闫增涛
2024-11-21 cc467a98ee4db210fe41a749546e45ff7240c652
src/books/mathBook/view/components/chapter005.vue
@@ -1,25 +1,58 @@
<template>
  <div class="chapter" num="6">
    <!-- 第五单元首页 -->
    <div class="page-box" page="160">
      <div v-if="showPageList.indexOf(160) > -1">
        <div class="padding-116">第五单元首页</div>
        <h1 id="a009">
          <img class="img-0" alt="" src="../../assets/images/dy5.jpg" />
        </h1>
        <div class="padding-116">
          <p>
            中华优秀传统文化源远流长、博大精深,是中华文明的智慧结晶.成语“周而复始”出自《汉书·礼乐志》,“精健日月,星辰度理,阴阳五行,周而复始”.在现实世界中,许多事物的运动变化会呈现循环往复、周而复始的规律,我们称这种变化规律为周期性.例如,表针旋转、车轮滚动、物体简谐振动等.这些有规律的变化现象都可用三角函数来刻画.
          </p>
          <p>
            本单元我们将在已学函数概念的基础上,利用函数的思想和方法来学习三角函数的相关内容.三角函数是研究自然界中周期性现象的重要数学工具,它在测量、物理等方面都有着广泛应用.
          </p>
          <p>
            本单元主要将角的概念推广到任意情形,引入弧度制、任意角的三角函数,学习三角函数基本公式及任意角的三角函数的图像和性质.本单元将借助图像理解任意角的三角函数的概念,利用直观想象发现三角函数中数与形之间的联系,会表达其特征与关系;感受用直观想象从具体问题中抽象出数学问题的过程,认识数学中的通性、通法;通过对三角函数具体问题的分析,利用逻辑推理进行三角函数基本公式的推导;初步感知三角函数模型所刻画的简单的周期性函数;提升数学运算、直观想象、逻辑推理和数学抽象等核心素养.
          </p>
        </div>
      </div>
    </div>
    <!-- 目标 -->
    <div class="page-box" page="161">
      <div v-if="showPageList.indexOf(161) > -1">
        <div class="padding-116">目标</div>
        <div class="padding-116">
          <p class="left">
            <img class="inline2" alt="" src="../../assets/images/xxmb.jpg" />
          </p>
          <div class="fieldset">
            <p>1.角的概念推广.</p>
            <p>知道推广角的意义和任意角所在的象限,能识别终边相同的角.</p>
            <p>2.弧度制.</p>
            <p>知道引入弧度制的意义,会进行角度与弧度的换算.</p>
            <p>3.任意角的正弦函数、余弦函数和正切函数.</p>
            <p>
              能根据任意角的三角函数(正弦函数、余弦函数和正切函数)定义,判断三角函数值的符号.
            </p>
            <p>4.同角三角函数的基本关系.</p>
            <p>
              会根据三角函数的定义或借助单位圆,推导同角三角函数的平方关系和商数关系,能进行有关化简和计算.
            </p>
            <p>5.诱导公式.</p>
            <p>知道诱导公式在三角函数求值与化简中的作用.</p>
            <p>6.正弦函数、余弦函数的图像和性质.</p>
            <p>
              会借助代数运算与几何直观,认识正弦函数、余弦函数的图像和性质;
            </p>
            <p>知道运用“五点法”可以画出正弦函数、余弦函数在一个周期上的简图.</p>
            <p>7.已知三角函数值求指定范围的角.</p>
            <p>知道特殊的三角函数值与[0,2<i>π</i>]范围内角的对应关系;</p>
            <p>会用计算工具进行有关的三角计算.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 155 -->
    <div class="page-box" page="162">
      <div v-if="showPageList.indexOf(162) > -1">
@@ -32,7 +65,39 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b030">
            5.1 角的概念推广<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c048">
            5.1.1 角的概念的推广<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            (1)
            中国跳水队享有奥运“梦之队”的美誉.自1984年到2016年,奥运会跳水项目一共产生了56枚奥运金牌,中国跳水队一共夺得了40枚,约占其中的71.4%.如图5-1(1)
            所示,跳水比赛中有“向前翻腾一周半”和“向后翻腾两周半”的动作,你知道这两个动作分别表示的旋转的角度是多少吗?
          </p>
          <p>
            (2)
            环青海湖国际公路自行车赛是我国规模最大、参赛队伍最多的竞赛,也是世界上海拔最高的国际性竞赛,“绿色、人文、和谐”的竞赛主题倡导体育运动应低碳环保,促进文化交流、人与自然和谐共生.如图5-1(2)
            所示,选手在骑自行车时,自行车车轮在前进和后退的过程中旋转形成的角一样吗?
          </p>
          <p class="center">
            <img class="img-b" alt="" src="../../assets/images/0166-1.jpg" />
          </p>
          <p class="img">图5-1</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            生活中随处可见超出0°~360°范围的角.问题(1)
            中“向前翻腾一周半”和“向后翻腾两周半”的跳水动作,不仅有超出360°的“一周半”和“两周半”的角,而且旋转的方向也不同,产生的效果也不一样;问题(2)
            中自行车前进时车轮若是逆时针方向旋转,可以旋转几百圈甚至上万圈,后退时车轮则是顺时针方向旋转,其形成的角是不一样的.因此,要准确描述这些现象,就应知道旋转度数和旋转方向,这就需要对角的概念进行推广.
          </p>
        </div>
      </div>
    </div>
    <!-- 156 -->
@@ -44,7 +109,54 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            我们规定,一条射线绕其端点按逆时针方向旋转形成的角叫作<b>正角</b>,如图5-2(1)
            所示.按顺时针方向旋转形成的角叫作<b>负角</b>,如图5-2(2)
            所示.如果一条射线没有做任何旋转,就称它形成了一个<b>零角</b>,如图5-2(3)
            所示.
          </p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0167-1.jpg" />
          </p>
          <p class="img">图5-2</p>
          <p>
            这样我们就把角的概念推广到了<b>任意角</b>,包括正角、负角和零角.
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <p class="block">
              类比实数<i>a</i>与-<i>a</i>互为相反数,角<i>α</i>与角-<i>α</i>是什么关系呢?类比实数减法的“减去一个数等于加上这个数的相反数”,角的减法可以转化为角的加法吗?即<i>α</i>-<i>β</i>=<i>α</i>+(-<i>β</i>)
              成立吗?不妨画图试试.
            </p>
          </div>
          <p>
            为了简便起见,在不引起混淆的前提下,我们把“角<i>α</i>”或“∠<i>α</i>”简记为“<i>α</i>”.今后我们可以用小写希腊字母<i>α</i>,<i>β</i>,<i>γ</i>,…来表示角.
