.136,1.136,0,0,0-.194-.312.4.4,0,0,0-.284-.118c-.326,0-.6.423-.817,1.261h-.769a6.671,6.671,0,0,1,.6-1.5,3.034,3.034,0,0,1,.81-.873,1.663,1.663,0,0,1,.942-.312,1.344,1.344,0,0,1,1.067.471,3.692,3.692,0,0,1,.644,1.268l.139.436C14.672,6.7,14.936,7.489,14.936,7.489Z"
                      transform="translate(398 948)" />
                      transform="translate(398 948)"
                    />
                  </g>
                </svg>
              </span>
            </li>
            <li class="fl fl-cn">
              <p>(2) <i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>;</p>
              <span class="btn-box" @click="isShowExampleFour = !isShowExampleFour">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
              <span
                class="btn-box"
                @click="isShowExampleFour = !isShowExampleFour"
              >
                <svg
                  xmlns="http://www.w3.org/2000/svg"
                  width="16.501"
                  height="16.501"
                  viewBox="0 0 20.501 20.501"
                >
                  <path
                    class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                    transform="translate(-3327.144 15329)"
                  />
                </svg>
              </span>
              <span class="btn-box" @click="openMathDiaolog">
                <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="15.323"
                  height="15.939" viewBox="0 0 18.323 15.939">
                <svg
                  xmlns="http://www.w3.org/2000/svg"
                  xmlns:xlink="http://www.w3.org/1999/xlink"
                  width="15.323"
                  height="15.939"
                  viewBox="0 0 18.323 15.939"
                >
                  <g transform="translate(-398 -946)">
                    <path class="a"
                    <path
                      class="a"
                      d="M11.985,1.241a.894.894,0,0,1-.242.623.79.79,0,0,1-.6.263.644.644,0,0,1-.547-.229,3.034,3.034,0,0,1-.339-.741A.935.935,0,0,0,10.1.846a.4.4,0,0,0-.291-.1.36.36,0,0,0-.333.18,1.836,1.836,0,0,0-.2.478L8.251,4.753H9.7l-.27.79H8.043l-1.51,4.849a27.9,27.9,0,0,1-1.06,2.93,5.5,5.5,0,0,1-1.316,1.857,3.11,3.11,0,0,1-2.189.755,2.258,2.258,0,0,1-1.455-.409A1.192,1.192,0,0,1,0,14.618a.97.97,0,0,1,.27-.693.894.894,0,0,1,.693-.291.741.741,0,0,1,.693.27,1.815,1.815,0,0,1,.2.693c0,.381.2.575.492.575a.817.817,0,0,0,.693-.478,6.983,6.983,0,0,0,.568-1.469L6,5.543H4.5l.236-.776h1.5l.159-.54a14.548,14.548,0,0,1,.693-2.016A4.544,4.544,0,0,1,8.313.694,2.91,2.91,0,0,1,10.281,0a2.425,2.425,0,0,1,.8.145,1.5,1.5,0,0,1,.693.429.963.963,0,0,1,.236.693Z"
                      transform="translate(398 948)" />
                    <path class="b"
                      transform="translate(398 948)"
                    />
                    <path
                      class="b"
                      d="M18.323,5.668a3.505,3.505,0,0,1-.152,1.046H17.36a3.969,3.969,0,0,0,.166-1.06.5.5,0,0,0-.062-.236.27.27,0,0,0-.249-.132.346.346,0,0,0-.229.076c-.069.055-.222.208-.471.471L14.936,7.489a22.329,22.329,0,0,0-1.552,1.621l-1.815,1.974a2.168,2.168,0,0,1-1.385.859c-.492,0-.741-.333-.741-.991a3.575,3.575,0,0,1,.3-1.385h.914a4.766,4.766,0,0,0-.263,1.1c0,.18.048.263.159.263s.242-.111.464-.333l2.147-2.286c-.006-.033,1.525-1.611,1.524-1.6l1.3-1.385a2.078,2.078,0,0,1,1.385-.8.755.755,0,0,1,.776.388,1.9,1.9,0,0,1,.173.776Z"
