闫增涛
2024-10-25 d6cc07d3e9c19a4f97f770581bc85ee3550a22ba
src/books/mathBook/view/components/chapter005.vue
@@ -174,18 +174,39 @@
          <p>
            <span class="zt-ls"><b>例1</b></span> 在平面直角坐标系中,分别画出下列各角,并指出它们是第几象限角.
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0168-1.jpg" />
          <p class="p-btn" >
            <span>(1) 225°;</span>
            <span class="btn-box" @click="hadleAnswer(0)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="img">图5-4</p>
          <p>(1) 225°;(2) -300°.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            以<i>x</i>轴的非负半轴为始边,逆时针方向旋转225°,即形成225°角,如图5-4(1)
            所示.因为225°角的终边在第三象限内,所以225°角是第三象限角.
          <div v-if="isShowAnswer0" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              以<i>x</i>轴的非负半轴为始边,逆时针方向旋转225°,即形成225°角,如图5-4(1)
              所示.因为225°角的终边在第三象限内,所以225°角是第三象限角.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0168-1.jpg" />
            </p>
            <p class="img">图5-4</p>
          </div>
          <p class="p-btn" >
            <span>(2) -300°.</span>
            <span class="btn-box" @click="hadleAnswer(1)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            (2)
          <p v-if="isShowAnswer1" >
            <span class="zt-ls"><b>解</b></span>(2)
            以<i>x</i>轴的非负半轴为始边,顺时针方向旋转300°,即形成-300°角,如图5-4(2)
            所示.因为-300°角的终边在第一象限内,所以-300°角是第一象限角.
          </p>
@@ -233,7 +254,7 @@
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>159</span></p>
            <p><span>159-160</span></p>
          </li>
        </ul>
        <div class="padding-116">
@@ -256,57 +277,107 @@
          <p>
            <span class="zt-ls"><b>例1</b></span> 在0°~360°内,找出与下列各角终边相同的角,并分别判断它们是第几象限角.
          </p>
          <p>(1) 600°;(2) -230°;(3) -890°.</p>
          <p>
          <p class="p-btn" >
            <span>(1) 600°;</span>
            <span class="btn-box" @click="hadleAnswer(2)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p v-if="isShowAnswer2" >
            <span class="zt-ls"><b>解</b></span>(1) 因为600°=240°+360°,所以600°角与240°角终边相同,是第三象限角.
          </p>
          <p>
            (2)
          <p class="p-btn" >
            <span>(2) -230°;</span>
            <span class="btn-box" @click="hadleAnswer(3)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p v-if="isShowAnswer3" >
            <span class="zt-ls"><b>解</b></span>(2)
            因为-230°=130°-360°,所以-230°角与130°角终边相同,是第二象限角.
          </p>
          <p>
            (3)
          <p class="p-btn" >
            <span>(3) -890°.</span>
            <span class="btn-box" @click="hadleAnswer(4)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p v-if="isShowAnswer4" >
            <span class="zt-ls"><b>解</b></span>(3)
            因为-890°=190°-3×360°,所以-890°角与190°角终边相同,是第三象限角.
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 写出下列角的集合.
          </p>
          <p>(1) 终边在<i>y</i>轴正半轴上的角的集合;</p>
          <p>(2) 终边在<i>y</i>轴负半轴上的角的集合;</p>
          <p>(3) 终边在<i>y</i>轴上的角的集合.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 在0°~360°内,终边在<i>y</i>轴正半轴上的角是90°角,
          <p class="p-btn" >
            <span>(1) 终边在<i>y</i>轴正半轴上的角的集合;</span>
            <span class="btn-box" @click="hadleAnswer(5)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>所以,终边在<i>y</i>轴正半轴上的角的集合是</p>
          <p class="center">
            <i>S</i>1={<i>β</i>|<i>β</i>=90°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}.
          <div v-if="isShowAnswer5" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 在0°~360°内,终边在<i>y</i>轴正半轴上的角是90°角,
            </p>
            <p>所以,终边在<i>y</i>轴正半轴上的角的集合是</p>
            <p class="center">
              <i>S</i>1={<i>β</i>|<i>β</i>=90°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}.
            </p>
          </div>
          <p class="p-btn" >
            <span>(2) 终边在<i>y</i>轴负半轴上的角的集合;</span>
            <span class="btn-box" @click="hadleAnswer(6)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>(2) 在0°~360°内,终边在<i>y</i>轴负半轴上的角是270°角,</p>
          <p>所以,终边在<i>y</i>轴负半轴上的角的集合是</p>
          <p class="center">
            <i>S</i>2={<i>β</i>|<i>β</i>=270°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}.
          <div v-if="isShowAnswer6" >
            <p><span class="zt-ls"><b>解</b></span>(2) 在0°~360°内,终边在<i>y</i>轴负半轴上的角是270°角,</p>
            <p>所以,终边在<i>y</i>轴负半轴上的角的集合是</p>
            <p class="center">
              <i>S</i>2={<i>β</i>|<i>β</i>=270°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}.
            </p>
          </div>
          <p class="p-btn" >
            <span>(3) 终边在<i>y</i>轴上的角的集合.</span>
            <span class="btn-box" @click="hadleAnswer(7)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
        </div>
      </div>
    </div>
    <!-- 160 -->
    <div class="page-box" page="167">
      <div v-if="showPageList.indexOf(167) > -1">
        <ul class="page-header-odd fl al-end">
          <li>160</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p>(3) 终边在<i>y</i>轴上的角的集合是</p>
          <p><i>S</i>=<i>S</i><sub>1</sub>∪<i>S</i><sub>2</sub></p>
          <p>
            ={<i>β</i>|<i>β</i>=90°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}∪{<i>β</i>|<i>β</i>=270°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}
          </p>
          <p>
            ={<i>β</i>|<i>β</i>=90°+2<i>k</i>·180°,<i>k</i>∈<b>Z</b>}∪{<i>β</i>|<i>β</i>=90°+(2<i>k</i>+1)·180°,<i>k</i>∈<b>Z</b>}
          </p>
          <p>={<i>β</i>|<i>β</i>=90°+<i>m</i>·180°,<i>m</i>∈<b>Z</b>}.</p>
          <div v-if="isShowAnswer7" >
            <p> <span class="zt-ls"><b>解</b></span>(3) 终边在<i>y</i>轴上的角的集合是</p>
            <p><i>S</i>=<i>S</i><sub>1</sub>∪<i>S</i><sub>2</sub></p>
            <p>
              ={<i>β</i>|<i>β</i>=90°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}∪{<i>β</i>|<i>β</i>=270°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}
            </p>
            <p>
              ={<i>β</i>|<i>β</i>=90°+2<i>k</i>·180°,<i>k</i>∈<b>Z</b>}∪{<i>β</i>|<i>β</i>=90°+(2<i>k</i>+1)·180°,<i>k</i>∈<b>Z</b>}
            </p>
            <p>={<i>β</i>|<i>β</i>=90°+<i>m</i>·180°,<i>m</i>∈<b>Z</b>}.</p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -316,6 +387,9 @@
          </div>
        </div>
      </div>
    </div>
    <!-- 160 -->
    <div class="page-box hidePage" page="167">
    </div>
    <!-- 161 -->
    <div class="page-box" page="168">
@@ -328,7 +402,6 @@
            <p><span>161</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <h3 id="c050">习题5.1<span class="fontsz2">>>></span></h3>
          <div class="bj">
@@ -572,90 +645,106 @@
            <img class="img-c" alt="" src="../../assets/images/0174-6.jpg" />
          </p>
          <p class="img">图5-8</p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 把下列各角化为弧度.
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例1</b></span> 把下列各角化为弧度.</span>
            <span class="btn-box" @click="hadleAnswer(8)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>(1) 30°;(2) -225°;(3) 0°.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <msup>
          <div v-if="isShowAnswer8" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(1)</mo>
                <msup>
                  <mn>30</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mn>30</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>30</mn>
              <mo>×</mo>
              <mfrac>
                <mi>π</mi>
                <mn>180</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <mo>−</mo>
              <msup>
                <mn>225</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mo>−</mo>
              <mn>225</mn>
              <mo>×</mo>
              <mfrac>
                <mi>π</mi>
                <mn>180</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                <mo>×</mo>
                <mfrac>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(3)</mo>
              <msup>
                  <mn>180</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo>.</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(2)</mo>
                <mo>−</mo>
                <msup>
                  <mn>225</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mo>−</mo>
                <mn>225</mn>
                <mo>×</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>180</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>.</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(3)</mo>
                <msup>
                  <mn>0</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mn>0</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>0</mn>
              <mo>×</mo>
              <mfrac>
                <mi>π</mi>
                <mn>180</mn>
              </mfrac>
              <mo>=</mo>
              <mn>0</mn>
              <mo>.</mo>
            </math>
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 把下列各角化为角度.
                <mo>×</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>180</mn>
                </mfrac>
                <mo>=</mo>
                <mn>0</mn>
                <mo>.</mo>
              </math>
            </p>
          </div>
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例2</b></span> 把下列各角化为角度.</span>
            <span class="btn-box" @click="hadleAnswer(9)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            (1)
@@ -669,71 +758,73 @@
              </mfrac>
            </math>;(2) 5rad(结果精确到0.01).
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
          <div v-if="isShowAnswer9" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(1)</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <msup>
                  <mn>180</mn>
                  <mn>60</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <msup>
                <mn>60</mn>
                <mo>.</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(2)</mo>
                <mn>5</mn>
                <mrow>
                  <mo>∘</mo>
                  <mi mathvariant="normal">r</mi>
                  <mi mathvariant="normal">a</mi>
                  <mi mathvariant="normal">d</mi>
                </mrow>
              </msup>
              <mo>.</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <mn>5</mn>
              <mrow>
                <mi mathvariant="normal">r</mi>
                <mi mathvariant="normal">a</mi>
                <mi mathvariant="normal">d</mi>
              </mrow>
              <mo>=</mo>
              <mn>5</mn>
              <mo>×</mo>
              <mfrac>
                <mo>=</mo>
                <mn>5</mn>
                <mo>×</mo>
                <mfrac>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mi>π</mi>
                </mfrac>
                <mo>≈</mo>
                <msup>
                  <mn>180</mn>
                  <mn>286.44</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mi>π</mi>
              </mfrac>
              <mo>≈</mo>
              <msup>
                <mn>286.44</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>.</mo>
            </math>
          </p>
          <div class="bk">
                <mo>.</mo>
              </math>
            </p>
          </div>
          <div class="bk mt-60">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
@@ -758,35 +849,59 @@
          <p>
            <span class="zt-ls"><b>例3</b></span> 利用科学计算器,把下列各角进行弧度与角度的互化.(结果精确到0.01)
          </p>
          <p>(1) -5.6;(2) 154°13′.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            先将科学计算器的精确度设置为0.01,再将科学计算器设置为角度计算模式,科学计算器Ⅰ按<img class="inline" alt=""
              src="../../assets/images/0175-1.jpg" />,科学计算器Ⅱ按<img class="inline" alt=""
              src="../../assets/images/0175-2.jpg" />.之后依次按下列各键.
          <p class="p-btn" >
            <span>(1) -5.6;</span>
            <span class="btn-box" @click="hadleAnswer(10)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0175-3.jpg" />
          <div v-if="isShowAnswer10" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              先将科学计算器的精确度设置为0.01,再将科学计算器设置为角度计算模式,科学计算器Ⅰ按<img class="inline" alt=""
                src="../../assets/images/0175-1.jpg" />,科学计算器Ⅱ按<img class="inline" alt=""
                src="../../assets/images/0175-2.jpg" />.之后依次按下列各键.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0175-3.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0175-4.jpg" />
            </p>
            <p>所以 -5.6 <i>rad</i> ≈-320.86°.</p>
          </div>
          <p class="p-btn" >
            <span>(2) 154°13′.</span>
            <span class="btn-box" @click="hadleAnswer(11)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>结果显示:</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0175-4.jpg" />
          </p>
          <p>所以 -5.6 <i>rad</i> ≈-320.86°.</p>
          <p>
            (2)
            先将科学计算器的精确度设置为0.01,再将科学计算器设置为弧度计算模式,科学计算器Ⅰ按<img class="inline" alt=""
              src="../../assets/images/0175-5.jpg" />,科学计算器Ⅱ按<img class="inline" alt=""
              src="../../assets/images/0175-6.jpg" />.之后依次按下列各键.