          </p>
          <p>
            在问题(1)
            中,若“向前翻腾一周半”记为<i>α</i>=540°,那么“向后翻腾两周半”则记为<i>α</i>=-900°.在问题(2)
            中,自行车前进或后退,车轮按逆时针方向旋转形成正角,按顺时针方向旋转形成负角.
          </p>
          <p>
            为了方便研究,通常在平面直角坐标系内讨论角.我们将角的顶点与原点重合,角的始边与<i>x</i>轴的非负半轴重合.这样,角的终边在第几象限,就说这个角是第几象限角.
          </p>
          <p>例如,图5-3中的690°角、-210°角分别是第四象限角和第二象限角.</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0167-2.jpg" />
          </p>
          <p class="img">图5-3</p>
          <p>
            如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限(也称界限角).例如,0°,90°,180°,270°,360°角.
          </p>
        </div>
      </div>
    </div>
    <!-- 157 -->
@@ -55,25 +167,85 @@
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>157</span></p>
            <p><span>157-158</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例1</b></span> 在平面直角坐标系中,分别画出下列各角,并指出它们是第几象限角.
          </p>
          <p class="p-btn" >
            <span>(1) 225°;</span>
            <span class="btn-box" @click="hadleAnswer(0)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer0" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              以<i>x</i>轴的非负半轴为始边,逆时针方向旋转225°,即形成225°角,如图5-4(1)
              所示.因为225°角的终边在第三象限内,所以225°角是第三象限角.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0168-1.jpg" />
            </p>
            <p class="img">图5-4</p>
          </div>
          <p class="p-btn" >
            <span>(2) -300°.</span>
            <span class="btn-box" @click="hadleAnswer(1)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p v-if="isShowAnswer1" >
            <span class="zt-ls"><b>解</b></span>(2)
            以<i>x</i>轴的非负半轴为始边,顺时针方向旋转300°,即形成-300°角,如图5-4(2)
            所示.因为-300°角的终边在第一象限内,所以-300°角是第一象限角.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[164]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h3 id="c049">
            5.1.2 终边相同的角<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            如图5-5所示,在平面直角坐标系中,分别画出了-330°,30°,390°角,观察其终边有何联系?-330°,390°与30°在数值上有什么关系?
          </p>
          <p class="center">
            <img class="img-f" alt="" src="../../assets/images/0169-1.jpg" />
          </p>
          <p class="img">图5-5</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            观察发现,图5-5中-330°,390°与30°角终边相同,并且与30°角终边相同的这些角都可以表示成30°角与<i>k</i>个(<i>k</i>∈<b>Z</b>)周角的和,如
          </p>
          <p class="center">-330°=30°-360°(这里<i>k</i>=-1),</p>
          <p class="center">390°=30°+360°(这里<i>k</i>=1).</p>
          <p>
            进一步分析可知,与30°角终边相同的所有角都可以表示成30°角与<i>k</i>(<i>k</i>∈<b>Z</b>)个周角的和,因此可用集合<i>S</i>={<i>β</i>|<i>β</i>=30°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}表示与30°角终边相同的角.显然,-330°,390°角都是集合<i>S</i>中的元素,30°角也是<i>S</i>中的元素(此时<i>k</i>=0).反之,集
          </p>
        </div>
      </div>
    </div>
    <!-- 158 -->
    <div class="page-box" page="165">
      <div v-if="showPageList.indexOf(165) > -1">
        <ul class="page-header-odd fl al-end">
          <li>158</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    </div>
    <div class="page-box hidePage" page="165"></div>
    <!-- 159 -->
    <div class="page-box" page="166">
      <div v-if="showPageList.indexOf(166) > -1">
@@ -82,23 +254,142 @@
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>159</span></p>
            <p><span>159-160</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>合<i>S</i>中的任何一个元素都与30°角终边相同.</p>
          <p>
            与45°,60°,70°,100°,…角终边相同的角构成的集合又应该如何表达呢?
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,所有与<i>α</i>终边相同的角,连同<i>α</i>在内,可以组成一个集合
          </p>
          <p class="center">
            <i>S</i>={<i>β</i>|<i>β</i>=<i>α</i>+<i>k</i>·360°,<i>k</i>∈<i>Z</i>}.
          </p>
          <p>
            <b>任意的与<i>α</i>终边相同的角都可以表示成<i>α</i>与整数个周角(360°的整数倍)的和.</b>例如,与100°角终边相同的角组成的集合为<i>S</i>={<i>β</i>|<i>β</i>=100°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>},当<i>k</i>=0时,<i>β</i>=100°;<i>k</i>=1时,<i>β</i>=460°;<i>k</i>=-1时,<i>β</i>=-260°.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 在0°~360°内,找出与下列各角终边相同的角,并分别判断它们是第几象限角.
          </p>
          <p class="p-btn" >
            <span>(1) 600°;</span>
            <span class="btn-box" @click="hadleAnswer(2)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p v-if="isShowAnswer2" >
            <span class="zt-ls"><b>解</b></span>(1) 因为600°=240°+360°,所以600°角与240°角终边相同,是第三象限角.
          </p>
          <p class="p-btn" >
            <span>(2) -230°;</span>
            <span class="btn-box" @click="hadleAnswer(3)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p v-if="isShowAnswer3" >
            <span class="zt-ls"><b>解</b></span>(2)
            因为-230°=130°-360°,所以-230°角与130°角终边相同,是第二象限角.
          </p>
          <p class="p-btn" >
            <span>(3) -890°.</span>
            <span class="btn-box" @click="hadleAnswer(4)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p v-if="isShowAnswer4" >
            <span class="zt-ls"><b>解</b></span>(3)
            因为-890°=190°-3×360°,所以-890°角与190°角终边相同,是第三象限角.
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 写出下列角的集合.
          </p>
          <p class="p-btn" >
            <span>(1) 终边在<i>y</i>轴正半轴上的角的集合;</span>
            <span class="btn-box" @click="hadleAnswer(5)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer5" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 在0°~360°内,终边在<i>y</i>轴正半轴上的角是90°角,
            </p>
            <p>所以,终边在<i>y</i>轴正半轴上的角的集合是</p>
            <p class="center">
              <i>S</i>1={<i>β</i>|<i>β</i>=90°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}.
            </p>
          </div>
          <p class="p-btn" >
            <span>(2) 终边在<i>y</i>轴负半轴上的角的集合;</span>
            <span class="btn-box" @click="hadleAnswer(6)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer6" >
            <p><span class="zt-ls"><b>解</b></span>(2) 在0°~360°内,终边在<i>y</i>轴负半轴上的角是270°角,</p>
            <p>所以,终边在<i>y</i>轴负半轴上的角的集合是</p>
            <p class="center">
              <i>S</i>2={<i>β</i>|<i>β</i>=270°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}.