                      transform="translate(398 948)" />
                    <path class="a"
                      transform="translate(398 948)"
                    />
                    <path
                      class="a"
                      d="M14.936,7.489l.693,2.251a5.154,5.154,0,0,0,.236.61c.083.159.18.242.3.242a.82.82,0,0,0,.533-.457,4.849,4.849,0,0,0,.339-.817H17.8a4.849,4.849,0,0,1-.693,1.51,2.813,2.813,0,0,1-.873.852,1.766,1.766,0,0,1-.88.27,1.178,1.178,0,0,1-1.018-.464,4.357,4.357,0,0,1-.623-1.309l-.326-1.067a6.4,6.4,0,0,0-.222-.8L12.747,7c-.083-.27-.152-.478-.2-.6a1.136,1.136,0,0,0-.194-.312.4.4,0,0,0-.284-.118c-.326,0-.6.423-.817,1.261h-.769a6.671,6.671,0,0,1,.6-1.5,3.034,3.034,0,0,1,.81-.873,1.663,1.663,0,0,1,.942-.312,1.344,1.344,0,0,1,1.067.471,3.692,3.692,0,0,1,.644,1.268l.139.436C14.672,6.7,14.936,7.489,14.936,7.489Z"
                      transform="translate(398 948)" />
                      transform="translate(398 948)"
                    />
                  </g>
                </svg>
              </span>
            </li>
            <li class="fl fl-cn">
              <p>(3) <i>f</i>(<i>x</i>)=5<i>x</i>+2.</p>
              <span class="btn-box" @click="isShowExampleFive = !isShowExampleFive">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
              <span
                class="btn-box"
                @click="isShowExampleFive = !isShowExampleFive"
              >
                <svg
                  xmlns="http://www.w3.org/2000/svg"
                  width="16.501"
                  height="16.501"
                  viewBox="0 0 20.501 20.501"
                >
                  <path
                    class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                    transform="translate(-3327.144 15329)"
                  />
                </svg>
              </span>
              <span class="btn-box" @click="openMathDiaolog">
                <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="15.323"
                  height="15.939" viewBox="0 0 18.323 15.939">
                <svg
                  xmlns="http://www.w3.org/2000/svg"
                  xmlns:xlink="http://www.w3.org/1999/xlink"
                  width="15.323"
                  height="15.939"
                  viewBox="0 0 18.323 15.939"
                >
                  <g transform="translate(-398 -946)">
                    <path class="a"
                    <path
                      class="a"
                      d="M11.985,1.241a.894.894,0,0,1-.242.623.79.79,0,0,1-.6.263.644.644,0,0,1-.547-.229,3.034,3.034,0,0,1-.339-.741A.935.935,0,0,0,10.1.846a.4.4,0,0,0-.291-.1.36.36,0,0,0-.333.18,1.836,1.836,0,0,0-.2.478L8.251,4.753H9.7l-.27.79H8.043l-1.51,4.849a27.9,27.9,0,0,1-1.06,2.93,5.5,5.5,0,0,1-1.316,1.857,3.11,3.11,0,0,1-2.189.755,2.258,2.258,0,0,1-1.455-.409A1.192,1.192,0,0,1,0,14.618a.97.97,0,0,1,.27-.693.894.894,0,0,1,.693-.291.741.741,0,0,1,.693.27,1.815,1.815,0,0,1,.2.693c0,.381.2.575.492.575a.817.817,0,0,0,.693-.478,6.983,6.983,0,0,0,.568-1.469L6,5.543H4.5l.236-.776h1.5l.159-.54a14.548,14.548,0,0,1,.693-2.016A4.544,4.544,0,0,1,8.313.694,2.91,2.91,0,0,1,10.281,0a2.425,2.425,0,0,1,.8.145,1.5,1.5,0,0,1,.693.429.963.963,0,0,1,.236.693Z"
                      transform="translate(398 948)" />
                    <path class="b"
                      transform="translate(398 948)"