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0175-7.jpg" />
          </p>
          <p>结果显示:</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0175-8.jpg" />
          </p>
          <p>所以 154°13′≈2.69 rad.</p>
          <div v-if="isShowAnswer11" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2)
              先将科学计算器的精确度设置为0.01,再将科学计算器设置为弧度计算模式,科学计算器Ⅰ按<img class="inline" alt=""
                src="../../assets/images/0175-5.jpg" />,科学计算器Ⅱ按<img class="inline" alt=""
                src="../../assets/images/0175-6.jpg" />.之后依次按下列各键.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0175-7.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0175-8.jpg" />
            </p>
            <p>所以 154°13′≈2.69 rad.</p>
          </div>
          <calculator />
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -992,78 +1107,89 @@
          <p class="center">
            <img class="img-d" alt="" src="../../assets/images/0176-11.jpg" />
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 截至2021年4月,中国高速公路总里程约为16万千米,位居全球第一.某高速公路转弯处为一弧形高架桥,测得此处公路中线的总长为1
            200 m,该弧形高架桥所对应的圆心角为<math display="0">
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
              </mfrac>
            </math>,求该弧形高架桥的转弯半径(结果精确到1 m).
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例1</b></span> 截至2021年4月,中国高速公路总里程约为16万千米,位居全球第一.某高速公路转弯处为一弧形高架桥,测得此处公路中线的总长为1
              200 m,该弧形高架桥所对应的圆心角为<math display="0">
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </math>,求该弧形高架桥的转弯半径(结果精确到1 m).
            </span>
            <span class="btn-box" @click="hadleAnswer(12)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 由题意可知,<i>l</i>=1
            200,<math display="0">
              <mi>α</mi>
          <div v-if="isShowAnswer12" >
            <p>
              <span class="zt-ls"><b>解</b></span> 由题意可知,<i>l</i>=1
              200,<math display="0">
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </math>,由<i>l</i>=<i>αr</i>可得
            </p>
            <math display="block">
              <mi>r</mi>
              <mo>=</mo>
              <mfrac>
                <mi>l</mi>
                <mi>α</mi>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1200</mn>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                  <mn>1200</mn>
                  <mo>×</mo>
                  <mn>5</mn>
                </mrow>
                <mn>5</mn>
              </mfrac>
            </math>,由<i>l</i>=<i>αr</i>可得
          </p>
          <math display="block">
            <mi>r</mi>
            <mo>=</mo>
            <mfrac>
              <mi>l</mi>
              <mi>α</mi>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mn>1200</mn>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
              </mfrac>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mn>1200</mn>
                <mo>×</mo>
                <mn>5</mn>
              </mrow>
              <mrow>
                <mn>3</mn>
              <mo>=</mo>
              <mfrac>
                <mn>2000</mn>
                <mi>π</mi>
              </mfrac>
              <mo>≈</mo>
              <mn>645</mn>
              <mo stretchy="false">(</mo>
              <mrow>
                <mtext>&nbsp;</mtext>
                <mi mathvariant="normal">m</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mn>2000</mn>
              <mi>π</mi>
            </mfrac>
            <mo>≈</mo>
            <mn>645</mn>
            <mo stretchy="false">(</mo>
            <mrow>
              <mtext>&nbsp;</mtext>
              <mi mathvariant="normal">m</mi>
            </mrow>
            <mo stretchy="false">)</mo>
            <mo>.</mo>
          </math>
          <p>所以,该弧形高架桥的转弯半径约为645 m.</p>
              <mo stretchy="false">)</mo>
              <mo>.</mo>
            </math>
            <p>所以,该弧形高架桥的转弯半径约为645 m.</p>
          </div>
        </div>
      </div>
    </div>
@@ -1080,99 +1206,110 @@
            <img class="img-c" alt="" src="../../assets/images/0177-1.jpg" />
          </p>
          <p class="img">图5-10</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 如图5-10所示,要在一块废铁皮上剪出一个扇形,用于制作一个圆锥筒,要求这个扇形的圆心角为60°,半径为90
            cm .请求出这个扇形的弧长与面积.(结果分别精确到0.01 cm和0.01
            cm<sup>2</sup>)
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例2</b></span> 如图5-10所示,要在一块废铁皮上剪出一个扇形,用于制作一个圆锥筒,要求这个扇形的圆心角为60°,半径为90
              cm .请求出这个扇形的弧长与面积.(结果分别精确到0.01 cm和0.01
              cm<sup>2</sup>)
            </span>
            <span class="btn-box" @click="hadleAnswer(13)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 由于<math display="0">
              <msup>
                <mn>60</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>, 所以
          </p>
          <math display="block">
            <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mi>l</mi>
                  <mo>=</mo>
                  <mi>α</mi>
                  <mi>r</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>3</mn>
                  </mfrac>
                  <mo>×</mo>
                  <mn>90</mn>
                  <mo>=</mo>
                  <mn>30</mn>
                  <mi>π</mi>
                  <mo>≈</mo>
                  <mn>94.26</mn>
                  <mo stretchy="false">(</mo>
          <div v-if="isShowAnswer13" >
            <p>
              <span class="zt-ls"><b>解</b></span> 由于<math display="0">
                <msup>
                  <mn>60</mn>
                  <mrow>
                    <mtext>&nbsp;</mtext>
                    <mi mathvariant="normal">c</mi>
                    <mi mathvariant="normal">m</mi>
                    <mo>∘</mo>
                  </mrow>
                  <mo stretchy="false">)</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mi>S</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mi>r</mi>
                  <mi>l</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo>×</mo>
                  <mn>90</mn>
                  <mo>×</mo>
                  <mn>30</mn>
                </msup>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mo>≈</mo>
                  <mn>4241.70</mn>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <msup>
                      <mrow>
                        <mtext>&nbsp;</mtext>
                        <mi mathvariant="normal">c</mi>
                        <mi mathvariant="normal">m</mi>
                      </mrow>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p>
            所以,这个扇形的弧长约为94.26 cm,面积约为4 241.70 cm<sup>2</sup>.
          </p>
                  <mn>3</mn>
                </mfrac>
              </math>, 所以
            </p>
            <math display="block">
              <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mi>l</mi>
                    <mo>=</mo>
                    <mi>α</mi>
                    <mi>r</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>3</mn>
                    </mfrac>
                    <mo>×</mo>
                    <mn>90</mn>
                    <mo>=</mo>
                    <mn>30</mn>
                    <mi>π</mi>
                    <mo>≈</mo>
                    <mn>94.26</mn>
                    <mo stretchy="false">(</mo>
                    <mrow>
                      <mtext>&nbsp;</mtext>
                      <mi mathvariant="normal">c</mi>
                      <mi mathvariant="normal">m</mi>
                    </mrow>
                    <mo stretchy="false">)</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>S</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mn>1</mn>
                      <mn>2</mn>
                    </mfrac>
                    <mi>r</mi>
                    <mi>l</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mn>1</mn>
                      <mn>2</mn>
                    </mfrac>
                    <mo>×</mo>
                    <mn>90</mn>
                    <mo>×</mo>
                    <mn>30</mn>
                    <mi>π</mi>
                    <mo>≈</mo>
                    <mn>4241.70</mn>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <msup>
                        <mrow>
                          <mtext>&nbsp;</mtext>
                          <mi mathvariant="normal">c</mi>
                          <mi mathvariant="normal">m</mi>
                        </mrow>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
            <p>
              所以,这个扇形的弧长约为94.26 cm,面积约为4 241.70 cm<sup>2</sup>.
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -1509,7 +1646,6 @@
        </div>
      </div>
    </div>
    <!-- 169 -->
    <div class="page-box" page="176">
      <div v-if="showPageList.indexOf(176) > -1">
@@ -1522,105 +1658,116 @@
          </li>
        </ul>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例1</b></span> 如图5-14所示,已知<i>α</i>的终边经过点 <i>P</i>(3,-4),
            求sin<i>α</i>,cos<i>α</i>,tan<i>α</i>的值.
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例1</b></span> 如图5-14所示,已知<i>α</i>的终边经过点 <i>P</i>(3,-4),
              求sin<i>α</i>,cos<i>α</i>,tan<i>α</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(14)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0180-3.jpg" />
          </p>
          <p class="img">图5-14</p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            由已知有<i>x</i>=3,<i>y</i>=-4,
          </p>
          <p>则</p>
          <math display="block">
            <mi>r</mi>
            <mo>=</mo>
            <msqrt>
              <msup>
                <mn>3</mn>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
              <mo>+</mo>
              <mo stretchy="false">(</mo>
              <mo>−</mo>
              <mn>4</mn>
              <msup>
                <mo stretchy="false">)</mo>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
            </msqrt>
            <mo>=</mo>
            <mn>5</mn>
            <mo>.</mo>
          </math>
          <p>于是</p>
          <math display="block">
            <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mi>y</mi>
                    <mi>r</mi>
                  </mfrac>
                  <mo>=</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mn>4</mn>
                    <mn>5</mn>
                  </mfrac>
                  <mo>,</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mi>x</mi>
                    <mi>r</mi>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mn>3</mn>
                    <mn>5</mn>
                  </mfrac>
                  <mo>,</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mi>y</mi>
                    <mi>x</mi>
                  </mfrac>
                  <mo>=</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mn>4</mn>
                    <mn>3</mn>
                  </mfrac>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <div v-if="isShowAnswer36" >
            <p>
              <span class="zt-ls"><b>解</b></span>
              由已知有<i>x</i>=3,<i>y</i>=-4,
            </p>
            <p>则</p>
            <math display="block">
              <mi>r</mi>
              <mo>=</mo>
              <msqrt>
                <msup>
                  <mn>3</mn>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mo>+</mo>
                <mo stretchy="false">(</mo>
                <mo>−</mo>
                <mn>4</mn>
                <msup>
                  <mo stretchy="false">)</mo>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </msqrt>
              <mo>=</mo>
              <mn>5</mn>
              <mo>.</mo>
            </math>
            <p>于是</p>
            <math display="block">
              <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mi>y</mi>
                      <mi>r</mi>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mn>4</mn>
                      <mn>5</mn>
                    </mfrac>
                    <mo>,</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mi>x</mi>
                      <mi>r</mi>
                    </mfrac>
                    <mo>=</mo>
                    <mfrac>
                      <mn>3</mn>
                      <mn>5</mn>
                    </mfrac>
                    <mo>,</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mi>y</mi>
                      <mi>x</mi>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mn>4</mn>
                      <mn>3</mn>
                    </mfrac>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -1650,7 +1797,6 @@
        </div>
      </div>
    </div>
    <!-- 170 -->
    <div class="page-box" page="177">
      <div v-if="showPageList.indexOf(177) > -1">
@@ -1754,9 +1900,114 @@
          <p>
            <span class="zt-ls"><b>例2</b></span> 确定下列各三角函数值的符号.
          </p>
          <p>
            (1) sin(-210°);(2) tan760°;(3)
            <math display="0">
          <p class="p-btn" >
            <span>(1) sin(-210°);</span>
            <span class="btn-box" @click="hadleAnswer(15)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer15" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 因为-210°是第二象限角,所以
            </p>
            <p class="center">sin(-210°)>0.</p>
          </div>
          <p class="p-btn" >
            <span>(2) tan760°;</span>
            <span class="btn-box" @click="hadleAnswer(16)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer16" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2)
             因为760°=40°+2×360°,可知760°角与40°角的终边相同,是第一象限角,所以
            </p>
            <p class="center">tan 760°>0.</p>
          </div>
          <p class="p-btn" >
            <span>
              (3)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>17</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>12</mn>
                </mfrac>
              </math>.
            </span>
            <span class="btn-box" @click="hadleAnswer(17)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer17" >
            <p>
              <span class="zt-ls"><b>解</b></span>(3) 由<math display="0">
                <mfrac>
                  <mrow>
                    <mn>17</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>12</mn>
                </mfrac>
                <mo>=</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>12</mn>
                </mfrac>
                <mi>π</mi>
              </math>,可看出<math display="0">
                <mi>π</mi>
                <mo>&lt;</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>12</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mrow>
                    <mn>6</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>12</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
              </math>,是第三象限角,
            </p>
            <p>所以</p>
            <math display="block">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
@@ -1766,84 +2017,23 @@
                </mrow>
                <mn>12</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为-210°是第二象限角,所以
          </p>
          <p class="center">sin(-210°)>0.</p>
          <p>
            (2)
            因为760°=40°+2×360°,可知760°角与40°角的终边相同,是第一象限角,所以
          </p>
          <p class="center">tan 760°>0.</p>
          <p>
            (3) 由<math display="0">
              <mfrac>
                <mrow>
                  <mn>17</mn>
                  <mi>π</mi>
                </mrow>
                <mn>12</mn>
              </mfrac>
              <mo>=</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mn>5</mn>
                <mn>12</mn>
              </mfrac>
              <mi>π</mi>
            </math>,可看出<math display="0">
              <mi>π</mi>
              <mo>&lt;</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>12</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mrow>
                  <mn>6</mn>
                  <mi>π</mi>
                </mrow>
                <mn>12</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>,是第三象限角,
              <mn>0</mn>
            </math>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例3</b></span> 根据sin <i>α</i>>0,且cos <i>α</i><0,确定<i>α</i>是第几象限角.