            </p>
          </div>
          <p class="p-btn" >
            <span>(3) 终边在<i>y</i>轴上的角的集合.</span>
            <span class="btn-box" @click="hadleAnswer(7)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer7" >
            <p> <span class="zt-ls"><b>解</b></span>(3) 终边在<i>y</i>轴上的角的集合是</p>
            <p><i>S</i>=<i>S</i><sub>1</sub>∪<i>S</i><sub>2</sub></p>
            <p>
              ={<i>β</i>|<i>β</i>=90°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}∪{<i>β</i>|<i>β</i>=270°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}
            </p>
            <p>
              ={<i>β</i>|<i>β</i>=90°+2<i>k</i>·180°,<i>k</i>∈<b>Z</b>}∪{<i>β</i>|<i>β</i>=90°+(2<i>k</i>+1)·180°,<i>k</i>∈<b>Z</b>}
            </p>
            <p>={<i>β</i>|<i>β</i>=90°+<i>m</i>·180°,<i>m</i>∈<b>Z</b>}.</p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[167]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 160 -->
    <div class="page-box" page="167">
      <div v-if="showPageList.indexOf(167) > -1">
        <ul class="page-header-odd fl al-end">
          <li>160</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="167">
    </div>
    <!-- 161 -->
    <div class="page-box" page="168">
@@ -111,8 +402,23 @@
            <p><span>161</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c050">习题5.1<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[168]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h2 id="b031">
            5.2 弧度制<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c051">
            5.2.1 弧度制的定义<span class="fontsz2">>>></span>
          </h3>
          <p class="block">
            2016年9月25日,具有我国自主知识产权的世界最大单口径、最灵敏的球面射电望远镜“中国天眼”在贵州平塘落成启用.这个500
            m口径球面射电望远镜
          </p>
        </div>
      </div>
    </div>
    <!-- 162 -->
@@ -124,7 +430,105 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            主要用于实现巡视宇宙中的中性氢、观测脉冲星等科学目标和空间飞行器测量与通信等应用目标.
          </p>
          <p class="center">
            <img class="img-f" alt="" src="../../assets/images/0172-2.jpg" />
          </p>
          <p>
            在衡量天体之间的距离时,我们可以用光年、米的单位制来度量;对于面积,我们可以用平方米、公顷等不同的单位制来度量;质量可以用千克、吨等不同的单位制来度量.角的大小,我们是否也能用不同的单位制来度量?
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">角度制</p>
            <p class="block">弧度制</p>
            <p class="block">弧度</p>
          </div>
          <p>
            我们知道,角可以以度为单位进行度量,把周角的<math display="0">
              <mfrac>
                <mn>1</mn>
                <mn>360</mn>
              </mfrac>
            </math>所对应的圆心角规定为1度的角,记为1°.这种以度为单位来度量角的单位制,叫作<b>角度制</b>.
          </p>
          <p>
            在数学和其他科学研究中,经常使用另一种度量角的单位制——<b>弧度制</b>.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            我们规定,长度等于半径的圆弧所对的圆心角叫作1弧度的角,弧度单位用符号rad表示,读作弧度.1弧度的角就记作1
            rad,读作“1弧度”,如图5-6所示.
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0173-2.jpg" />
          </p>
          <p class="img">图5-6</p>
          <p>
            根据上述规定可知,在半径为<i>r</i>的圆中,若弧长为<i>l</i>的弧所对的圆心角为<i>α</i>
            rad,则<i>α</i>的大小为
          </p>
          <math display="block">
            <mo stretchy="false">|</mo>
            <mi>α</mi>
            <mrow>
              <mo stretchy="false">|</mo>
            </mrow>
            <mo>=</mo>
            <mfrac>
              <mi>l</mi>
              <mi>r</mi>
            </mfrac>
            <mtext>.&nbsp;</mtext>
          </math>
          <p>
            <i>α</i>的正负由<i>α</i>的始边到终边的旋转方向决定,逆时针方向旋转为正,顺时针方向旋转为负.
          </p>
          <p>
            当一个圆的半径为<i>r</i>时,若圆心角∠<i>AOB</i>所对的圆弧长为2<i>r</i>,则∠<i>AOB</i>的弧度数就为<math display="0">
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>r</mi>
                </mrow>
                <mi>r</mi>
              </mfrac>
              <mo>=</mo>
              <mn>2</mn>
              <mrow>
                <mi mathvariant="normal">r</mi>
                <mi mathvariant="normal">a</mi>
                <mi mathvariant="normal">d</mi>
              </mrow>
            </math>=2
            rad(如图5-7(1));若圆心角∠<i>AOB</i>所对的圆弧长为整个圆周长2<i>πr</i>,则∠<i>AOB</i>的弧度数就为<math display="0">
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mi>r</mi>
                </mrow>
                <mi>r</mi>
              </mfrac>
              <mo>=</mo>
              <mn>2</mn>
              <mi>π</mi>
              <mrow>
                <mi mathvariant="normal">r</mi>
                <mi mathvariant="normal">a</mi>
                <mi mathvariant="normal">d</mi>
              </mrow>
            </math>(如图5-7(2)),即一个周角的弧度数是2<i>π rad</i>.
          </p>
        </div>
      </div>
    </div>
    <!-- 163 -->
@@ -138,10 +542,301 @@
            <p><span>163</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk">
            <p>360°=2<i>π</i> rad; 180°=<i>π</i> rad;</p>
            <p>
              <math display="0">
                <msup>
                  <mn>1</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>180</mn>
                </mfrac>
                <mi>rad</mi>
                <mo>≈</mo>
                <mn>0.01745</mn>
                <mrow>
                  <mi mathvariant="normal">r</mi>
                  <mi mathvariant="normal">a</mi>
                  <mi mathvariant="normal">d</mi>
                </mrow>
              </math>;
            </p>
            <p>
              <math display="0">
                <mn>1</mn>
                <mrow>
                  <mi mathvariant="normal">r</mi>
                  <mi mathvariant="normal">a</mi>
                  <mi mathvariant="normal">d</mi>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mi>π</mi>
                </mfrac>
                <mo>≈</mo>
                <msup>
                  <mn>57.30</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <msup>
                  <mn>57</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <msup>
                  <mn>18</mn>
                  <mrow>
                    <mi data-mjx-alternate="1" mathvariant="normal">′</mi>
                  </mrow>
                </msup>
              </math>.