                    />
                    <path
                      class="b"
                      d="M18.323,5.668a3.505,3.505,0,0,1-.152,1.046H17.36a3.969,3.969,0,0,0,.166-1.06.5.5,0,0,0-.062-.236.27.27,0,0,0-.249-.132.346.346,0,0,0-.229.076c-.069.055-.222.208-.471.471L14.936,7.489a22.329,22.329,0,0,0-1.552,1.621l-1.815,1.974a2.168,2.168,0,0,1-1.385.859c-.492,0-.741-.333-.741-.991a3.575,3.575,0,0,1,.3-1.385h.914a4.766,4.766,0,0,0-.263,1.1c0,.18.048.263.159.263s.242-.111.464-.333l2.147-2.286c-.006-.033,1.525-1.611,1.524-1.6l1.3-1.385a2.078,2.078,0,0,1,1.385-.8.755.755,0,0,1,.776.388,1.9,1.9,0,0,1,.173.776Z"
                      transform="translate(398 948)" />
                    <path class="a"
                      transform="translate(398 948)"
                    />
                    <path
                      class="a"
                      d="M14.936,7.489l.693,2.251a5.154,5.154,0,0,0,.236.61c.083.159.18.242.3.242a.82.82,0,0,0,.533-.457,4.849,4.849,0,0,0,.339-.817H17.8a4.849,4.849,0,0,1-.693,1.51,2.813,2.813,0,0,1-.873.852,1.766,1.766,0,0,1-.88.27,1.178,1.178,0,0,1-1.018-.464,4.357,4.357,0,0,1-.623-1.309l-.326-1.067a6.4,6.4,0,0,0-.222-.8L12.747,7c-.083-.27-.152-.478-.2-.6a1.136,1.136,0,0,0-.194-.312.4.4,0,0,0-.284-.118c-.326,0-.6.423-.817,1.261h-.769a6.671,6.671,0,0,1,.6-1.5,3.034,3.034,0,0,1,.81-.873,1.663,1.663,0,0,1,.942-.312,1.344,1.344,0,0,1,1.067.471,3.692,3.692,0,0,1,.644,1.268l.139.436C14.672,6.7,14.936,7.489,14.936,7.489Z"
                      transform="translate(398 948)" />
                      transform="translate(398 948)"
                    />
                  </g>
                </svg>
              </span>
@@ -325,12 +497,15 @@
          </ul>
          <div v-if="isShowExampleThree">
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              函数<i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>+1的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,
              <span class="zt-ls"><b>解</b></span
              >(1) 函数<i>f</i>(<i>x</i>)=3<i>x</i
              ><sup>2</sup
              >+1的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,
            </p>
            <p>而</p>
            <p class="center">
              <i>f</i>(-<i>x</i>)=3(-<i>x</i>)<sup>2</sup>+1=3<i>x</i><sup>2</sup>+1=<i>f</i>(<i>x</i>),
              <i>f</i>(-<i>x</i>)=3(-<i>x</i>)<sup>2</sup>+1=3<i>x</i
              ><sup>2</sup>+1=<i>f</i>(<i>x</i>),
            </p>
            <p>
              所以,函数<i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>+1是偶函数.
@@ -338,14 +513,18 @@
          </div>
          <div v-if="isShowExampleFour">
            <p>
              (2)
              函数<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,而
              (2) 函数<i>f</i>(<i>x</i>)=<i>x</i
              ><sup>2</sup
              >+<i>x</i>的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,而
            </p>
            <p class="center">
              <i>f</i>(-<i>x</i>)=(-<i>x</i>)<sup>2</sup>+(-<i>x</i>)=<i>x</i><sup>2</sup>-<i>x</i>≠<i>f</i>(<i>x</i>),
              <i>f</i>(-<i>x</i>)=(-<i>x</i>)<sup>2</sup>+(-<i>x</i>)=<i
                >x</i
              ><sup>2</sup>-<i>x</i>≠<i>f</i>(<i>x</i>),
            </p>
            <p>
              所以,函数<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>不是偶函数.
              所以,函数<i>f</i>(<i>x</i>)=<i>x</i
              ><sup>2</sup>+<i>x</i>不是偶函数.