            </span>
            <span class="btn-box" @click="hadleAnswer(18)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>所以</p>
          <math display="block">
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>17</mn>
                <mi>π</mi>
              </mrow>
              <mn>12</mn>
            </mfrac>
            <mo>&lt;</mo>
            <mn>0</mn>
          </math>
          <p>
            <span class="zt-ls"><b>例3</b></span> 根据sin <i>α</i>>0,且cos <i>α</i><0,确定<i>α</i>是第几象限角.
          </p>
          <p>
          <p v-if="isShowAnswer18">
            <span class="zt-ls"><b>解</b></span> 因为sin
            <i>α</i>>0,所以<i>α</i>的终边在第一或第二象限或<i>y</i>轴的正半轴上;又因为cos<i>α</i><0,所以<i>α</i>的终边在第二或第三象限或<i>x</i>轴的负半轴上.因此,<i>α</i>为第二象限角.
          </p>
@@ -1960,128 +2150,153 @@
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>173</span></p>
            <p><span>173-174</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例4</b></span> 求5sin180°-4sin90°+2tan180°-7sin270°的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 5sin 180°-4sin 90°+2 tan
            180°-7sin 270°
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例4</b></span> 求5sin180°-4sin90°+2tan180°-7sin270°的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(19)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>=5×0-4×1+2×0-7×(-1)</p>
          <p>=3.</p>
          <p>
            <span class="zt-ls"><b>例5</b></span> 求<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>−</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>+</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>π</mi>
              <mo>−</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
          <div v-if="isShowAnswer19" >
            <p>
              <span class="zt-ls"><b>解</b></span> 5sin 180°-4sin 90°+2 tan
              180°-7sin 270°
            </p>
            <p>=5×0-4×1+2×0-7×(-1)</p>
            <p>=3.</p>
          </div>
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例5</b></span> 求<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mtable displaystyle="true"
                columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>6</mn>
                    </mfrac>
                    <mo>−</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>3</mn>
                    </mfrac>
                    <mo>+</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                  <mn>6</mn>
                </mfrac>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>+</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mrow>
                        <mn>3</mn>
                        <mi>π</mi>
                      </mrow>
                      <mn>2</mn>
                    </mfrac>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>=</mo>
                  </mtd>
                  <mtd>
                    <mfrac>
                      <mn>1</mn>
                      <mn>2</mn>
                    </mfrac>
                    <mo>−</mo>
                    <mfrac>
                      <mn>1</mn>
                      <mn>2</mn>
                    </mfrac>
                    <mo>+</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mn>1</mn>
                    <mo stretchy="false">)</mo>
                    <mo>−</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mn>1</mn>
                    <mo stretchy="false">)</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>=</mo>
                  </mtd>
                  <mtd>
                    <mn>0</mn>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
              </math>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(20)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer20" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mtable displaystyle="true"
                  columnalign="right left right left right left right left right left right left"
                  columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mi>π</mi>
                        <mn>6</mn>
                      </mfrac>
                      <mo>−</mo>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mi>π</mi>
                        <mn>3</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>π</mi>
                      <mo>−</mo>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mrow>
                          <mn>3</mn>
                          <mi>π</mi>
                        </mrow>
                        <mn>2</mn>
                      </mfrac>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mo>=</mo>
                    </mtd>
                    <mtd>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                      <mo>−</mo>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>1</mn>
                      <mo stretchy="false">)</mo>
                      <mo>−</mo>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>1</mn>
                      <mo stretchy="false">)</mo>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mo>=</mo>
                    </mtd>
                    <mtd>
                      <mn>0</mn>
                      <mo>.</mo>
                    </mtd>
                  </mtr>
                </mtable>
              </math>
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -2144,10 +2359,8 @@
        </div>
      </div>
    </div>
    <!-- 174 -->
    <div class="page-box hidePage" page="181"></div>
    <!-- 175 -->
    <div class="page-box" page="182">
      <div v-if="showPageList.indexOf(182) > -1">
@@ -2156,7 +2369,7 @@
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>175</span></p>
            <p><span>175-176</span></p>
          </li>
        </ul>
        <div class="padding-116">
@@ -2229,114 +2442,125 @@
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mn>3</mn>
                <mn>5</mn>
              </mfrac>
            </math>, 且<i>α</i>是第四象限角,求sin<i>α</i>,tan<i>α</i>的值.
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>3</mn>
                  <mn>5</mn>
                </mfrac>
              </math>, 且<i>α</i>是第四象限角,求sin<i>α</i>,tan<i>α</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(21)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为
            <i>α</i>是第四象限角,所以sin<i>α</i><0 .
          </p>
          <math display="block">
            <mtable columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mo>−</mo>
                  <msqrt>
                    <mn>1</mn>
                    <mo>−</mo>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
          <div v-if="isShowAnswer21" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为
              <i>α</i>是第四象限角,所以sin<i>α</i><0 .
            </p>
            <math display="block">
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                  </msqrt>
                  <mo>=</mo>
                  <mo>−</mo>
                  <msqrt>
                    <mn>1</mn>
                    <mo>=</mo>
                    <mo>−</mo>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mfrac>
                          <mn>3</mn>
                          <mn>5</mn>
                        </mfrac>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                  </msqrt>
                  <mo>=</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mn>4</mn>
                    <mn>5</mn>
                  </mfrac>
                  <mo>,</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>α</mi>
                    </mrow>
                    <mrow>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>α</mi>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                    <msqrt>
                      <mn>1</mn>
                      <mo>−</mo>
                      <mfrac>
                        <mn>4</mn>
                        <mn>5</mn>
                      </mfrac>
                    </mrow>
                      <msup>
                        <mi>cos</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>α</mi>
                    </msqrt>
                    <mo>=</mo>
                    <mo>−</mo>
                    <msqrt>
                      <mn>1</mn>
                      <mo>−</mo>
                      <msup>
                        <mrow data-mjx-texclass="INNER">
                          <mo data-mjx-texclass="OPEN">(</mo>
                          <mfrac>
                            <mn>3</mn>
                            <mn>5</mn>
                          </mfrac>
                          <mo data-mjx-texclass="CLOSE">)</mo>
                        </mrow>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </msqrt>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mn>3</mn>
                      <mn>4</mn>
                      <mn>5</mn>
                    </mfrac>
                  </mfrac>
                  <mo>=</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mn>4</mn>
                    <mn>3</mn>
                  </mfrac>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
                    <mo>,</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mrow>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                      </mrow>
                    </mfrac>
                    <mo>=</mo>
                    <mfrac>
                      <mrow>
                        <mo>−</mo>
                        <mfrac>
                          <mn>4</mn>
                          <mn>5</mn>
                        </mfrac>
                      </mrow>
                      <mfrac>
                        <mn>3</mn>
                        <mn>5</mn>
                      </mfrac>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mn>4</mn>
                      <mn>3</mn>
                    </mfrac>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </div>
          <div class="bk">
            <div class="bj1">
              <p class="left">
@@ -2382,8 +2606,33 @@
              </math>.其开方后的符号是由正弦值的象限符号来确定的.同理,开方后余弦值的符号也一样.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例2</b></span> 已知<math display="0">
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例2</b></span> 已知<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>12</mn>
                  <mn>5</mn>
                </mfrac>
              </math>,且<i>α</i>是第三象限角,求sin <i>α</i>,cos <i>α</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(22)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer22" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <math display="block">
              <mtext>&nbsp;由&nbsp;</mtext>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
@@ -2392,179 +2641,151 @@
                <mn>12</mn>
                <mn>5</mn>
              </mfrac>
            </math>,且<i>α</i>是第三象限角,求sin <i>α</i>,cos <i>α</i>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <math display="block">
            <mtext>&nbsp;由&nbsp;</mtext>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mn>12</mn>
              <mn>5</mn>
            </mfrac>
            <mtext>&nbsp;得,&nbsp;</mtext>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mn>12</mn>
              <mn>5</mn>
            </mfrac>
            <mtext>, 即&nbsp;</mtext>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mn>12</mn>
              <mn>5</mn>
            </mfrac>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mtext>.&nbsp;</mtext>
          </math>
          <p>把①代入</p>
          <math display="block">
            <msup>
              <mtext>&nbsp;得,&nbsp;</mtext>
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
                <mrow>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>12</mn>
                <mn>5</mn>
              </mfrac>
              <mtext>, 即&nbsp;</mtext>
              <mi>sin</mi>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>+</mo>
            <msup>
              <mi>cos</mi>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mn>1</mn>
            <mo>,</mo>
          </math>
          <p class="right">①</p>
          <p>得</p>
          <math display="block">
            <mtable columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <msup>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <mfrac>
                        <mn>12</mn>
                        <mn>5</mn>
                      </mfrac>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>α</mi>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo>+</mo>
                  <msup>
                    <mi>cos</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mn>1</mn>
                  <mo>,</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mfrac>
                    <mn>169</mn>
                    <mn>25</mn>
                  </mfrac>
                  <msup>
                    <mi>cos</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mn>1</mn>
                  <mo>,</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <msup>
                    <mi>cos</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mn>25</mn>
                    <mn>169</mn>
                  </mfrac>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p>因为<i>α</i>是第三象限角,所以cos<i>α</i><0.</p>
          <p>
            所以<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mn>12</mn>
                <mn>5</mn>
                <mn>13</mn>
              </mfrac>
            </math>.
          </p>
        </div>
      </div>
    </div>
    <!-- 176 -->
    <div class="page-box" page="183">
      <div v-if="showPageList.indexOf(183) > -1">
        <ul class="page-header-odd fl al-end">
          <li>176</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mtext>.&nbsp;</mtext>
            </math>
            <p>把①代入</p>
            <math display="block">
              <msup>
                <mi>sin</mi>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>+</mo>
              <msup>
                <mi>cos</mi>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mn>1</mn>
              <mo>,</mo>
            </math>
            <p class="right">①</p>
            <p>得</p>
            <math display="block">
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mfrac>
                          <mn>12</mn>
                          <mn>5</mn>
                        </mfrac>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo>+</mo>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mn>1</mn>
                    <mo>,</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mfrac>
                      <mn>169</mn>
                      <mn>25</mn>
                    </mfrac>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mn>1</mn>
                    <mo>,</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mn>25</mn>
                      <mn>169</mn>
                    </mfrac>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
            <p>因为<i>α</i>是第三象限角,所以cos<i>α</i><0.</p>
            <p>
              所以<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>13</mn>
                </mfrac>
              </math>.
            </p>
            <p>
            把<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
@@ -2577,388 +2798,100 @@
              </mfrac>
            </math>代入①式,得
          </p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mn>12</mn>
              <mn>5</mn>
            </mfrac>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mn>12</mn>
              <mn>5</mn>
            </mfrac>
            <mo>×</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
            <math display="block">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mn>12</mn>
                <mn>5</mn>
              </mfrac>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mn>12</mn>
                <mn>5</mn>
              </mfrac>
              <mo>×</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>13</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mn>5</mn>
                <mn>12</mn>
                <mn>13</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>=</mo>
            <mo>−</mo>
            <mfrac>
              <mn>12</mn>
              <mn>13</mn>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>
            <span class="zt-ls"><b>例3</b></span> 求证sin<sup>4</sup><i>α</i>-cos<sup>4</sup><i>α</i>=2sin
            <sup>2</sup><i>α</i>-1.