            </p>
          </div>
          <p class="center">
            <img class="img-b" alt="" src="../../assets/images/0174-3.jpg" />
          </p>
          <p class="img">图5-7</p>
          <p>
            为了简便起见,以弧度为单位表示角的大小时,单位“弧度”或“rad”一般省略不写.例如,1
            rad,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mrow>
                <mi mathvariant="normal">r</mi>
                <mi mathvariant="normal">a</mi>
                <mi mathvariant="normal">d</mi>
              </mrow>
            </math>,0 rad 可简写成1,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>,0.
          </p>
          <p>
            一般地,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为0.
          </p>
          <p>
            当形成角的射线旋转一周后继续旋转,就可以得到弧度数大于2<i>π</i>或小于-2<i>π</i>的角.这样就可以得到任意弧度数的角.
          </p>
          <p>
            因此,每一个确定的角都有唯一确定的实数与它对应;反之,每一个确定的实数也都有唯一确定的角与它对应,如图5-8所示.这样,角与实数之间就建立了一一对应的关系.
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0174-6.jpg" />
          </p>
          <p class="img">图5-8</p>
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例1</b></span> 把下列各角化为弧度.</span>
            <span class="btn-box" @click="hadleAnswer(8)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>(1) 30°;(2) -225°;(3) 0°.</p>
          <div v-if="isShowAnswer8" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(1)</mo>
                <msup>
                  <mn>30</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mn>30</mn>
                <mo>×</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>180</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo>.</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(2)</mo>
                <mo>−</mo>
                <msup>
                  <mn>225</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mo>−</mo>
                <mn>225</mn>
                <mo>×</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>180</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>.</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(3)</mo>
                <msup>
                  <mn>0</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mn>0</mn>
                <mo>×</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>180</mn>
                </mfrac>
                <mo>=</mo>
                <mn>0</mn>
                <mo>.</mo>
              </math>
            </p>
          </div>
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例2</b></span> 把下列各角化为角度.</span>
            <span class="btn-box" @click="hadleAnswer(9)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            (1)
            <math display="0">
              <mo>−</mo>
              <mfrac>
                <mrow>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>;(2) 5rad(结果精确到0.01).
          </p>
          <div v-if="isShowAnswer9" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(1)</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <msup>
                  <mn>60</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>.</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(2)</mo>
                <mn>5</mn>
                <mrow>
                  <mi mathvariant="normal">r</mi>
                  <mi mathvariant="normal">a</mi>
                  <mi mathvariant="normal">d</mi>
                </mrow>
                <mo>=</mo>
                <mn>5</mn>
                <mo>×</mo>
                <mfrac>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mi>π</mi>
                </mfrac>
                <mo>≈</mo>
                <msup>
                  <mn>286.44</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>.</mo>
              </math>
            </p>
          </div>
          <div class="bk mt-60">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              弧度化角度时,如果式子里有<i>π</i> ,直接把<i>π</i>转化成180°即可.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 164 -->
    <div class="page-box" page="171">
      <div v-if="showPageList.indexOf(171) > -1">
@@ -150,7 +845,71 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例3</b></span> 利用科学计算器,把下列各角进行弧度与角度的互化.(结果精确到0.01)
          </p>
          <p class="p-btn" >
            <span>(1) -5.6;</span>
            <span class="btn-box" @click="hadleAnswer(10)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer10" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              先将科学计算器的精确度设置为0.01,再将科学计算器设置为角度计算模式,科学计算器Ⅰ按<img class="inline" alt=""
                src="../../assets/images/0175-1.jpg" />,科学计算器Ⅱ按<img class="inline" alt=""
                src="../../assets/images/0175-2.jpg" />.之后依次按下列各键.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0175-3.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0175-4.jpg" />
            </p>
            <p>所以 -5.6 <i>rad</i> ≈-320.86°.</p>
          </div>
          <p class="p-btn" >
            <span>(2) 154°13′.</span>
            <span class="btn-box" @click="hadleAnswer(11)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer11" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2)
              先将科学计算器的精确度设置为0.01,再将科学计算器设置为弧度计算模式,科学计算器Ⅰ按<img class="inline" alt=""
                src="../../assets/images/0175-5.jpg" />,科学计算器Ⅱ按<img class="inline" alt=""
                src="../../assets/images/0175-6.jpg" />.之后依次按下列各键.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0175-7.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0175-8.jpg" />
            </p>
            <p>所以 154°13′≈2.69 rad.</p>
          </div>
          <iframe src="https://www.geogebra.org/scientific" frameborder="0" class="iframe-box"></iframe>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[171]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 165 -->
@@ -164,39 +923,494 @@
            <p><span>165</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c052">
            5.2.2 弧长公式、扇形的面积公式<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>学习了弧度制后,你能推导出弧度制下的弧长和扇形的面积公式吗?</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0176-1.jpg" />
          </p>
          <p class="img">图5-9</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            如图5-9所示,已知半径为<i>r</i>的圆,设圆心角<i>α</i>=<i>n</i>°,且0°<<i>α</i><360°,<i>α</i>所对的<math display="0">
              <mover>
                <mrow>
                  <mi>A</mi>
                  <mi>B</mi>
                </mrow>
                <mo>⏜</mo>
              </mover>
            </math>长为<i>l</i>,<i>α</i>所对应的扇形面积为<i>S</i>,则
          </p>
          <p class="center">
            <math display="">
              <mfrac>
                <mi>l</mi>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mi>r</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mi>n</mi>
                <mn>360</mn>
              </mfrac>
            </math>,即<math display="0">
              <mi>l</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>n</mi>
                  <mi>π</mi>
                  <mi>r</mi>
                </mrow>
                <mn>180</mn>
              </mfrac>
            </math>(<i>n</i>°的圆心角所对的弧长为<math display="0">
              <mfrac>
                <mrow>
                  <mi>n</mi>
                  <mi>π</mi>
                  <mi>r</mi>
                </mrow>
                <mn>180</mn>
              </mfrac>
            </math>).
          </p>
          <p class="center">
            <math display="">
              <mfrac>
                <mi>S</mi>
                <mrow>
                  <mi>π</mi>
                  <msup>
                    <mi>r</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mi>n</mi>
                <mn>360</mn>
              </mfrac>
            </math>,即<math display="0">
              <mi>S</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>n</mi>
                  <mi>π</mi>
                  <msup>
                    <mi>r</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                </mrow>
                <mn>360</mn>
              </mfrac>
            </math>(<i>n</i>°的圆心角所对应的扇形面积为<math display="0">
              <mfrac>
                <mrow>
                  <mi>n</mi>
                  <mi>π</mi>
                  <msup>
                    <mi>r</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                </mrow>
                <mn>360</mn>
              </mfrac>
            </math>).