            </p>
          </div>
          <div v-if="isShowExampleFive">
@@ -354,20 +533,31 @@
              函数<i>f</i>(<i>x</i>)=5<i>x</i>+2的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<i>R</i>,而
            </p>
            <p class="center">
              <i>f</i>(-<i>x</i>)=5(-<i>x</i>)+2=-5<i>x</i>+2≠<i>f</i>(<i>x</i>),
              <i>f</i
              >(-<i>x</i>)=5(-<i>x</i>)+2=-5<i>x</i>+2≠<i>f</i>(<i>x</i>),
            </p>
            <p>所以,函数<i>f</i>(<i>x</i>)=5<i>x</i>+2不是偶函数.</p>
          </div>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
                <img
                  class="img-gn2"
                  alt=""
                  src="../../assets/images/hzjl.jpg"
                />
              </p>
            </div>
            <p class="block tl">
              如果<i>f</i>(<i>x</i>),<i>g</i>(<i>x</i>)都是定义域为<i>D</i>的偶函数,那么<i>f</i>(<i>x</i>)+<i>g</i>(<i>x</i>)和<i>f</i>(<i>x</i>)<i>g</i>(<i>x</i>)仍是偶函数吗?
              <textarea cols="30" rows="4" v-model="chapterData.txtTwo" placeholder="请输入内容"
                class="w100 ta-br textarea-text" @input="handleChapterData"></textarea>
              <textarea
                cols="30"
                rows="4"
                v-model="chapterData.txtTwo"
                placeholder="请输入内容"
                class="w100 ta-br textarea-text"
                @input="handleChapterData"
              ></textarea>
            </p>
          </div>
        </div>
@@ -385,136 +575,283 @@
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[9]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData" :isReal="false"></examinations>
            <p class="gr-title">四、函数 f(x)=x’-3 的图像在 轴左边的部分如图所示,请你画出这个函数图像在 y轴右边的部分.</p>
            <div style="margin:0 auto;width:330px">
              <graffiti :page="9" :bcImg="this.config.activeBook.resourceUrl + '/images/0103-2.jpg'" :imgHeight="300"
                :imgWidth="300" :bcColor="'#d3edfa'" />
            <examinations
              :cardList="questionData[9]"
              :hideCollect="true"
              sourceType="json"
              inputBc="#d3edfa"
              v-if="questionData"
              :isReal="false"
            ></examinations>
            <p class="gr-title">
              四、函数 f(x)=x’-3 的图像在
              轴左边的部分如图所示,请你画出这个函数图像在 y轴右边的部分.
            </p>
            <div style="margin: 0 auto; width: 330px">
              <graffiti
                :page="9"
                :bcImg="
                  this.config.activeBook.resourceUrl + '/images/0103-2.jpg'
                "
                :imgHeight="300"
                :imgWidth="300"
                :bcColor="'#d3edfa'"
              />
            </div>
          </div>
        </div>
      </div>
    </div>
    <!-- 函数控件弹窗 -->
    <el-dialog :visible.sync="dialogVisible" width="60%" :append-to-body="true" :show-close="false">
      <div slot="title" style="padding: 0 0 15px 0;position: relative;">
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="dialogVisible = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
    <el-dialog
      :visible.sync="dialogVisible"
      width="60%"
      :append-to-body="true"
      :show-close="false"
    >
      <div slot="title" style="padding: 0 0 15px 0; position: relative">
        <svg
          style="position: absolute; right: 10px; cursor: pointer"
          @click="dialogVisible = false"
          t="1718596022986"
          class="icon"
          viewBox="0 0 1024 1024"
          version="1.1"
          xmlns="http://www.w3.org/2000/svg"
          p-id="4252"
          width="20"
          height="20"
          xmlns:xlink="http://www.w3.org/1999/xlink"
        >
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
            fill="#979797"
            p-id="4253"
          ></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
            fill="#979797"
            p-id="4254"
          ></path>
        </svg>
      </div>
      <iframe src="https://www.geogebra.org/calculator" frameborder="0" style="width: 100%; min-height: 800px"></iframe>
      <iframe
        src="https://www.geogebra.org/calculator"
        frameborder="0"
        style="width: 100%; min-height: 800px"
      ></iframe>
    </el-dialog>
    <!-- 解题思路弹窗 -->