          </p>
          <p>
            <b>证明</b> sin<sup>4</sup><i>α</i>-cos<sup>4</sup><i>α</i>=(sin
            <sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>)(sin<sup>2</sup><i>α</i>-cos<sup>2</sup><i>α</i>)
          </p>
          <p>=sin<sup>2</sup><i>α</i>-cos<sup>2</sup><i>α</i></p>
          <p>=sin<sup>2</sup><i>α</i>-(1-sin<sup>2</sup><i>α</i>)</p>
          <p>=2sin<sup>2</sup><i>α</i>-1.</p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 化简<math display="0">
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>−</mo>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
                <mrow>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>−</mo>
                  <mn>1</mn>
                </mrow>
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <math display="block">
            <mo>由</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>θ</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>θ</mi>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>θ</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mn>3</mn>
            <mo>,</mo>
            <mo>得</mo>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>θ</mi>
            <mo>=</mo>
            <mo>−</mo>
            <mn>3</mn>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>θ</mi>
            <mo>.</mo>
            <mtable displaystyle="true" columnalign="right left right left right left right left right left right left"
              columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
              <mtr>
                <mtd>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                      <mo>−</mo>
                      <mn>2</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mn>5</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                      <mo>+</mo>
                      <mn>3</mn>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                </mtd>
                <mtd>
                  <mi></mi>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>3</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                      <mo stretchy="false">)</mo>
                      <mo>−</mo>
                      <mn>2</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mn>5</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                      <mo>+</mo>
                      <mn>3</mn>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>3</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                      <mo stretchy="false">)</mo>
                    </mrow>
                  </mfrac>
                </mtd>
              </mtr>
              <mtr>
                <mtd></mtd>
                <mtd>
                  <mi></mi>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mo>−</mo>
                      <mn>14</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mo>−</mo>
                      <mn>4</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mn>7</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              方法一的运算思路是由正弦函数、余弦函数变化为正切函数求出结果,我们简称为“弦化切”;方法二的运算思路是由正切函数变化为正弦函数和余弦函数的关系后求出结果,我们简称为“切化弦”.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例5</b></span> 已知tan<i>θ</i>=-3,求<math display="0">
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>−</mo>
                  <mn>2</mn>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
                <mrow>
                  <mn>5</mn>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>+</mo>
                  <mn>3</mn>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
              </mfrac>
            </math>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 方法一:显然cos <i>θ</i>≠0,
          </p>
          <p class="left1">
            <math display="">
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>−</mo>
                  <mn>2</mn>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
                <mrow>
                  <mn>5</mn>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>+</mo>
                  <mn>3</mn>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>2</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                </mrow>
                <mrow>
                  <mfrac>
                    <mrow>
                      <mn>5</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>−</mo>
                  <mn>2</mn>
                </mrow>
                <mrow>
                  <mn>5</mn>
                  <mo>+</mo>
                  <mn>3</mn>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mo>×</mo>
                  <mo stretchy="false">(</mo>
                  <mo>−</mo>
                  <mn>3</mn>
                  <mo stretchy="false">)</mo>
                  <mo>−</mo>
                  <mn>2</mn>
                </mrow>
                <mrow>
                  <mn>5</mn>
                  <mo>+</mo>
                  <mn>3</mn>
                  <mo>×</mo>
                  <mo stretchy="false">(</mo>
                  <mo>−</mo>
                  <mn>3</mn>
                  <mo stretchy="false">)</mo>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>7</mn>
                <mn>2</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例3</b></span> 求证sin<sup>4</sup><i>α</i>-cos<sup>4</sup><i>α</i>=2sin
              <sup>2</sup><i>α</i>-1.
            </span>
            <span class="btn-box" @click="hadleAnswer(23)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>方法二:</p>
          <p class="left1">
            <math display="">
          <div v-if="isShowAnswer23" >
            <p>
              <b>证明</b> sin<sup>4</sup><i>α</i>-cos<sup>4</sup><i>α</i>=(sin
              <sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>)(sin<sup>2</sup><i>α</i>-cos<sup>2</sup><i>α</i>)
            </p>
            <p>=sin<sup>2</sup><i>α</i>-cos<sup>2</sup><i>α</i></p>
            <p>=sin<sup>2</sup><i>α</i>-(1-sin<sup>2</sup><i>α</i>)</p>
            <p>=2sin<sup>2</sup><i>α</i>-1.</p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例4</b></span> 化简<math display="0">
                <mfrac>
                  <mrow>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>−</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                  <mrow>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>−</mo>
                    <mn>1</mn>
                  </mrow>
                </mfrac>
              </math>.
            </span>
            <span class="btn-box" @click="hadleAnswer(24)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer24" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <math display="block">
              <mo>由</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
@@ -2991,12 +2924,7 @@
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>θ</mi>
              <mo>.</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mtable displaystyle="true"
                columnalign="right left right left right left right left right left right left"
              <mtable displaystyle="true" columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd>
@@ -3093,11 +3021,340 @@
                </mtr>
              </mtable>
            </math>
          </div>
          <div class="bk mt-60">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              方法一的运算思路是由正弦函数、余弦函数变化为正切函数求出结果,我们简称为“弦化切”;方法二的运算思路是由正切函数变化为正弦函数和余弦函数的关系后求出结果,我们简称为“切化弦”.
            </p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例5</b></span> 已知tan<i>θ</i>=-3,求<math display="0">
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                  <mrow>
                    <mn>5</mn>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>+</mo>
                    <mn>3</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                </mfrac>
              </math>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(25)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer25" >
            <p>
              <span class="zt-ls"><b>解</b></span> 方法一:显然cos <i>θ</i>≠0,
            </p>
            <p class="left1">
              <math display="">
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                  <mrow>
                    <mn>5</mn>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>+</mo>
                    <mn>3</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mfrac>
                      <mrow>
                        <mn>4</mn>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                    <mo>−</mo>
                    <mfrac>
                      <mrow>
                        <mn>2</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                  </mrow>
                  <mrow>
                    <mfrac>
                      <mrow>
                        <mn>5</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                    <mo>+</mo>
                    <mfrac>
                      <mrow>
                        <mn>3</mn>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                  </mrow>
                  <mrow>
                    <mn>5</mn>
                    <mo>+</mo>
                    <mn>3</mn>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mo>×</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mn>3</mn>
                    <mo stretchy="false">)</mo>
                    <mo>−</mo>
                    <mn>2</mn>
                  </mrow>
                  <mrow>
                    <mn>5</mn>
                    <mo>+</mo>
                    <mn>3</mn>
                    <mo>×</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mn>3</mn>
                    <mo stretchy="false">)</mo>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mn>7</mn>
                  <mn>2</mn>
                </mfrac>
                <mo>.</mo>
              </math>
            </p>
            <p>方法二:</p>
            <p class="left1">
              <math display="">
                <mo>由</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>θ</mi>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                  <mrow>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <mn>3</mn>
                <mo>,</mo>
                <mo>得</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>θ</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mn>3</mn>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>θ</mi>
                <mo>.</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mtable displaystyle="true"
                  columnalign="right left right left right left right left right left right left"
                  columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                  <mtr>
                    <mtd>
                      <mfrac>
                        <mrow>
                          <mn>4</mn>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                          <mo>−</mo>
                          <mn>2</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                        </mrow>
                        <mrow>
                          <mn>5</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                          <mo>+</mo>
                          <mn>3</mn>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                        </mrow>
                      </mfrac>
                    </mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mfrac>
                        <mrow>
                          <mn>4</mn>
                          <mo stretchy="false">(</mo>
                          <mo>−</mo>
                          <mn>3</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                          <mo stretchy="false">)</mo>
                          <mo>−</mo>
                          <mn>2</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                        </mrow>
                        <mrow>
                          <mn>5</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                          <mo>+</mo>
                          <mn>3</mn>
                          <mo stretchy="false">(</mo>
                          <mo>−</mo>
                          <mn>3</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                          <mo stretchy="false">)</mo>
                        </mrow>
                      </mfrac>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mfrac>
                        <mrow>
                          <mo>−</mo>
                          <mn>14</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                        </mrow>
                        <mrow>
                          <mo>−</mo>
                          <mn>4</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                        </mrow>
                      </mfrac>
                      <mo>=</mo>
                      <mfrac>
                        <mn>7</mn>
                        <mn>2</mn>
                      </mfrac>
                      <mo>.</mo>
                    </mtd>
                  </mtr>
                </mtable>
              </math>
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 176 -->
    <div class="page-box hidePage" page="183">
    </div>
    <!-- 177 -->
    <div class="page-box" page="184">
      <div v-if="showPageList.indexOf(184) > -1">
@@ -3125,7 +3382,6 @@
        </div>
      </div>
    </div>
    <!-- 178 -->
    <div class="page-box" page="185">
      <div v-if="showPageList.indexOf(185) > -1">
@@ -3298,7 +3554,6 @@
        </div>
      </div>
    </div>
    <!-- 179 -->
    <div class="page-box" page="186">
      <div v-if="showPageList.indexOf(186) > -1">
@@ -3310,126 +3565,134 @@
            <p><span>179</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例1</b></span> 求下列三角函数的值.
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例1</b></span> 求下列三角函数的值.</span>
            <span class="btn-box" @click="hadleAnswer(26)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            (1)
            <math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>13</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>;(2)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
              (1)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mn>13</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>;(3) tan 405°.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>13</mn>
                  <mi>π</mi>
              </math>;(2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>5</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
              </math>;(3) tan 405°.
            </p>
          <div v-if="isShowAnswer26" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>13</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>6</mn>
                </mfrac>
                <mo>=</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>6</mn>
                  </mfrac>
                  <mo>+</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo>+</mo>
                <mn>2</mn>
                <mi>π</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>;
          </p>
          <p>
            (2)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
              </math>;
            </p>
            <p>
              (2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>5</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>3</mn>
                  </mfrac>
                  <mo>−</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>−</mo>
                <mn>2</mn>
                <mi>π</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>;
          </p>
          <p>(3) tan405°=tan(45°+360°)=tan45°=1.</p>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>;
            </p>
            <p>(3) tan405°=tan(45°+360°)=tan45°=1.</p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -3696,8 +3959,15 @@
          </li>
        </ul>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例2</b></span> 求下列三角函数的值.
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例2</b></span> 求下列三角函数的值. </span>
            <span class="btn-box" @click="hadleAnswer(27)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            (1) sin 225°;(2)
@@ -3713,190 +3983,192 @@
              </mfrac>
            </math>;(3) tan 570°.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>225</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
          <div v-if="isShowAnswer27" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>180</mn>
                  <mn>225</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>+</mo>
                <mo>=</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>+</mo>
                  <msup>
                    <mn>45</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mo>−</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>45</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>45</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
            </math>;
          </p>
          <p>
             (2)<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                </mfrac>
              </math>;
            </p>
            <p>
               (2)<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>π</mi>
                  <mo>+</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mo>=</mo>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>;
          </p>
          <p>
             (3)<math display="0">
              <mtable displaystyle="true"
                columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <msup>
                      <mn>570</mn>
                      <mrow>
                        <mo>∘</mo>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>;
            </p>
            <p>
               (3)<math display="0">
                <mtable displaystyle="true"
                  columnalign="right left right left right left right left right left right left"
                  columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                  <mtr>
                    <mtd>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <msup>
                        <mn>570</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                    </mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <msup>
                          <mn>210</mn>
                          <mrow>
                            <mo>∘</mo>
                          </mrow>
                        </msup>
                        <mo>+</mo>
                        <msup>
                          <mn>360</mn>
                          <mrow>
                            <mo>∘</mo>
                          </mrow>
                        </msup>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                    </msup>
                  </mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <mo>=</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <msup>
                        <mn>210</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                      <mo>+</mo>
                      <msup>
                        <mn>360</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mo>=</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <msup>
                      <mn>210</mn>
                      <mrow>
                        <mo>∘</mo>
                      <mo>=</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <msup>
                          <mn>180</mn>
                          <mrow>
                            <mo>∘</mo>
                          </mrow>
                        </msup>
                        <mo>+</mo>
                        <msup>
                          <mn>30</mn>
                          <mrow>
                            <mo>∘</mo>
                          </mrow>
                        </msup>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                    </msup>
                    <mo>=</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <msup>
                        <mn>180</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                      <mo>+</mo>
                      <mo>=</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <msup>
                        <mn>30</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mo>=</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <msup>
                      <mn>30</mn>
                      <mrow>
                        <mo>∘</mo>
                      </mrow>
                    </msup>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mfrac>
                      <msqrt>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mfrac>
                        <msqrt>
                          <mn>3</mn>
                        </msqrt>
                        <mn>3</mn>
                      </msqrt>
                      <mn>3</mn>
                    </mfrac>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </p>
                      </mfrac>
                    </mtd>
                  </mtr>
                </mtable>
              </math>
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -4113,8 +4385,15 @@
              利用公式三,可以把负角的三角函数转化为正角的三角函数.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例3</b></span> 求下列三角函数的值.