          </p>
          <p>
            我们知道,弧长<i>l</i>与半径<i>r</i>的比值等于所对圆心角的弧度数,即<i>α</i>,<i>r</i>,<i>l</i>三者之间满足关系式
          </p>
          <math display="block">
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mi>l</mi>
              <mi>r</mi>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>所以,弧长公式为<i>l</i>=<i>αr</i>.</p>
          <p>
            扇形的圆心角为<i>α</i>(0<<i>α</i><2<i>π</i>),圆周角为2<i>π</i>,圆面积为<i>πr</i><sup>2</sup>,所以圆心角为<i>α</i>的扇形面积为
          </p>
          <math display="block">
            <mi>S</mi>
            <mo>=</mo>
            <mfrac>
              <mi>α</mi>
              <mrow>
                <mn>2</mn>
                <mi>π</mi>
              </mrow>
            </mfrac>
            <mo>⋅</mo>
            <mi>π</mi>
            <msup>
              <mi>r</mi>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo>=</mo>
            <mfrac>
              <mn>1</mn>
              <mn>2</mn>
            </mfrac>
            <mi>α</mi>
            <msup>
              <mi>r</mi>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo>=</mo>
            <mfrac>
              <mn>1</mn>
              <mn>2</mn>
            </mfrac>
            <mi>r</mi>
            <mo>⋅</mo>
            <mi>α</mi>
            <mi>r</mi>
            <mo>=</mo>
            <mfrac>
              <mn>1</mn>
              <mn>2</mn>
            </mfrac>
            <mi>r</mi>
            <mi>l</mi>
            <mo>.</mo>
          </math>
          <p>
            将采用角度制表示的和弧度制表示的弧长公式与扇形的面积公式进行对比可知,采用弧度制后弧长公式和扇形的面积公式就更简洁了.
          </p>
          <p class="center">
            <img class="img-d" alt="" src="../../assets/images/0176-11.jpg" />
          </p>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例1</b></span> 截至2021年4月,中国高速公路总里程约为16万千米,位居全球第一.某高速公路转弯处为一弧形高架桥,测得此处公路中线的总长为1
              200 m,该弧形高架桥所对应的圆心角为<math display="0">
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </math>,求该弧形高架桥的转弯半径(结果精确到1 m).
            </span>
            <span class="btn-box" @click="hadleAnswer(12)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer12" >
            <p>
              <span class="zt-ls"><b>解</b></span> 由题意可知,<i>l</i>=1
              200,<math display="0">
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </math>,由<i>l</i>=<i>αr</i>可得
            </p>
            <math display="block">
              <mi>r</mi>
              <mo>=</mo>
              <mfrac>
                <mi>l</mi>
                <mi>α</mi>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1200</mn>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>1200</mn>
                  <mo>×</mo>
                  <mn>5</mn>
                </mrow>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>2000</mn>
                <mi>π</mi>
              </mfrac>
              <mo>≈</mo>
              <mn>645</mn>
              <mo stretchy="false">(</mo>
              <mrow>
                <mtext>&nbsp;</mtext>
                <mi mathvariant="normal">m</mi>
              </mrow>
              <mo stretchy="false">)</mo>
              <mo>.</mo>
            </math>
            <p>所以,该弧形高架桥的转弯半径约为645 m.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 166 -->
    <div class="page-box" page="173">
      <div v-if="showPageList.indexOf(173) > -1">
        <ul class="page-header-odd fl al-end">
          <li>166</li>
          <li>166-167</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0177-1.jpg" />
          </p>
          <p class="img">图5-10</p>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例2</b></span> 如图5-10所示,要在一块废铁皮上剪出一个扇形,用于制作一个圆锥筒,要求这个扇形的圆心角为60°,半径为90
              cm .请求出这个扇形的弧长与面积.(结果分别精确到0.01 cm和0.01
              cm<sup>2</sup>)
            </span>
            <span class="btn-box" @click="hadleAnswer(13)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer13" >
            <p>
              <span class="zt-ls"><b>解</b></span> 由于<math display="0">
                <msup>
                  <mn>60</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
              </math>, 所以
            </p>
            <math display="block">
              <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mi>l</mi>
                    <mo>=</mo>
                    <mi>α</mi>
                    <mi>r</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>3</mn>
                    </mfrac>
                    <mo>×</mo>
                    <mn>90</mn>
                    <mo>=</mo>
                    <mn>30</mn>
                    <mi>π</mi>
                    <mo>≈</mo>
                    <mn>94.26</mn>
                    <mo stretchy="false">(</mo>
                    <mrow>
                      <mtext>&nbsp;</mtext>
                      <mi mathvariant="normal">c</mi>
                      <mi mathvariant="normal">m</mi>
                    </mrow>
                    <mo stretchy="false">)</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>S</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mn>1</mn>
                      <mn>2</mn>
                    </mfrac>
                    <mi>r</mi>
                    <mi>l</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mn>1</mn>
                      <mn>2</mn>
                    </mfrac>
                    <mo>×</mo>
                    <mn>90</mn>
                    <mo>×</mo>
                    <mn>30</mn>
                    <mi>π</mi>
                    <mo>≈</mo>
                    <mn>4241.70</mn>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <msup>
                        <mrow>
                          <mtext>&nbsp;</mtext>
                          <mi mathvariant="normal">c</mi>
                          <mi mathvariant="normal">m</mi>
                        </mrow>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
            <p>
              所以,这个扇形的弧长约为94.26 cm,面积约为4 241.70 cm<sup>2</sup>.
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[173]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h3 id="c053">习题5.2<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[174]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h2 id="b032">
            5.3 任意角的正弦函数、余弦函数和正切函数<span class="fontsz1">>>>>>>>></span>
          </h2>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block">
              初中我们在Rt△<i>ABC</i>中定义了锐角<i>α</i>的正弦、余弦和正切,如图5-11所示.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0178-7.jpg" />
            </p>
            <p class="img">图5-11</p>
            <p class="block">
              正弦:<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>a</mi>
                  <mi>c</mi>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mi mathvariant="normal">∠</mi>
                    <mi>α</mi>
                    <mtext>&nbsp;的对边&nbsp;</mtext>
                  </mrow>
                  <mtext>&nbsp;斜边&nbsp;</mtext>
                </mfrac>
              </math>.
            </p>
            <p class="block">
              余弦:<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>b</mi>
                  <mi>c</mi>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mi mathvariant="normal">∠</mi>
                    <mi>α</mi>
                    <mtext>&nbsp;的邻边&nbsp;</mtext>
                  </mrow>
                  <mtext>&nbsp;斜边&nbsp;</mtext>
                </mfrac>
              </math>.