    <el-dialog :visible.sync="thinkingDialog" width="40%" :append-to-body="true" :show-close="false">
      <div slot="title" style="padding: 0; text-align: center; color: #333;display:flex;justify-content: center;">
    <el-dialog
      :visible.sync="thinkingDialog"
      width="40%"
      :append-to-body="true"
      :show-close="false"
    >
      <div
        slot="title"
        style="
          padding: 0;
          text-align: center;
          color: #333;
          display: flex;
          justify-content: center;
        "
      >
        <span style=""> 解题思路 </span>
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="thinkingDialog = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
        <svg
          style="position: absolute; right: 10px; cursor: pointer"
          @click="thinkingDialog = false"
          t="1718596022986"
          class="icon"
          viewBox="0 0 1024 1024"
          version="1.1"
          xmlns="http://www.w3.org/2000/svg"
          p-id="4252"
          width="20"
          height="20"
          xmlns:xlink="http://www.w3.org/1999/xlink"
        >
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
            fill="#979797"
            p-id="4253"
          ></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
            fill="#979797"
            p-id="4254"
          ></path>
        </svg>
      </div>
      <ul>
        <li v-for="(item, index) in thinkOne" :key="index">
          <div v-if="item.isShow" style="display: flex">
            <span style="position: relative">
              <span style="position: absolute; top: 16px; left: 13px; color: #fff">{{ index + 1 }}</span>
              <img src="../../assets/images/icon/blue-group.png" alt="" style="margin-right: 10px"
                v-if="index < thinkOne.length - 1" />
              <img src="../../assets/images/icon/blue.png" alt="" v-if="index == thinkOne.length - 1"
                style="margin-right: 10px" />
              <span
                style="position: absolute; top: 16px; left: 13px; color: #fff"
                >{{ index + 1 }}</span
              >
              <img
                src="../../assets/images/icon/blue-group.png"
                alt=""
                style="margin-right: 10px"
                v-if="index < thinkOne.length - 1"
              />
              <img
                src="../../assets/images/icon/blue.png"
                alt=""
                v-if="index == thinkOne.length - 1"
                style="margin-right: 10px"
              />
            </span>
            <p class="txt-p">{{ item.txt }}</p>
          </div>
        </li>
      </ul>
      <div @click="showNext(thinkIndex)" style="
      <div
        @click="showNext(thinkIndex)"
        style="
          display: flex;
          flex-direction: column;
          align-items: center;
          justify-content: center;
        ">
        <img src="../../assets/images/icon/mouse.png" alt="" v-if="thinkIndex != 3" />
        <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" t="1710234570135"
          class="icon" viewBox="0 0 1024 1024" version="1.1" p-id="5067" width="15" height="15">
        "
      >
        <img
          src="../../assets/images/icon/mouse.png"
          alt=""
          v-if="thinkIndex != 3"
        />
        <svg
          xmlns="http://www.w3.org/2000/svg"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          t="1710234570135"
          class="icon"
          viewBox="0 0 1024 1024"
          version="1.1"
          p-id="5067"
          width="15"
          height="15"
        >
          <path
            d="M2.257993 493.371555 415.470783 906.584344 512 1003.113561 608.529217 906.584344 1021.742007 493.371555 925.212789 396.842337 512 810.055127 98.787211 396.842337Z"
            fill="#1296db" p-id="5068" />
            fill="#1296db"
            p-id="5068"
          />
          <path
            d="M2.257993 117.980154 415.470783 531.192944 512 627.722161 608.529217 531.192944 1021.742007 117.980154 925.212789 21.450937 512 434.663727 98.787211 21.450937Z"
            fill="#1296db" p-id="5069" />
            fill="#1296db"
            p-id="5069"
          />
        </svg>
      </div>
    </el-dialog>
    <!-- 解题步骤弹窗 -->