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例3</b></span> 求下列三角函数的值.</span>
            <span class="btn-box" @click="hadleAnswer(28)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            (1) sin(-45°);(2) cos(-390°);(3)
@@ -4133,123 +4412,140 @@
              <mo stretchy="false">)</mo>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
          <div v-if="isShowAnswer28" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(1)</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <msup>
                    <mn>45</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mo>−</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>45</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>45</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
                <mo>;</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(2)</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <msup>
                    <mn>390</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>390</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>390</mn>
                <mrow>
                  <mo>∘</mo>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mn>30</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>+</mo>
                  <msup>
                    <mn>360</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>30</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>+</mo>
                <msup>
                  <mn>360</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>30</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(3)</mo>
              <mtable displaystyle="true"
                columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                <mo>=</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
                <mo>;</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(3)</mo>
                <mtable displaystyle="true"
                  columnalign="right left right left right left right left right left right left"
                  columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                  <mtr>
                    <mtd>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mo>−</mo>
                        <mfrac>
                          <mrow>
                            <mn>16</mn>
                            <mi>π</mi>
                          </mrow>
                          <mn>3</mn>
                        </mfrac>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                    </mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mrow>
                          <mn>16</mn>
@@ -4257,28 +4553,28 @@
                        </mrow>
                        <mn>3</mn>
                      </mfrac>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                  </mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mrow>
                        <mn>16</mn>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mfrac>
                          <mrow>
                            <mn>4</mn>
                            <mi>π</mi>
                          </mrow>
                          <mn>3</mn>
                        </mfrac>
                        <mo>+</mo>
                        <mn>4</mn>
                        <mi>π</mi>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mn>3</mn>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mrow>
                          <mn>4</mn>
@@ -4286,60 +4582,45 @@
                        </mrow>
                        <mn>3</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mn>4</mn>
                      <mi>π</mi>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mrow>
                        <mn>4</mn>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mi>π</mi>
                        <mo>+</mo>
                        <mfrac>
                          <mi>π</mi>
                          <mn>3</mn>
                        </mfrac>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mn>3</mn>
                    </mfrac>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <mi>π</mi>
                      <mo>+</mo>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mi>π</mi>
                        <mn>3</mn>
                      </mfrac>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>3</mn>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <msqrt>
                      <mn>3</mn>
                    </msqrt>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </p>
                      <mo>=</mo>
                      <mo>−</mo>
                      <msqrt>
                        <mn>3</mn>
                      </msqrt>
                    </mtd>
                  </mtr>
                </mtable>
              </math>
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -4458,8 +4739,15 @@
          <p>
            公式一至公式四统称为三角函数的诱导公式.利用这些公式可以把任意角的三角函数转化为锐角三角函数.
          </p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 求下列三角函数的值.
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例4</b></span> 求下列三角函数的值.</span>
            <span class="btn-box" @click="hadleAnswer(29)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            (1) cos 135°;(2)
@@ -4486,78 +4774,94 @@
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>135</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
          <div v-if="isShowAnswer29" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(1)</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>180</mn>
                  <mn>135</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>−</mo>
                  <msup>
                    <mn>45</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>45</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>45</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>8</mn>
                </mfrac>
                <mo>;</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(2)</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>8</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mrow>
                      <mn>2</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>3</mn>
                  </mfrac>
                  <mo>+</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>=</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>2</mn>
@@ -4565,67 +4869,67 @@
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>+</mo>
                <mn>2</mn>
                <mi>π</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>2</mn>
                <mo>=</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>π</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <msqrt>
                <mn>3</mn>
              </msqrt>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(3)</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>11</mn>
                <mo>=</mo>
                <mo>−</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
                <mo>;</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(3)</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>11</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>4</mn>
                  </mfrac>
                  <mo>+</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
@@ -4633,226 +4937,223 @@
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>+</mo>
                <mn>2</mn>
                <mi>π</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>4</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>π</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>4</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>4</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </p>
          <p>
            <span class="zt-ls"><b>例5</b></span> 化简:<math display="0">
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mo stretchy="false">(</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mi>α</mi>
                  <mo stretchy="false">)</mo>
                  <mo>⋅</mo>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mo stretchy="false">(</mo>
                  <mn>3</mn>
                  <mi>π</mi>
                  <mo>+</mo>
                  <mi>α</mi>
                  <mo stretchy="false">)</mo>
                </mrow>
                <mrow>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mo stretchy="false">(</mo>
                  <mo>−</mo>
                  <mi>π</mi>
                  <mo>+</mo>
                  <mi>α</mi>
                  <mo stretchy="false">)</mo>
                  <mo>⋅</mo>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mo stretchy="false">(</mo>
                  <mn>3</mn>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mi>α</mi>
                  <mo stretchy="false">)</mo>
                  <mo>⋅</mo>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mo stretchy="false">(</mo>
                  <mo>−</mo>
                  <mi>α</mi>
                  <mo>−</mo>
                  <mi>π</mi>
                  <mo stretchy="false">)</mo>
                </mrow>
              </mfrac>
            </math>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mtable displaystyle="true"
                columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd>
                    <mtext>&nbsp;原式&nbsp;</mtext>
                  </mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mfrac>
                      <mrow>
                        <mo>−</mo>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo>⋅</mo>
                        <mo stretchy="false">(</mo>
                        <mo>−</mo>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo stretchy="false">)</mo>
                      </mrow>
                      <mrow>
                        <mo>−</mo>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo stretchy="false">(</mo>
                        <mo>−</mo>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo stretchy="false">)</mo>
                        <mo stretchy="false">(</mo>
                        <mo>−</mo>
                        <mi>tan</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo stretchy="false">)</mo>
                      </mrow>
                    </mfrac>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                </mfrac>
                <mo>.</mo>
              </math>
            </p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例5</b></span> 化简:<math display="0">
                <mfrac>
                  <mrow>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>2</mn>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mfrac>
                      <mrow>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo>⋅</mo>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo>⋅</mo>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo>⋅</mo>
                        <mfrac>
                          <mrow>
                            <mi>sin</mi>
                            <mo data-mjx-texclass="NONE">⁡</mo>
                            <mi>α</mi>
                          </mrow>
                          <mrow>
                            <mi>cos</mi>
                            <mo data-mjx-texclass="NONE">⁡</mo>
                            <mi>α</mi>
                          </mrow>
                        </mfrac>
                      </mrow>
                    </mfrac>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>3</mn>
                    <mi>π</mi>
                    <mo>+</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                  </mrow>
                  <mrow>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mrow>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                      </mrow>
                    </mfrac>
                    <mo>=</mo>
                    <mi>π</mi>
                    <mo>+</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>3</mn>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
                    <mo>−</mo>
                    <mi>π</mi>
                    <mo stretchy="false">)</mo>
                  </mrow>
                </mfrac>
              </math>
            </span>
            <span class="btn-box" @click="hadleAnswer(30)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer30" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mtable displaystyle="true"
                  columnalign="right left right left right left right left right left right left"
                  columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                  <mtr>
                    <mtd>
                      <mtext>&nbsp;原式&nbsp;</mtext>
                    </mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mfrac>
                        <mrow>
                          <mo>−</mo>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo>⋅</mo>
                          <mo stretchy="false">(</mo>
                          <mo>−</mo>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo stretchy="false">)</mo>
                        </mrow>
                        <mrow>
                          <mo>−</mo>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo stretchy="false">(</mo>
                          <mo>−</mo>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo stretchy="false">)</mo>
                          <mo stretchy="false">(</mo>
                          <mo>−</mo>
                          <mi>tan</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo stretchy="false">)</mo>
                        </mrow>
                      </mfrac>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mfrac>
                        <mrow>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo>⋅</mo>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                        </mrow>
                        <mrow>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo>⋅</mo>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo>⋅</mo>
                          <mfrac>
                            <mrow>
                              <mi>sin</mi>
                              <mo data-mjx-texclass="NONE">⁡</mo>
                              <mi>α</mi>
                            </mrow>
                            <mrow>
                              <mi>cos</mi>
                              <mo data-mjx-texclass="NONE">⁡</mo>
                              <mi>α</mi>
                            </mrow>
                          </mfrac>
                        </mrow>
                      </mfrac>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mfrac>
                        <mrow>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                        </mrow>
                        <mrow>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                        </mrow>
                      </mfrac>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>α</mi>
                      <mo>.</mo>
                    </mtd>
                  </mtr>
                </mtable>
              </math>
            </p>
          </div>
          <p><b>归纳总结</b></p>
          <p>
            利用诱导公式,把任意角的三角函数值转化为锐角的三角函数值的一般步骤为:
@@ -4871,7 +5172,7 @@
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>185</span></p>
            <p><span>185-186</span></p>
          </li>
        </ul>
        <div class="padding-116">
@@ -4905,121 +5206,147 @@
          <p>
            <span class="zt-ls"><b>例6</b></span> 利用科学计算器计算.(结果精确到0.01)
          </p>
          <p>
            (1) sin 63°52′41″;(2)<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>;(3)
            <math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
          <p class="p-btn" >
            <span>(1) sin 63°52′41″;</span>
            <span class="btn-box" @click="hadleAnswer(31)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer31" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              先将精确度设置为0.01,再将科学计算器设置为角度计算模式,然后依次按下列各键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-1.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-2.jpg" />
            </p>
            <p>所以 sin 63°52′41″≈0.90.</p>
          </div>
          <p class="p-btn" >
            <span>
              (2)<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>6</mn>
                    <mn>4</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
              </math>;
            </span>
            <span class="btn-box" @click="hadleAnswer(32)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
        </div>
      </div>
    </div>
    <!-- 186 -->
    <div class="page-box" page="193">
      <div v-if="showPageList.indexOf(193) > -1">
        <ul class="page-header-odd fl al-end">
          <li>186</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            先将精确度设置为0.01,再将科学计算器设置为角度计算模式,然后依次按下列各键:
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0197-1.jpg" />
          </p>
          <p>结果显示:</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0197-2.jpg" />
          </p>
          <p>所以 sin 63°52′41″≈0.90.</p>
          <p>
            (2)
            先将精确度设置为0.01,再将科学计算器设置为弧度计算模式,然后依次按下列各键:
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0197-3.jpg" />
          </p>
          <p>结果显示:</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0197-4.jpg" />
          </p>
          <p>
            所以
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mn>0.50</mn>
              <mo>.</mo>
            </math>
          </p>
          <p>
            (3)
            先将精确度设置为0.01,再将科学计算器设置为弧度计算模式,然后依次按下列各键:
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0197-6.jpg" />
          </p>
          <p>结果显示:</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0197-7.jpg" />
          </p>
          <p>
            所以<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
          <div v-if="isShowAnswer32" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2)
              先将精确度设置为0.01,再将科学计算器设置为弧度计算模式,然后依次按下列各键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-3.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-4.jpg" />
            </p>
            <p>
              所以
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>6</mn>
                    <mn>4</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>≈</mo>
              <mo>−</mo>
              <mn>0.73</mn>
              <mo>.</mo>
            </math>
                <mo>=</mo>
                <mo>−</mo>
                <mn>0.50</mn>
                <mo>.</mo>
              </math>
            </p>
          </div>
          <p class="p-btn" >
            <span>
              (3)
              <math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>6</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>.
            </span>
            <span class="btn-box" @click="hadleAnswer(33)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer33" >
            <p>
              <span class="zt-ls"><b>解</b></span>
              (3)
              先将精确度设置为0.01,再将科学计算器设置为弧度计算模式,然后依次按下列各键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-6.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-7.jpg" />
            </p>
            <p>
              所以<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>6</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>≈</mo>
                <mo>−</mo>
                <mn>0.73</mn>
                <mo>.</mo>
              </math>
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -5029,6 +5356,9 @@
          </div>
        </div>
      </div>
    </div>
    <!-- 186 -->
    <div class="page-box hidePage" page="193">
    </div>
    <!-- 187 -->
    <div class="page-box" page="194">
@@ -5230,33 +5560,59 @@
          <p>
            <span class="zt-ls"><b>例1</b></span> 用“五点法”画出下列函数在区间[0,2π]内的简图.
          </p>
          <p>(1) <i>y</i>=-sin<i>x</i>;(2) <i>y</i>=1+sin<i>x</i>.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 列表(表5-6).
          <p class="p-btn" >
            <span>
              (1) <i>y</i>=-sin<i>x</i>;
            </span>
            <span class="btn-box" @click="hadleAnswer(34)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="img">表5-6</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0201-2.jpg" />
          <div v-if="isShowAnswer34" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 列表(表5-6).
            </p>
            <p class="img">表5-6</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0201-2.jpg" />
            </p>
            <p>
              描点连线得<i>y</i>=-sin<i>x</i>在区间[0,2π]内的简图,如图5-27所示.
            </p>
            <p class="center">
              <img class="img-d" alt="" src="../../assets/images/0201-3.jpg" />
            </p>
            <p class="img">图5-27</p>
          </div>
          <p class="p-btn" >
            <span>(2) <i>y</i>=1+sin<i>x</i>.</span>
            <span class="btn-box" @click="hadleAnswer(35)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            描点连线得<i>y</i>=-sin<i>x</i>在区间[0,2π]内的简图,如图5-27所示.
          </p>
          <p class="center">
            <img class="img-d" alt="" src="../../assets/images/0201-3.jpg" />
          </p>
          <p class="img">图5-27</p>
          <p>(2) 列表(表5-7).</p>
          <p class="img">表5-7</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0201-4.jpg" />
          </p>
          <p>
            描点连线得<i>y</i>=1+sin<i>x</i>在区间[0,2π]内的简图,如图5-28所示.