            </p>
            <p class="block">
              正切:<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>a</mi>
                  <mi>b</mi>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mi mathvariant="normal">∠</mi>
                    <mi>α</mi>
                    <mtext>&nbsp;的对边&nbsp;</mtext>
                  </mrow>
                  <mrow>
                    <mi mathvariant="normal">∠</mi>
                    <mi>α</mi>
                    <mtext>&nbsp;的邻边&nbsp;</mtext>
                  </mrow>
                </mfrac>
              </math>.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 167 -->
    <div class="page-box" page="174">
      <div v-if="showPageList.indexOf(174) > -1">
        <ul class="page-header-box">
          <li>
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>167</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
      </div>
    </div>
    <div class="page-box hidePage" page="174"></div>
    <!-- 168 -->
    <div class="page-box" page="175">
      <div v-if="showPageList.indexOf(175) > -1">
@@ -206,10 +1420,232 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0179-1.jpg" />
          </p>
          <p class="img">图5-12</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            现在我们将一个锐角<i>α</i>放入平面直角坐标系中,使得顶点与原点重合,始边与<i>x</i>轴的非负半轴重合,如图5-12所示.已知点<i>P</i>(<i>x</i>,<i>y</i>)是锐角<i>α</i>终边上的任意一点,点
            <i>P</i>与原点<i>O</i>的距离<i>OP</i>=<i>r</i>(<i>r</i>>0),你能利用锐角三角函数的定义计算出锐角<i>α</i>所对应的三角函数值吗?
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            过点<i>P</i>作<i>x</i>轴的垂线,垂足为<i>M</i>,则线段<i>OM</i>的长度为<i>x</i>,线段<i>MP</i>的长度为<i>y</i>.
          </p>
          <p>
            在<i>Rt</i> △<i>OMP</i>中,根据勾股定理可得,<math display="0">
              <mi>r</mi>
              <mo>=</mo>
              <msqrt>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mo>+</mo>
                <msup>
                  <mi>y</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </msqrt>
              <mo>&gt;</mo>
              <mn>0</mn>
            </math>.
          </p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>M</mi>
                <mi>P</mi>
              </mrow>
              <mrow>
                <mi>O</mi>
                <mi>P</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>r</mi>
            </mfrac>
            <mo>,</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>O</mi>
                <mi>M</mi>
              </mrow>
              <mrow>
                <mi>O</mi>
                <mi>P</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mi>x</mi>
              <mi>r</mi>
            </mfrac>
            <mo>,</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>M</mi>
                <mi>P</mi>
              </mrow>
              <mrow>
                <mi>O</mi>
                <mi>M</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>x</mi>
            </mfrac>
            <mo>.</mo>
          </math>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>在弧度制下,我们已将<i>α</i>的范围扩展到了全体实数.</p>
          <p class="center">
            <img class="img-f" alt="" src="../../assets/images/0179-4.jpg" />
          </p>
          <p class="img">图5-13</p>
          <p>
            一般地,如图5-13所示,当<i>α</i>为任意角时,点<i>P</i>(<i>x</i>,<i>y</i>)是<i>α</i>的终边上异于原点的任意一点,点<i>P</i>到原点的距离为<math
              display="0">
              <mi>r</mi>
              <mo>=</mo>
              <msqrt>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mo>+</mo>
                <msup>
                  <mi>y</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </msqrt>
            </math>.我们仍然将<i>α</i>的正弦、余弦、正切分别定义如下.
          </p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>r</mi>
            </mfrac>
            <mo>,</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mi>x</mi>
              <mi>r</mi>
            </mfrac>
            <mo>,</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>x</mi>
            </mfrac>
            <mo stretchy="false">(</mo>
            <mi>x</mi>
            <mo>≠</mo>
            <mn>0</mn>
            <mo stretchy="false">)</mo>
            <mo>.</mo>
          </math>
          <p>注意:当<i>α</i>的终边不在<i>y</i>轴上时,tan<i>α</i>才有意义.</p>
          <p>
            对于每一个确定的<i>α</i>,其正弦、余弦及正切都分别对应一个确定的比值,因此,正弦、余弦及正切都是以<i>α</i>为自变量的函数,分别叫作正弦函数、余弦函数及正切函数.
          </p>
          <p>
            当点<i>P</i>的横坐标<i>x</i>=0时,<i>α</i>的终边在<i>y</i>轴上,此时<math display="0">
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>+</mo>
              <mi>k</mi>
              <mi>π</mi>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>,<math display="0">
              <mfrac>
                <mi>y</mi>
                <mi>x</mi>
              </mfrac>
              <mo>=</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
            </math>无意义.除此之外,对于确定的<i>α</i>,三个函数都有意义.
          </p>
          <p>我们将正弦函数、余弦函数和正切函数统称为三角函数,通常记为:</p>
          <p><b>正弦函数</b> <i>y</i>=sin <i>x</i>,<i>x</i>∈<b>R</b>;</p>
          <p><b>余弦函数</b> <i>y</i>=cos <i>x</i>,<i>x</i>∈<b>R</b>;</p>
          <p>
            <b>正切函数</b> <i>y</i>=tan <i>x</i>,<math display="0">
              <mi>x</mi>
              <mo>≠</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>+</mo>
              <mi>k</mi>
              <mi>π</mi>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>.
          </p>
        </div>
      </div>
    </div>
    <!-- 169 -->
    <div class="page-box" page="176">
      <div v-if="showPageList.indexOf(176) > -1">
@@ -221,10 +1657,146 @@
            <p><span>169</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例1</b></span> 如图5-14所示,已知<i>α</i>的终边经过点 <i>P</i>(3,-4),
              求sin<i>α</i>,cos<i>α</i>,tan<i>α</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(14)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0180-3.jpg" />
          </p>
          <p class="img">图5-14</p>
          <div v-if="isShowAnswer36" >
            <p>
              <span class="zt-ls"><b>解</b></span>
              由已知有<i>x</i>=3,<i>y</i>=-4,
            </p>
            <p>则</p>
            <math display="block">
              <mi>r</mi>
              <mo>=</mo>
              <msqrt>
                <msup>
                  <mn>3</mn>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mo>+</mo>
                <mo stretchy="false">(</mo>
                <mo>−</mo>
                <mn>4</mn>
                <msup>
                  <mo stretchy="false">)</mo>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </msqrt>
              <mo>=</mo>
              <mn>5</mn>
              <mo>.</mo>
            </math>
            <p>于是</p>
            <math display="block">
              <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mi>y</mi>
                      <mi>r</mi>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mn>4</mn>
                      <mn>5</mn>
                    </mfrac>
                    <mo>,</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mi>x</mi>
                      <mi>r</mi>
                    </mfrac>
                    <mo>=</mo>
                    <mfrac>
                      <mn>3</mn>
                      <mn>5</mn>
                    </mfrac>
                    <mo>,</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mi>y</mi>
                      <mi>x</mi>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mn>4</mn>
                      <mn>3</mn>
                    </mfrac>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[176]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            从<i>α</i>的正弦、余弦和正切的定义与实例可知,任意角的正弦值、余弦值和正切值在不同的象限有不同的符号.下面我们来研究各个象限内,任意角的正弦值、余弦值和正切值的符号的规律.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            以第二象限角为例,根据任意角的正弦、余弦和正切的定义,试分析它们在第二象限的符号情况.