    <el-dialog class="stepDialog" title="解题步骤" :visible.sync="stepDialog" width="40%" :append-to-body="true"
      :show-close="false">
      <div slot="title" style="padding: 0; text-align: center; color: #333;display:flex;justify-content: center;">
        <span>
          解题步骤
        </span>
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="stepDialog = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
    <el-dialog
      class="stepDialog"
      title="解题步骤"
      :visible.sync="stepDialog"
      width="40%"
      :append-to-body="true"
      :show-close="false"
    >
      <div
        slot="title"
        style="
          padding: 0;
          text-align: center;
          color: #333;
          display: flex;
          justify-content: center;
        "
      >
        <span> 解题步骤 </span>
        <svg
          style="position: absolute; right: 10px; cursor: pointer"
          @click="stepDialog = false"
          t="1718596022986"
          class="icon"
          viewBox="0 0 1024 1024"
          version="1.1"
          xmlns="http://www.w3.org/2000/svg"
          p-id="4252"
          width="20"
          height="20"
          xmlns:xlink="http://www.w3.org/1999/xlink"
        >
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
            fill="#979797"
            p-id="4253"
          ></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
            fill="#979797"
            p-id="4254"
          ></path>
        </svg>
      </div>
      <ul>
        <li v-for="(item, index) in stepOne" :key="index">
          <div v-if="item.isShow" style="display: flex">
            <span style="position: relative">
              <span style="position: absolute; top: 16px; left: 13px; color: #fff">{{ index + 1 }}</span>
              <img src="../../assets/images/icon/blue-group.png" alt="" style="margin-right: 10px"
                v-if="index < stepOne.length - 1" />
              <img src="../../assets/images/icon/blue.png" alt="" v-if="index == stepOne.length - 1"
                style="margin-right: 10px" />
              <span
                style="position: absolute; top: 16px; left: 13px; color: #fff"
                >{{ index + 1 }}</span
              >
              <img
                src="../../assets/images/icon/blue-group.png"
                alt=""
                style="margin-right: 10px"
                v-if="index < stepOne.length - 1"
              />
              <img
                src="../../assets/images/icon/blue.png"
                alt=""
                v-if="index == stepOne.length - 1"
                style="margin-right: 10px"
              />
            </span>
            <p class="txt-p">{{ item.txt }}</p>
          </div>
        </li>
      </ul>
      <div @click="showNextChange(stepIndex)" style="
      <div
        @click="showNextChange(stepIndex)"
        style="
          display: flex;
          flex-direction: column;
          align-items: center;
          justify-content: center;
        ">
        <img src="../../assets/images/icon/mouse.png" alt="" v-if="stepIndex != 2" />
        <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" t="1710234570135"
          class="icon" viewBox="0 0 1024 1024" version="1.1" p-id="5067" width="15" height="15">
        "
      >
        <img
          src="../../assets/images/icon/mouse.png"
          alt=""
          v-if="stepIndex != 2"
        />
        <svg
          xmlns="http://www.w3.org/2000/svg"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          t="1710234570135"
          class="icon"
          viewBox="0 0 1024 1024"
          version="1.1"
          p-id="5067"
          width="15"
          height="15"
        >
          <path
            d="M2.257993 493.371555 415.470783 906.584344 512 1003.113561 608.529217 906.584344 1021.742007 493.371555 925.212789 396.842337 512 810.055127 98.787211 396.842337Z"
            fill="#1296db" p-id="5068" />
            fill="#1296db"
            p-id="5068"
          />
          <path
            d="M2.257993 117.980154 415.470783 531.192944 512 627.722161 608.529217 531.192944 1021.742007 117.980154 925.212789 21.450937 512 434.663727 98.787211 21.450937Z"
            fill="#1296db" p-id="5069" />
            fill="#1296db"
            p-id="5069"