          </p>
          <p class="center">
            <img class="img-d" alt="" src="../../assets/images/0201-5.jpg" />
          </p>
          <p class="img">图5-28</p>
          <div v-if="isShowAnswer35" >
            <p><span class="zt-ls"><b>解</b></span>(2) 列表(表5-7).</p>
            <p class="img">表5-7</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0201-4.jpg" />
            </p>
            <p>
              描点连线得<i>y</i>=1+sin<i>x</i>在区间[0,2π]内的简图,如图5-28所示.
            </p>
            <p class="center">
              <img class="img-d" alt="" src="../../assets/images/0201-5.jpg" />
            </p>
            <p class="img">图5-28</p>
          </div>
          <iframe src="https://www.geogebra.org/calculator" frameborder="0" class="iframe-box"></iframe>
        </div>
      </div>
    </div>
@@ -5371,177 +5727,215 @@
          <p>
            因为sin(-<i>x</i>)=-sin<i>x</i>,所以<i>y</i>=sin<i>x</i>是奇函数,其图像关于原点对称.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mo>−</mo>
                  <mi>a</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>,求<i>a</i>的取值范围.
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mo>−</mo>
                    <mi>a</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
              </math>,求<i>a</i>的取值范围.
            </span>
            <span class="btn-box" @click="hadleAnswer(36)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为 -1≤sin<i>x</i>≤1,
          </p>
          <p>
            所以 <math display="0">
              <mo>−</mo>
              <mn>1</mn>
              <mo>⩽</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mo>−</mo>
                  <mi>a</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
              <mo>⩽</mo>
              <mn>1</mn>
            </math>,
          </p>
          <p>解得 1≤<i>a</i>≤5.</p>
          <div v-if="isShowAnswer36" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为 -1≤sin<i>x</i>≤1,
            </p>
            <p>
              所以 <math display="0">
                <mo>−</mo>
                <mn>1</mn>
                <mo>⩽</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mo>−</mo>
                    <mi>a</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo>⩽</mo>
                <mn>1</mn>
              </math>,
            </p>
            <p>解得 1≤<i>a</i>≤5.</p>
          </div>
          <p>
            <span class="zt-ls"><b>例2</b></span> 求使下列函数取得最大值、最小值的<i>x</i>的集合,并求出这些函数的最大值、最小值.
          </p>
          <p>(1) <i>y</i>=3+sin<i>x</i>;(2) <i>y</i>=-2sin<i>x</i>.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            使函数<i>y</i>=3+sin<i>x</i>取得最大值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最大值的<i>x</i>的集合<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">|</mo>
                  <mstyle scriptlevel="0">
                    <mspace width="thinmathspace"></mspace>
                  </mstyle>
                  <mi>x</mi>
                  <mo>=</mo>
                  <mn>2</mn>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>+</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
                <mo>,</mo>
                <mi>k</mi>
                <mo>∈</mo>
                <mrow>
                  <mi mathvariant="bold">Z</mi>
                </mrow>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>.这时函数<i>y</i>=3+sin<i>x</i>的最大值为<i>y</i>=3+1=4.
          <p class="p-btn" >
            <span>
              (1) <i>y</i>=3+sin<i>x</i>;
            </span>
            <span class="btn-box" @click="hadleAnswer(37)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            使函数<i>y</i>=3+sin<i>x</i>取得最小值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最小值的<i>x</i>的集合<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
          <div v-if="isShowAnswer37" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              使函数<i>y</i>=3+sin<i>x</i>取得最大值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最大值的<i>x</i>的集合<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">|</mo>
                  <mstyle scriptlevel="0">
                    <mspace width="thinmathspace"></mspace>
                  </mstyle>
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mo>=</mo>
                  <mn>2</mn>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">|</mo>
                    <mstyle scriptlevel="0">
                      <mspace width="thinmathspace"></mspace>
                    </mstyle>
                    <mi>x</mi>
                    <mo>=</mo>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                    <mi>k</mi>
                    <mi>π</mi>
                    <mo>+</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>2</mn>
                    </mfrac>
                    <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                  </mrow>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
                <mo>,</mo>
                <mi>k</mi>
                <mo>∈</mo>
                <mrow>
                  <mi mathvariant="bold">Z</mi>
                </mrow>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>.这时函数<i>y</i>=3+sin<i>x</i>的最小值为<i>y</i>=3+(-1)=2.
          </p>
          <p>
            (2)
            使函数<i>y</i>=-2sin<i>x</i>取得最大值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最小值的<i>x</i>的集合<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
              </math>.这时函数<i>y</i>=3+sin<i>x</i>的最大值为<i>y</i>=3+1=4.
            </p>
            <p>
              使函数<i>y</i>=3+sin<i>x</i>取得最小值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最小值的<i>x</i>的集合<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">|</mo>
                  <mstyle scriptlevel="0">
                    <mspace width="thinmathspace"></mspace>
                  </mstyle>
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mo>=</mo>
                  <mn>2</mn>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">|</mo>
                    <mstyle scriptlevel="0">
                      <mspace width="thinmathspace"></mspace>
                    </mstyle>
                    <mi>x</mi>
                    <mo>=</mo>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                    <mi>k</mi>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>2</mn>
                    </mfrac>
                    <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                  </mrow>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
                <mo>,</mo>
                <mi>k</mi>
                <mo>∈</mo>
                <mrow>
                  <mi mathvariant="bold">Z</mi>
                </mrow>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>.这时函数<i>y</i>=-2sin<i>x</i>的最大值为<i>y</i>=-2×(-1)=2.
              </math>.这时函数<i>y</i>=3+sin<i>x</i>的最小值为<i>y</i>=3+(-1)=2.
            </p>
          </div>
          <p class="p-btn" >
            <span>
              (2) <i>y</i>=-2sin<i>x</i>.
            </span>
            <span class="btn-box" @click="hadleAnswer(38)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            使函数<i>y</i>=-2sin<i>x</i>取得最小值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最大值的<i>x</i>的集合<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
          <div v-if="isShowAnswer38" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2)
              使函数<i>y</i>=-2sin<i>x</i>取得最大值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最小值的<i>x</i>的集合<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">|</mo>
                  <mstyle scriptlevel="0">
                    <mspace width="thinmathspace"></mspace>
                  </mstyle>
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mo>=</mo>
                  <mn>2</mn>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>+</mo>
                  <mfrac>
                    <mi>π</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">|</mo>
                    <mstyle scriptlevel="0">
                      <mspace width="thinmathspace"></mspace>
                    </mstyle>
                    <mi>x</mi>
                    <mo>=</mo>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                    <mi>k</mi>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>2</mn>
                    </mfrac>
                    <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                  </mrow>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
                <mo>,</mo>
                <mi>k</mi>
                <mo>∈</mo>
                <mrow>
                  <mi mathvariant="bold">Z</mi>
              </math>.这时函数<i>y</i>=-2sin<i>x</i>的最大值为<i>y</i>=-2×(-1)=2.
            </p>
            <p>
              使函数<i>y</i>=-2sin<i>x</i>取得最小值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最大值的<i>x</i>的集合<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">|</mo>
                    <mstyle scriptlevel="0">
                      <mspace width="thinmathspace"></mspace>
                    </mstyle>
                    <mi>x</mi>
                    <mo>=</mo>
                    <mn>2</mn>
                    <mi>k</mi>
                    <mi>π</mi>
                    <mo>+</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>2</mn>
                    </mfrac>
                    <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                  </mrow>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>.这时函数<i>y</i>=-2sin<i>x</i>的最小值为<i>y</i>=-2×1=-2.
          </p>
              </math>.这时函数<i>y</i>=-2sin<i>x</i>的最小值为<i>y</i>=-2×1=-2.
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -5666,94 +6060,62 @@
          <p>
            <b>例</b> 不求值,利用正弦函数的单调性,比较下列各对正弦值的大小.
          </p>
          <p>
            (1)<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
          <p class="p-btn" >
            <span>
                (1)<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
              </math>与<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>;(2)<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>9</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>与<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>10</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
              </math>;
            </span>
            <span class="btn-box" @click="hadleAnswer(39)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为 <math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>,
          </p>
          <p>
            而<i>y</i>=sin <i>x</i> 在<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
          <div v-if="isShowAnswer39" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 因为 <math display="0">
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
@@ -5761,32 +6123,152 @@
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是减函数,所以
          </p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
              </math>,
            </p>
            <p>
              而<i>y</i>=sin <i>x</i> 在<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>上是减函数,所以
            </p>
            <math display="block">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
                <mi>π</mi>
              </mrow>
              <mn>4</mn>
            </mfrac>
            <mo>&lt;</mo>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>2</mn>
                <mi>π</mi>
              </mrow>
              <mn>3</mn>
            </mfrac>
            <mtext>.&nbsp;</mtext>
          </math>
              </mfrac>
              <mtext>.&nbsp;</mtext>
            </math>
          </div>
          <p class="p-btn" >
            <span>
              (2)<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>9</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>与<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>10</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>.
            </span>
            <span class="btn-box" @click="hadleAnswer(40)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer40" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2) 因为 <math display="0">
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>&lt;</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>9</mn>
                  </mfrac>
                  <mo>&lt;</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>10</mn>
                  </mfrac>
                  <mo>&lt;</mo>
                  <mn>0</mn>
                </math>,
              </p>
              <p>
                而<i>y</i>=sin <i>x</i>在<math display="0">
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">[</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>2</mn>
                    </mfrac>
                    <mo>,</mo>
                    <mn>0</mn>
                    <mo data-mjx-texclass="CLOSE">]</mo>
                  </mrow>
                </math>上是增函数,所以
              </p>
              <math display="block">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>9</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>&lt;</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>10</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>
          </div>
        </div>
      </div>
    </div>
@@ -5803,69 +6285,6 @@
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p>
            (2) 因为 <math display="0">
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>9</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>10</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mn>0</mn>
            </math>,
          </p>
          <p>
            而<i>y</i>=sin <i>x</i>在<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是增函数,所以
          </p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>9</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>&lt;</mo>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>10</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
          </math>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -6022,20 +6441,57 @@
            <p class="img">图5-32</p>
          </div>
          <p><b>例</b> 用“五点法”画出下列函数在区间[0,2π]内的简图.</p>
          <p>(1) <i>y</i>=2cos <i>x</i>;(2) <i>y</i>=-1+cos <i>x</i>.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 列表(表5-10).
          <p class="p-btn" >
            <span>(1) <i>y</i>=2cos <i>x</i>;</span>
            <span class="btn-box" @click="hadleAnswer(41)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="img">表5-10</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0207-5.jpg" />
          <p class="p-btn" >
            <span>(2) <i>y</i>=-1+cos <i>x</i>.</span>
            <span class="btn-box" @click="hadleAnswer(42)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="center">
            <img class="img-f" alt="" src="../../assets/images/0207-6.jpg" />
          </p>
          <p class="img">图5-33</p>
          <p>描点连线得<i>y</i>=2cos <i>x</i>在区间[0,2π]</p>
          <p>内的简图,如图5-33所示.</p>
          <iframe src="https://www.geogebra.org/calculator" frameborder="0" class="iframe-box"></iframe>
          <div v-if="isShowAnswer41" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 列表(表5-10).
            </p>
            <p class="img">表5-10</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0207-5.jpg" />
            </p>
            <p class="center">
              <img class="img-f" alt="" src="../../assets/images/0207-6.jpg" />
            </p>
            <p class="img">图5-33</p>
            <p>描点连线得<i>y</i>=2cos <i>x</i>在区间[0,2π]</p>
            <p>内的简图,如图5-33所示.</p>
          </div>
          <div v-if="isShowAnswer42" >
            <p>(2) 列表(表5-11).</p>
            <p class="img">表5-11</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0208-1.jpg" />
            </p>
            <p>
              描点连线得<i>y</i>=-1+cos
              <i>x</i>在区间[0,2π]内的简图,如图5-34所示.
            </p>
            <p class="center">
              <img class="img-d" alt="" src="../../assets/images/0208-2.jpg" />
            </p>
            <p class="img">图5-34</p>
          </div>
        </div>
      </div>
    </div>
@@ -6051,19 +6507,7 @@
          </li>
        </ul>
        <div class="padding-116">
          <p>(2) 列表(表5-11).</p>
          <p class="img">表5-11</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0208-1.jpg" />
          </p>
          <p>
            描点连线得<i>y</i>=-1+cos
            <i>x</i>在区间[0,2π]内的简图,如图5-34所示.
          </p>
          <p class="center">
            <img class="img-d" alt="" src="../../assets/images/0208-2.jpg" />
          </p>
          <p class="img">图5-34</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -6144,22 +6588,31 @@
            余弦函数<i>y</i>=cos
            <i>x</i>在每一个区间[2<i>k</i>π,2<i>k</i>π+π](<i>k</i>∈<b>Z</b>)上都是减函数,其值由1减小到-1;在每一个区间[2<i>k</i>π+π,2<i>k</i>π+2π](<i>k</i>∈<b>Z</b>)上都是增函数,其值由-1增大到1.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 求函数<i>y</i>=-1+cos <i>x</i>的最大值、最小值、最小正周期及值域.