          </p>
          <p>
            因为<i>α</i>的终边在第二象限,任取终边上异于原点的一点<i>P</i>(<i>x</i>,<i>y</i>),有
          </p>
          <p class="center">
            <i>x</i><0, <i>y</i>>0, <i>OP</i>= <i>r</i>>0.
          </p>
          <p>根据任意角的正弦、余弦和正切的定义可知,</p>
        </div>
      </div>
    </div>
    <!-- 170 -->
    <div class="page-box" page="177">
      <div v-if="showPageList.indexOf(177) > -1">
@@ -233,7 +1805,80 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            (1)<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>y</mi>
                <mi>r</mi>
              </mfrac>
              <mo>&gt;</mo>
              <mn>0</mn>
            </math>;
          </p>
          <p>
            (2)<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>x</mi>
                <mi>r</mi>
              </mfrac>
              <mo>&lt;</mo>
              <mn>0</mn>
            </math>;
          </p>
          <p>
            (3)<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>y</mi>
                <mi>x</mi>
              </mfrac>
              <mo>&lt;</mo>
              <mn>0</mn>
            </math>.
          </p>
          <p>所以,可以得出第二象限各值的符号,见表5-2.</p>
          <p class="img">表5-2</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0181-4.jpg" />
          </p>
          <p>同理,可得出其他象限内各值的符号.</p>
          <p>
            一般地,<i>α</i>为任意角,<i>P</i>(<i>x</i>,<i>y</i>)为<i>α</i>终边上异于原点的任意一点,点
            <i>P</i>与原点<i>O</i>的距离<i>OP</i>=<i>r</i>.因为<i>r</i>>0,由定义可知,
          </p>
          <p><b>正弦值的符号与点<i>P</i>的纵坐标<i>y</i>的符号相同;</b></p>
          <p><b>余弦值的符号与点<i>P</i>的横坐标<i>x</i>的符号相同;</b></p>
          <p>
            <b>正切值的符号与点<i>P</i>的纵坐标与横坐标的比值</b><math display="0">
              <mfrac>
                <mi>y</mi>
                <mi>x</mi>
              </mfrac>
            </math><b>的符号相同.</b>
          </p>
          <p>
            将点<i>P</i>(<i>x</i>,<i>y</i>)的坐标与各象限角的正弦值、余弦值和正切值的符号列表,如表5-3所示.
          </p>
          <p class="img">表5-3</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0181-6.jpg" />
          </p>
          <p>
            为了便于记忆,我们将sin<i>α</i>,cos<i>α</i>,tan<i>α</i>的符号标在各象限内,如图5-15所示.
          </p>
        </div>
      </div>
    </div>
    <!-- 171 -->
@@ -247,11 +1892,161 @@
            <p><span>171</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center">
            <img class="img-b" alt="" src="../../assets/images/0182-1.jpg" />
          </p>
          <p class="img">图5-15</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 确定下列各三角函数值的符号.
          </p>
          <p class="p-btn" >
            <span>(1) sin(-210°);</span>
            <span class="btn-box" @click="hadleAnswer(15)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer15" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 因为-210°是第二象限角,所以
            </p>
            <p class="center">sin(-210°)>0.</p>
          </div>
          <p class="p-btn" >
            <span>(2) tan760°;</span>
            <span class="btn-box" @click="hadleAnswer(16)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer16" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2)
             因为760°=40°+2×360°,可知760°角与40°角的终边相同,是第一象限角,所以
            </p>
            <p class="center">tan 760°>0.</p>
          </div>
          <p class="p-btn" >
            <span>
              (3)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>17</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>12</mn>
                </mfrac>
              </math>.
            </span>
            <span class="btn-box" @click="hadleAnswer(17)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer17" >
            <p>
              <span class="zt-ls"><b>解</b></span>(3) 由<math display="0">
                <mfrac>
                  <mrow>
                    <mn>17</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>12</mn>
                </mfrac>
                <mo>=</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>12</mn>
                </mfrac>
                <mi>π</mi>
              </math>,可看出<math display="0">
                <mi>π</mi>
                <mo>&lt;</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>12</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mrow>
                    <mn>6</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>12</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
              </math>,是第三象限角,
            </p>
            <p>所以</p>
            <math display="block">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>17</mn>
                  <mi>π</mi>
                </mrow>
                <mn>12</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mn>0</mn>
            </math>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例3</b></span> 根据sin <i>α</i>>0,且cos <i>α</i><0,确定<i>α</i>是第几象限角.
            </span>
            <span class="btn-box" @click="hadleAnswer(18)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p v-if="isShowAnswer18">
            <span class="zt-ls"><b>解</b></span> 因为sin
            <i>α</i>>0,所以<i>α</i>的终边在第一或第二象限或<i>y</i>轴的正半轴上;又因为cos<i>α</i><0,所以<i>α</i>的终边在第二或第三象限或<i>x</i>轴的负半轴上.因此,<i>α</i>为第二象限角.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[178]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 172 -->
    <div class="page-box" page="179">
      <div v-if="showPageList.indexOf(179) > -1">
@@ -261,7 +2056,90 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center">
            <img style="width: 24%" alt="" src="../../assets/images/0183-1.jpg" />
          </p>
          <p class="img">图5-16</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            如图5-16所示,两个三角板上有几个特殊的锐角:30°,45°,60°.初中已研究了它们对应的正弦值、余弦值和正切值.现将角的范围进行了推广,已经在平面直角坐标系中研究了各象限角的正弦值、余弦值和正切值的符号分布规律.对于在平面直角坐标系中不属于任何象限的特殊角,如0°,90°,180°,270°等,它们的正弦值、余弦值和正切值又是多少?以180°为例,试求出它的正弦值、余弦值和正切值.