          />
        </svg>
      </div>
    </el-dialog>
@@ -523,9 +860,12 @@
<script>
import examinations from "@/components/examinations/index.vue";
import graffiti from '@/components/graffiti/index.vue'
import graffiti from "@/components/graffiti/index.vue";
import { getResourcePath } from "@/assets/methods/resources";
import { getCollectResource, setCollectResource } from "@/assets/methods/resources";
import {
  getCollectResource,
  setCollectResource,
} from "@/assets/methods/resources";
export default {
  name: "chapter-one",
  components: { examinations, graffiti },
@@ -535,8 +875,8 @@
      default: [],
    },
    questionData: {
      type: Object
    }
      type: Object,
    },
  },
  async mounted() {
    const data = localStorage.getItem("math-chapterData");
@@ -544,7 +884,9 @@
      this.chapterData = JSON.parse(data);
    }
    this.getPath();
    this.collectResourceList = await getCollectResource(this.config.activeBook.bookId)
    this.collectResourceList = await getCollectResource(
      this.config.activeBook.bookId
    );
  },
  data() {
    return {
@@ -595,7 +937,7 @@
      dragQuestion: [
        {
          analysisCon: null,
          answer: ['A', 'B', 'C'],
          answer: ["A", "B", "C"],
          difficulty: 0,
          id: "7BC7B760",
          isCollect: false,
@@ -610,21 +952,21 @@
              index: "010311",
              txt: "胆小的",
              value: "A",
              isShow: true
              isShow: true,
            },
            {
              img: "",
              index: "010312",
              txt: "善良的",
              value: "B",
              isShow: true
              isShow: true,
            },
            {
              img: "",
              index: "010313",
              txt: "沉稳的",
              value: "C",
              isShow: true
              isShow: true,
            },
          ],
          optionStyle: "Txt",
@@ -634,38 +976,38 @@
            0: "蚂蚁队长走路昂首挺胸、步伐坚定,它是一只(",
            1: {
              data: "span",
              num: 0
              num: 0,
            },
            2: ")蚂蚁;小蚂蚁走起路来小心翼翼,眼神飘忽不定,它是一只(",
            3: {
              data: "span",
              num: 1
              num: 1,
            },
            4: ")蚂蚁;蚂蚁小妹面带微笑,时刻愿意帮助大家,它是一只(",
            5: {
              data: "span",
              num: 2,
            },
            6: " )蚂蚁"
            6: " )蚂蚁",
          },
          stemStyle: "RichTxt",
          type: "拖拽题",
          userAnswer: [
            {
              vlaue: '',
              txt: ''
              vlaue: "",
              txt: "",
            },
            {
              vlaue: '',
              txt: ''
              vlaue: "",
              txt: "",
            },
            {
              vlaue: '',
              txt: ''
              vlaue: "",
              txt: "",
            },
          ]
          ],
        },
      ]
      ],
    };
  },
  methods: {
@@ -716,9 +1058,23 @@
    // },
    handleCollect(type) {
      if (type == "img") {
        this.handleCollectResource("722FE833", "", 'images/0101-1.jpg', "图片", "json", '图3-15')
        this.handleCollectResource(
          "722FE833",
          "",
          "images/0101-1.jpg",
          "图片",
          "json",
          "图3-15"
        );
      } else if (type == "video") {
        this.handleCollectResource("a28cd862d61b5df2201406b76e9f01b0", "a28cd862d61b5df2201406b76e9f01b0", '', "视频", "bits", '视频:判数函数奇偶性的方法和步骤')
        this.handleCollectResource(
          "a28cd862d61b5df2201406b76e9f01b0",
          "a28cd862d61b5df2201406b76e9f01b0",
          "",
          "视频",
          "bits",
          "视频:判数函数奇偶性的方法和步骤"
        );
        // setCollectResource(this.config.activeBook.bookId,[])
      }
      this.handleChapterData();
@@ -745,11 +1101,18 @@
      }
    },
    //资源收藏事件
    handleCollectResource(id, md5, resourcePath, resourceType, source, resourceName) {
    handleCollectResource(
      id,
      md5,
      resourcePath,
      resourceType,
      source,
      resourceName
    ) {
      console.log(this.collectResourceList);
      let list = this.collectResourceList
      if (list.findIndex(item => item.id == id) > -1) {
        list = list.filter(item => item.id != id)
      let list = this.collectResourceList;