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例1</b></span> 求函数<i>y</i>=-1+cos <i>x</i>的最大值、最小值、最小正周期及值域.</span>
            <span class="btn-box" @click="hadleAnswer(43)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            当<i>x</i>=2<i>k</i>π(<i>k</i>∈<b>Z</b>)时,函数<i>y</i>=-1+cos
            <i>x</i>的最大值为<i>y</i>=1-1=0;
          </p>
          <p>
            当<i>x</i>=2<i>k</i>π+π(<i>k</i>∈<i>Z</i>)时,函数<i>y</i>=-1+cos
            <i>x</i>的最小值为<i>y</i>=-1-1=-2;
          </p>
          <p>
            函数<i>y</i>=-1+cos <i>x</i>的最小正周期为2π;函数<i>y</i>=-1+cos
            <i>x</i>的值域为[-2,0].
          </p>
          <div v-if="isShowAnswer43" >
            <p>
              <span class="zt-ls"><b>解</b></span>
              当<i>x</i>=2<i>k</i>π(<i>k</i>∈<b>Z</b>)时,函数<i>y</i>=-1+cos
              <i>x</i>的最大值为<i>y</i>=1-1=0;
            </p>
            <p>
              当<i>x</i>=2<i>k</i>π+π(<i>k</i>∈<i>Z</i>)时,函数<i>y</i>=-1+cos
              <i>x</i>的最小值为<i>y</i>=-1-1=-2;
            </p>
            <p>
              函数<i>y</i>=-1+cos <i>x</i>的最小正周期为2π;函数<i>y</i>=-1+cos
              <i>x</i>的值域为[-2,0].
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -6187,87 +6640,60 @@
          <p>
            <span class="zt-ls"><b>例2</b></span> 不求值,利用余弦函数的单调性,比较下列各对余弦值的大小.
          </p>
          <p>
            (1)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>6</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
          <p class="p-btn" >
            <span>
              (1)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>6</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>;(2)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>7</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>与<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
              </math>与<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>8</mn>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
              </math>;
            </span>
            <span class="btn-box" @click="hadleAnswer(44)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为<math display="0">
              <mi>π</mi>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>6</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>,而函数<i>y</i>=cos <i>x</i>在<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
          <div v-if="isShowAnswer44" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 因为<math display="0">
                <mi>π</mi>
                <mo>,</mo>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>6</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
@@ -6275,34 +6701,170 @@
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是增函数,所以
          </p>
          <math display="block">
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>6</mn>
                <mi>π</mi>
              </mrow>
              <mn>5</mn>
            </mfrac>
            <mo>&lt;</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
              </math>,而函数<i>y</i>=cos <i>x</i>在<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mi>π</mi>
                  <mo>,</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>上是增函数,所以
            </p>
            <math display="block">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>6</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
                <mi>π</mi>
              </mrow>
              <mn>4</mn>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>
            (2)<math display="0">
              </mfrac>
              <mo>&lt;</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </div>
          <p class="p-btn" >
            <span>
              (2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>7</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>与<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>8</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>.
            </span>
            <span class="btn-box" @click="hadleAnswer(45)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer45" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2)<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>7</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>7</mn>
                </mfrac>
              </math>,<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>8</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>8</mn>
                </mfrac>
              </math>.
            </p>
            <p>
              因为<math display="0">
                <mn>0</mn>
                <mo>&lt;</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>8</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>7</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
              </math>,而函数<i>y</i>=cos <i>x</i>在0,<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mn>0</mn>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>上是减函数,所以<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>7</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>8</mn>
                </mfrac>
              </math>,即
            </p>
            <math display="block">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
@@ -6314,14 +6876,7 @@
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>7</mn>
              </mfrac>
            </math>,<math display="0">
              <mo>&lt;</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
@@ -6333,86 +6888,9 @@
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>8</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            因为<math display="0">
              <mn>0</mn>
              <mo>&lt;</mo>
              <mfrac>
                <mi>π</mi>
                <mn>8</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mi>π</mi>
                <mn>7</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
            </math>,而函数<i>y</i>=cos <i>x</i>在0,<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mn>0</mn>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是减函数,所以<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>7</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>8</mn>
              </mfrac>
            </math>,即
          </p>
          <math display="block">
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>7</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>&lt;</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>8</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>.</mo>
          </math>
              <mo>.</mo>
            </math>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -6707,22 +7185,31 @@
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
            </math>,且<i>x</i>∈[0,2π] ,求<i>x</i>的值.
                </mfrac>
              </math>,且<i>x</i>∈[0,2π] ,求<i>x</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(46)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
          <p v-if="isShowAnswer46">
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
@@ -6835,95 +7322,106 @@
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 已知<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <msqrt>
                <mn>3</mn>
              </msqrt>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例2</b></span> 已知<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>≠</mo>
                <mfrac>
                <mo>=</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo>≠</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>+</mo>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>+</mo>
                <mi>k</mi>
                <mi>π</mi>
                <mo>,</mo>
                <mi>k</mi>
                <mo>∈</mo>
                <mrow>
                  <mi mathvariant="bold">Z</mi>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,且0°≤<i>x</i>≤360°,求<i>x</i>的值.
              </math>,且0°≤<i>x</i>≤360°,求<i>x</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(47)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <msqrt>
                <mn>3</mn>
              </msqrt>
              <mo>></mo>
              <mn>0</mn>
            </math>,所以<i>x</i>是第一或第三象限角.
          </p>
          <p>
            由<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mn>60</mn>
              <mrow>
                <mo>°</mo>
              </mrow>
              <mo>=</mo>
              <msqrt>
                <mn>3</mn>
              </msqrt>
            </math>可知,符合条件的第一象限角是<i>x</i>=60°.
          </p>
          <p>
            又因为<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mn>180</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
                <mo>+</mo>
          <div v-if="isShowAnswer47" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
                <mo>></mo>
                <mn>0</mn>
              </math>,所以<i>x</i>是第一或第三象限角.
            </p>
            <p>
              由<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mn>60</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mn>60</mn>
              <mrow>
                <mo>°</mo>
              </mrow>
              <mo>=</mo>
              <msqrt>
                <mn>3</mn>
              </msqrt>
            </math>,
          </p>
          <p>所以符合条件的第三象限角是<i>x</i>=180°+60°=240°.</p>
          <p>所以<i>x</i>=60°或<i>x</i>=240°.</p>
                <mo>=</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
              </math>可知,符合条件的第一象限角是<i>x</i>=60°.
            </p>
            <p>
              又因为<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mn>180</mn>
                  <mrow>
                    <mo>°</mo>
                  </mrow>
                  <mo>+</mo>
                  <mn>60</mn>
                  <mrow>
                    <mo>°</mo>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mn>60</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
              </math>,
            </p>
            <p>所以符合条件的第三象限角是<i>x</i>=180°+60°=240°.</p>
            <p>所以<i>x</i>=60°或<i>x</i>=240°.</p>
          </div>
          <div class="bk">
            <div class="bj1">
              <p class="left">
@@ -6942,8 +7440,9 @@
              根据<i>x</i>所在的象限和诱导公式,写出满足题目给定范围的<i>x</i>的值.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例3</b></span> 已知<math display="0">
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例3</b></span> 已知<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
@@ -6953,101 +7452,111 @@
                <mn>2</mn>
              </mfrac>
            </math>,且<i>x</i>∈[-π,π],求<i>x</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(48)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
              <mo>></mo>
              <mn>0</mn>
            </math>,所以<i>x</i>是第一或第四象限角.
          </p>
          <p>
            满足<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>的锐角是<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>,所以符合条件的第一象限角是<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            因为<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
          <div v-if="isShowAnswer48" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo>></mo>
                <mn>0</mn>
              </math>,所以<i>x</i>是第一或第四象限角.
            </p>
            <p>
              满足<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>的锐角是<math display="0">
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
              </math>,所以符合条件的第一象限角是<math display="0">
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
              </math>.
            </p>
            <p>
              因为<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>,
            </p>
            <p>
              所以符合条件的第四象限角是<math display="0">
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>,
          </p>
          <p>
            所以符合条件的第四象限角是<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            所以<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>或<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
              </math>.
            </p>
            <p>
              所以<math display="0">
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
              </math>或<math display="0">
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
              </math>.
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -7085,68 +7594,107 @@
          <p>
            根据已知特殊的三角函数值求角的方法,借助计算工具,可以解决已知任意三角函数值求角的问题.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
              <mi>α</mi>
              <mo>∈</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>,求<i>α</i>的值.(结果精确到0.000 1)
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>,求<i>α</i>的值.(结果精确到0.000 1)
            </span>
            <span class="btn-box" @click="hadleAnswer(49)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>α</mi>
              <mo>∈</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>,所以<i>α</i>在<i>y</i>=sin <i>α</i>的一个单调区间内,这时使sin
            <i>α</i>=0.943 7的角<i>α</i>的值是唯一的.
          <calculator />
          <div v-if="isShowAnswer49" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>,所以<i>α</i>在<i>y</i>=sin <i>α</i>的一个单调区间内,这时使sin
              <i>α</i>=0.943 7的角<i>α</i>的值是唯一的.
            </p>
            <p>
              先将科学计算器的精确度设置为0.000
              1,再将科学计算器设置为弧度计算模式,然后依次按键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0214-4.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0214-5.jpg" />
            </p>
            <p>所以 <i>α</i>≈1.233 6.</p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例2</b></span> 已知cos <i>α</i>=0.694
              3,0°≤<i>α</i>≤180°,求<i>α</i>的值.(结果精确到0.000 1)
            </span>
            <span class="btn-box" @click="hadleAnswer(50)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            先将科学计算器的精确度设置为0.000
            1,再将科学计算器设置为弧度计算模式,然后依次按键:
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0214-4.jpg" />
          </p>
          <p>结果显示:</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0214-5.jpg" />
          </p>
          <p>所以 <i>α</i>≈1.233 6.</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 已知cos <i>α</i>=0.694
            3,0°≤<i>α</i>≤180°,求<i>α</i>的值.(结果精确到0.000 1)
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为0°≤<i>α</i>≤180°,所以<i>α</i>在<i>y</i>=cos
            <i>α</i>的一个单调区间内,这时使cos <i>α</i>=0.694
            3的角<i>α</i>的值是唯一的.
          </p>
          <div v-if="isShowAnswer50" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为0°≤<i>α</i>≤180°,所以<i>α</i>在<i>y</i>=cos
              <i>α</i>的一个单调区间内,这时使cos <i>α</i>=0.694
              3的角<i>α</i>的值是唯一的.
            </p>
            <p>
              先将科学计算器的精确度设置为0.000
              1,再将科学计算器设置为角度计算模式,然后依次按键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-1.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-2.jpg" />
            </p>
            <p>所以<i>α</i>≈46.028 5°.</p>
            <p>
              注意:应当区分所给条件中角的单位是角度还是弧度.如果是角度,计算时应用角度计算模式;
              如果是弧度,计算时应用弧度计算模式.
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -7158,98 +7706,118 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p>
            先将科学计算器的精确度设置为0.000
            1,再将科学计算器设置为角度计算模式,然后依次按键:
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例3</b></span> 已知tan <i>α</i>=-2.747 0,<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,求<i>α</i>的值.(结果精确到0.000 1)
            </span>
            <span class="btn-box" @click="hadleAnswer(51)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0215-1.jpg" />
          <calculator />
          <div v-if="isShowAnswer51" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,所以<i>α</i>在<i>y</i>=tan <i>α</i>的一个单调区间内,这时使tan
              <i>α</i>=-2.747 0的角<i>α</i>的值是唯一的.
            </p>
            <p>
              先将科学计算器的精确度设置为0.000
              1,再将科学计算器设置为弧度计算模式,然后依次按键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-5.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-6.jpg" />
            </p>
            <p>所以 <i>α</i>≈-1.221 7.</p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例4</b></span> 已知sin <i>α</i>=-0.857
              2,<i>α</i>∈[0,2π],求<i>α</i>的值.(结果精确到0.000 1)
            </span>
            <span class="btn-box" @click="hadleAnswer(52)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
            <span class="btn-box" @click="openDialog(thinkOne)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.545" height="18.112" viewBox="0 0 20.545 22.112">
                <path class="a"
                  d="M3771.2-14311.889a2.356,2.356,0,0,1-1.727-.626c-.027-.054-.053-.1-.079-.148l0-.007c-.123-.224-.2-.371-.076-.629a.869.869,0,0,1,.784-.471.205.205,0,0,1,.158.079.205.205,0,0,0,.158.079.187.187,0,0,0,.038.1.143.143,0,0,0,.117.05h.158a.573.573,0,0,0,.471.158,2.2,2.2,0,0,0,.916-.3l.023-.011a.572.572,0,0,1,.471-.158.575.575,0,0,1,.626.626.526.526,0,0,1,.036.409.664.664,0,0,1-.349.375A3.582,3.582,0,0,1,3771.2-14311.889Zm-1.885-1.723h-.155a.718.718,0,0,1-.784-.63.38.38,0,0,1-.021-.3.976.976,0,0,1,.492-.485l4.86-1.252a1.047,1.047,0,0,1,.784.626c.151.3-.128.61-.471.784l-4.705,1.256Zm-.155-1.885H3769a.716.716,0,0,1-.784-.626c-.149-.3.129-.611.471-.784l4.234-1.1v-.158l-.021.007a7.808,7.808,0,0,1-1.861.31,5.3,5.3,0,0,1-3.137-.942,5.789,5.789,0,0,1-2.666-4.076,6.421,6.421,0,0,1,1.256-5.018,7.038,7.038,0,0,1,2.194-1.568,7.848,7.848,0,0,1,2.666-.472,6.43,6.43,0,0,1,2.979.784,4.958,4.958,0,0,1,2.2,2.194,5.522,5.522,0,0,1,.313,5.177,13.113,13.113,0,0,1-1.256,1.882l-.313.313a2.156,2.156,0,0,0-.78,1.244l0,.012a1.731,1.731,0,0,1-1.727,1.723l-.313.158-3.292.939Zm1.256-6.271v1.256h1.41v-1.256Zm.784-4.234c.718,0,1.1.271,1.1.784a.925.925,0,0,1-.316.783l-.468.156a2.235,2.235,0,0,0-.63.471l-.012.024a2.2,2.2,0,0,0-.3.918v.155h1.1v-.155a1.2,1.2,0,0,1,.313-.629.543.543,0,0,0,.315-.153c.007,0,.315,0,.315-.16a1.226,1.226,0,0,0,.626-.626,2.277,2.277,0,0,0,.313-1.1,1.409,1.409,0,0,0-.626-1.252,2.337,2.337,0,0,0-1.569-.471,2.258,2.258,0,0,0-2.507,2.353l1.252.154A1.121,1.121,0,0,1,3771.2-14326Zm-6.51,9.645a.769.769,0,0,1-.549-.237.772.772,0,0,1-.235-.549.772.772,0,0,1,.235-.548l.939-.939a.781.781,0,0,1,.55-.234.772.772,0,0,1,.547.234.772.772,0,0,1,.238.549.772.772,0,0,1-.238.549l-.939.938A.769.769,0,0,1,3764.686-14316.356Zm13.174-.157a.774.774,0,0,1-.549-.234l-.943-.942a.678.678,0,0,1-.233-.47.678.678,0,0,1,.233-.47.774.774,0,0,1,.549-.234.774.774,0,0,1,.549.234l.942.939a.427.427,0,0,1,.228.324.74.74,0,0,1-.228.618A.774.774,0,0,1,3777.859-14316.514Zm2.9-6.351h-1.414c-.469-.158-.784-.474-.784-.784a.743.743,0,0,1,.784-.784h1.414a.743.743,0,0,1,.784.784A.743.743,0,0,1,3780.761-14322.864Zm-17.566-.158h-1.41c-.469-.157-.784-.473-.784-.784a.743.743,0,0,1,.784-.784h1.41a.743.743,0,0,1,.784.784A.743.743,0,0,1,3763.195-14323.022Zm13.861-5.723a.759.759,0,0,1-.529-.237.776.776,0,0,1-.235-.549.772.772,0,0,1,.235-.549l.939-.938a.44.44,0,0,1,.413-.238.759.759,0,0,1,.529.238.772.772,0,0,1,.235.549.772.772,0,0,1-.235.548l-.942.939A.435.435,0,0,1,3777.055-14328.745Zm-11.429,0a.776.776,0,0,1-.55-.237l-.939-1.1a.678.678,0,0,1-.235-.469.678.678,0,0,1,.235-.47.772.772,0,0,1,.549-.238.772.772,0,0,1,.549.238l.939,1.1a.675.675,0,0,1,.238.47.675.675,0,0,1-.238.47A.767.767,0,0,1,3765.626-14328.745Zm5.724-2.273a.743.743,0,0,1-.784-.785v-1.413c.157-.469.473-.784.784-.784a.743.743,0,0,1,.784.784v1.413A.743.743,0,0,1,3771.35-14331.019Z"
                  transform="translate(-3761 14334.001)" />
              </svg>
            </span>
          </p>
          <p>结果显示:</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0215-2.jpg" />
          </p>
          <p>所以<i>α</i>≈46.028 5°.</p>
          <p>
            注意:应当区分所给条件中角的单位是角度还是弧度.如果是角度,计算时应用角度计算模式;
            如果是弧度,计算时应用弧度计算模式.
          </p>
          <p>
            <span class="zt-ls"><b>例3</b></span> 已知tan <i>α</i>=-2.747 0,<math display="0">
              <mi>α</mi>
              <mo>∈</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,求<i>α</i>的值.(结果精确到0.000 1)
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>α</mi>
              <mo>∈</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,所以<i>α</i>在<i>y</i>=tan <i>α</i>的一个单调区间内,这时使tan
            <i>α</i>=-2.747 0的角<i>α</i>的值是唯一的.
          </p>
          <p>
            先将科学计算器的精确度设置为0.000
            1,再将科学计算器设置为弧度计算模式,然后依次按键:
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0215-5.jpg" />
          </p>
          <p>结果显示:</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0215-6.jpg" />
          </p>
          <p>所以 <i>α</i>≈-1.221 7.</p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 已知sin <i>α</i>=-0.857
            2,<i>α</i>∈[0,2π],求<i>α</i>的值.(结果精确到0.000 1)
          </p>
          <p class="block">
            <span class="zt-ls2"><b>分析</b></span> 因为sin <i>α</i>=-0.857
            2<0,在[0,2π]范围内有两个<i>α</i>值满足条件,它们分别位于第三象限和第四象限,即<i>α</i>在[π,2π]范围内.可用科学计算器先求出sin
            <i>α</i>=0.857 2所对应的锐角,再利用诱导公式求出所求的角.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            先将科学计算器的精确度设置为0.000
            1,再将科学计算器设置为弧度计算模式,然后依次按键:
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0215-7.jpg" />
          </p>
          <p>结果显示:</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0215-8.jpg" />
          </p>
          <div v-if="isShowAnswer52" >
            <p>
              <span class="zt-ls"><b>解</b></span>
              先将科学计算器的精确度设置为0.000
              1,再将科学计算器设置为弧度计算模式,然后依次按键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-7.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-8.jpg" />
            </p>
            <p>即</p>
            <p class="center">sin 1.029 8≈0.857 2.</p>
            <p>因为</p>
            <p class="center">sin(π+1.029 8)=-sin 1.029 8≈-0.857 2,</p>
            <p>所以符合条件的第三象限角是π+1.029 8≈4.171 4.</p>
            <p>因为</p>
            <p class="center">sin(2π-1.029 8)=-sin 1.029 8≈-0.857 2,</p>
            <p>所以符合条件的第四象限角是2π-1.029 8≈5.253 4.</p>
            <p>
              所以满足sin <i>α</i>=-0.857
              2,<i>α</i>∈[0,2π]的角<i>α</i>的集合为{4.171 4,5.253 4}.
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -7265,18 +7833,6 @@
          </li>
        </ul>
        <div class="padding-116">
          <p>即</p>
          <p class="center">sin 1.029 8≈0.857 2.</p>
          <p>因为</p>
          <p class="center">sin(π+1.029 8)=-sin 1.029 8≈-0.857 2,</p>
          <p>所以符合条件的第三象限角是π+1.029 8≈4.171 4.</p>
          <p>因为</p>
          <p class="center">sin(2π-1.029 8)=-sin 1.029 8≈-0.857 2,</p>
          <p>所以符合条件的第四象限角是2π-1.029 8≈5.253 4.</p>
          <p>
            所以满足sin <i>α</i>=-0.857
            2,<i>α</i>∈[0,2π]的角<i>α</i>的集合为{4.171 4,5.253 4}.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
@@ -7617,6 +8173,55 @@
    </div>
    <!-- 211 -->
    <div class="page-box hidePage" page="218"></div>
    <!-- 解题思路弹窗 -->
    <el-dialog :visible.sync="thinkingDialog" width="40%" :append-to-body="true" :show-close="false"
      @close="closeDialog" class="thinkDialog">
      <div slot="title" class="think-header"
        style="padding: 0; text-align: center; color: #333;display:flex;justify-content: center;">
        <span style=""> 分析 </span>
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="thinkingDialog = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
        </svg>
      </div>
      <ul>
        <li v-for="(item, index) in thinkData" :key="index">
          <div v-if="index <= showIndex" style="display: flex">
            <span style="position: relative">
              <span style="position: absolute; top: 16px; left: 13px; color: #fff">{{ index + 1 }}</span>
              <img src="../../assets/images/icon/blue-group.png" alt="" style="margin-right: 10px"
                v-if="index < thinkOne.length - 1" />
              <img src="../../assets/images/icon/blue.png" alt="" v-if="index == thinkOne.length - 1"
                style="margin-right: 10px" />
            </span>
            <p class="txt-p" v-html="item"></p>
          </div>
        </li>
      </ul>
      <div @click="changeNext" style="
          display: flex;
          flex-direction: column;
          align-items: center;
          justify-content: center;
        ">
        <img src="../../assets/images/icon/mouse.png" alt="" v-if="showIndex < thinkData.length - 1" />
        <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" t="1710234570135"
          class="icon" viewBox="0 0 1024 1024" version="1.1" p-id="5067" width="15" height="15">
          <path
            d="M2.257993 493.371555 415.470783 906.584344 512 1003.113561 608.529217 906.584344 1021.742007 493.371555 925.212789 396.842337 512 810.055127 98.787211 396.842337Z"
            fill="#1296db" p-id="5068" />
          <path
            d="M2.257993 117.980154 415.470783 531.192944 512 627.722161 608.529217 531.192944 1021.742007 117.980154 925.212789 21.450937 512 434.663727 98.787211 21.450937Z"
            fill="#1296db" p-id="5069" />
        </svg>
      </div>
    </el-dialog>
  </div>
</template>
@@ -7624,6 +8229,15 @@
import paint from '@/components/paint/index.vue'
import examinations from "@/components/examinations/index.vue";
import fillInTable from "@/components/fillInTable/index.vue";
import calculator from '@/components/calculator/index.vue'
const handleShow = (num) => {
  const obj = {}
  for (let index = 0; index < num; index++) {
    obj['isShowAnswer' + index] = false
  }
  return obj
}
const showObj = handleShow(60)
export default {
  name: "",
  props: {
@@ -7635,9 +8249,10 @@
      type: Object,
    },
  },
  components: { examinations, fillInTable,paint },
  components: { examinations, fillInTable,paint,calculator },
  data() {
    return {
      ...showObj,
      isShowAnswer:false,
      queryDataOne: {
        stemTxt:"完成下表,并利用“五点法”画出<i>y</i>=3sin <i>x</i>在区间[0,2π]内的简图,并说明<i>y</i>=3sin <i>x</i>的图像与正弦函数<i>y</i>=sin <i>x</i>的图像的区别和联系.",
@@ -7656,10 +8271,30 @@
          ["y=1-cosx", "", "", "", "", ""],
        ],
        answer:"<p>1,0,-1,0,1</p><p>0,1,2,1,0</p>"
      }
      },
      showIndex:0,
      thinkingDialog: false,
      thinkData:[],
      thinkOne:[
        '因为sin <i>α</i>=-0.8572<0,在[0,2π]范围内有两个<i>α</i>值满足条件,它们分别位于第三象限和第四象限,即<i>α</i>在[π,2π]范围内.可用科学计算器先求出sin<i>α</i>=0.857 2所对应的锐角,再利用诱导公式求出所求的角.'
      ]
    }
  },
  methods:{
    hadleAnswer(index) {
      this['isShowAnswer' + index] = !this['isShowAnswer' + index]
    },
    openDialog(queryData) {
      this.thinkData = queryData
      this.thinkingDialog = !this.thinkingDialog
    },
    closeDialog() {
      this.showIndex = 0
    },
    changeNext() {
      if (this.showIndex < this.thinkData.length - 1) this.showIndex = this.showIndex + 1
    }
  }
}
</script>
@@ -7669,4 +8304,7 @@
  border: 1px solid #00adee;
  display: flex;
}
li {
  list-style: none;
}
</style>