      if (list.findIndex((item) => item.id == id) > -1) {
        list = list.filter((item) => item.id != id);
      } else {
        list.push({
          id,
@@ -758,11 +1121,14 @@
          resourceType,
          source,
          resourceName,
        })
        });
      }
      this.collectResourceList = list
      setCollectResource(this.config.activeBook.bookId, this.collectResourceList)
    }
      this.collectResourceList = list;
      setCollectResource(
        this.config.activeBook.bookId,
        this.collectResourceList
      );
    },
  },
};
</script>
@@ -807,5 +1173,6 @@
  }
}
.stepDialog {}
.stepDialog {
}
</style>
src/components/examinations/index.vue
@@ -1,6 +1,6 @@
<template>
  <div class="examination" v-loading="loading">
    <div v-for="(item, nindex) in cardData" :key="nindex" class="border-box" v-show="item.infoList.length">
    <div v-for="(item, nindex) in cardData" :key="nindex + 'item'" class="border-box" v-show="item.infoList.length">
      <p class="catalogName" :style="{ color: primaryColor }">
        <span v-if="nindex == 0">一、</span>
        <span v-if="nindex == 1">二、</span>
@@ -10,7 +10,7 @@
        <span>{{ item.catalogName }}</span>
      </p>
      <ul>
        <li v-for="(value, index) in item.infoList" :key="value.id" :id="'listItem-' + value.id">
        <li v-for="(value, index) in item.infoList" :key="index + 'value'" :id="'listItem-' + value.id">
          <!-- 标题 -->
          <div class="questionTitle">
            <div class="titleContent">
@@ -40,7 +40,7 @@
              </p>
              <!-- 填空题题干 -->
              <p class="titleText" v-if="value.questionType == 'completion'">
                <span v-for="(itemText, indexText) in value.stem" :key="indexText">
                <span v-for="(itemText, indexText) in value.stem" :key="indexText + 'questionType'">
                  <span v-if="typeof itemText == 'string'" v-html="itemText"></span>
                  <!-- &nbsp; -->
                  <input v-else type="text" class="input" v-model.trim="value.userAnswer[itemText.num]"
@@ -62,7 +62,7 @@
              value.questionType == 'singleChoice' ||
              value.questionType == 'judge'
            " v-model="value.userAnswer">
              <el-radio v-for="content in value.option" :key="content.value" :label="content.value" :class="value.optionStyle == 'Image' ||
              <el-radio v-for="(content,contentIndex) in value.option" :key="contentIndex + 'contentIndex'" :label="content.value" :class="value.optionStyle == 'Image' ||
                value.optionStyle == 'TxtAndImage' ||
                value.optionStyle == 'RichText'
                ? 'optionImg'
@@ -73,8 +73,8 @@
                </p>
                <p class="optionContent" v-else-if="value.optionStyle == 'Image'">
                  {{ content.value }}、<el-image :src="getPublicImage(content.img, 115)" v-show="content.img"
                    :preview-src-list="[getPublicImage(content.img)]" v-if="isReal"></el-image>
                  <img :src="content.img" alt="" v-if="!isReal" class="radio-img" />
                    :preview-src-list="[getPublicImage(content.img)]" v-if="sourceType == 'bits'"></el-image>
                  <img :src="content.img" alt="" v-else class="radio-img" />
                </p>
                <p class="optionContent" v-else-if="value.optionStyle == 'TxtAndImage'">
                  <span> {{ content.value }}、</span><span>{{ content.txt }}</span>
@@ -88,7 +88,7 @@
            <!-- 多选 -->
            <el-checkbox-group :disabled="value.isComplete" v-model="value.userAnswer" class="option"
              v-else-if="value.questionType == 'multipleChoice'">
              <el-checkbox v-for="content in value.option" :key="content.value" :label="content.value"
              <el-checkbox v-for="(content,contentCindex) in value.option" :key="contentCindex + 'contentCindex'" :label="content.value"
                :name="content.text" :class="value.optionStyle == 'Image' ||
                  value.optionStyle == 'TxtAndImage' ||
                  value.optionStyle == 'RichText'
@@ -322,10 +322,6 @@
    },
    page: {
      type: Number,
    },
    isReal: {
      type: Boolean,
      default: true,
    },
    inputBc: {
      type: String,