          </p>
          <p class="center">
            <img class="img-f" alt="" src="../../assets/images/0183-2.jpg" />
          </p>
          <p class="img">图5-17</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            在平面直角坐标系中,180°角的终边正好与<i>x</i>轴的负半轴重合,如图5-17所示.以坐标原点为圆心、半径为单位长度的圆(简称单位圆)与<i>x</i>轴交于点<i>P</i>(-1,0),于是有
          </p>
          <p class="center"><i>x</i>=-1,<i>y</i>=0,<i>r</i>=1.</p>
          <p>根据任意角的正弦、余弦和正切的定义可知,</p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <msup>
              <mn>180</mn>
              <mrow>
                <mo>∘</mo>
              </mrow>
            </msup>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>r</mi>
            </mfrac>
            <mo>=</mo>
            <mn>0</mn>
            <mo>;</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <msup>
              <mn>180</mn>
              <mrow>
                <mo>∘</mo>
              </mrow>
            </msup>
            <mo>=</mo>
            <mfrac>
              <mi>x</mi>
              <mi>r</mi>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mn>1</mn>
            <mo>;</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <msup>
              <mn>180</mn>
              <mrow>
                <mo>∘</mo>
              </mrow>
            </msup>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>x</mi>
            </mfrac>
            <mo>=</mo>
            <mn>0</mn>
            <mo>.</mo>
          </math>
          <p><b>类比归纳</b></p>
          <p>
            一般地,取单位圆与坐标轴的交点就可以得到0°,90°,180°和270°等特殊角的正弦值、余弦值和正切值,如表5-4所示.
          </p>
          <p class="img">表5-4</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0183-4.jpg" />
          </p>
          <p>表中360°角与0°角的终边相同,对应的三角函数值也相同.</p>
        </div>
      </div>
    </div>
    <!-- 173 -->
@@ -272,27 +2150,217 @@
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>173</span></p>
            <p><span>173-174</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <p>
          </p>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例4</b></span> 求5sin180°-4sin90°+2tan180°-7sin270°的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(19)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer19" >
            <p>
              <span class="zt-ls"><b>解</b></span> 5sin 180°-4sin 90°+2 tan
              180°-7sin 270°
            </p>
            <p>=5×0-4×1+2×0-7×(-1)</p>
            <p>=3.</p>
          </div>
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例5</b></span> 求<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>+</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
              </math>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(20)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer20" >
        <div class="padding-116"></div>
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mtable displaystyle="true"
                  columnalign="right left right left right left right left right left right left"
                  columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mi>π</mi>
                        <mn>6</mn>
                      </mfrac>
                      <mo>−</mo>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mi>π</mi>
                        <mn>3</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>π</mi>
                      <mo>−</mo>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mrow>
                          <mn>3</mn>
                          <mi>π</mi>
                        </mrow>
                        <mn>2</mn>
                      </mfrac>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mo>=</mo>
                    </mtd>
                    <mtd>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                      <mo>−</mo>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>1</mn>
                      <mo stretchy="false">)</mo>
                      <mo>−</mo>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>1</mn>
                      <mo stretchy="false">)</mo>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mo>=</mo>
                    </mtd>
                    <mtd>
                      <mn>0</mn>
                      <mo>.</mo>
                    </mtd>
                  </mtr>
                </mtable>
              </math>
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[180] ? questionData[180][1] : []" :hideCollect="true"
              sourceType="json" inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
          <h3 id="c054">习题5.3<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[180] ? questionData[180][2] : []" :hideCollect="true"
              sourceType="json" inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
          <h2 id="b033">
            5.4 同角三角函数的基本关系<span class="fontsz1">>>>>>>>></span>
          </h2>
          <p>
            在上一节,我们学习了三角函数的定义以及在各个象限的符号,那么同一个角的三角函数值之间是否存在某种关系呢?
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0185-4.jpg" />
          </p>
          <p class="img">图5-18</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            我们知道,在平面直角坐标系中,单位圆是以原点为圆心、单位长度为半径的圆.下面我们利用单位圆来研究同角三角函数的基本关系.如图5-18所示,已知点<i>P</i>(<i>x</i>,<i>y</i>)是角<i>α</i>的终边与单位圆的交点.过点<i>P</i>作<i>x</i>轴的垂线,垂足为<i>M</i>,则△<i>OMP</i>是直角三角形,且<i>OM</i>=|<i>x</i>|,<i>PM</i>=|<i>y</i>|,<i>OP</i>=<i>r</i>=1.
          </p>
          <p>根据正弦、余弦和正切的定义可知,在单位圆上,</p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mi>y</mi>
            <mo>;</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mi>x</mi>
            <mo>;</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>x</mi>
            </mfrac>
            <mo>,</mo>
            <mi>x</mi>
            <mo>≠</mo>
            <mn>0</mn>
            <mo>.</mo>
          </math>
          <p>
            在Rt △<i>OPM</i>中,由勾股定理有<i>OM</i><sup>2</sup>+<i>PM</i><sup>2</sup>=<i>OP</i><sup>2</sup>,
          </p>
        </div>
      </div>
    </div>
    <!-- 174 -->
    <div class="page-box" page="181">
      <div v-if="showPageList.indexOf(181) > -1">
        <ul class="page-header-odd fl al-end">
          <li>174</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    </div>
    <div class="page-box hidePage" page="181"></div>
    <!-- 175 -->
    <div class="page-box" page="182">
      <div v-if="showPageList.indexOf(182) > -1">
@@ -301,25 +2369,992 @@
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>175</span></p>
            <p><span>175-176</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>即<i>x</i><sup>2</sup>+<i>y</i><sup>2</sup>=1,</p>
          <p>所以sin<sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>=1.</p>
          <p>显然,当<i>α</i>的终边与坐标轴重合时,这个公式也成立.</p>
          <p>
            根据正切的定义,当<math display="0">
              <mi>α</mi>
              <mo>≠</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>+</mo>
              <mi>k</mi>
              <mi>π</mi>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>时,
          </p>
          <math display="block">
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
            </mfrac>
            <mo>.</mo>
          </math>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>一般地,可以得到同角三角函数的基本关系式.</p>
          <p>
            <b>(1) 平方关系:</b>sin<sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>=1.
          </p>
          <p>
            <b>(2) 商数关系:</b><math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
                <mrow>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
              </mfrac>
            </math>.
          </p>
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>3</mn>
                  <mn>5</mn>
                </mfrac>
              </math>, 且<i>α</i>是第四象限角,求sin<i>α</i>,tan<i>α</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(21)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer21" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为
              <i>α</i>是第四象限角,所以sin<i>α</i><0 .
            </p>
            <math display="block">
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mo>−</mo>
                    <msqrt>
                      <mn>1</mn>
                      <mo>−</mo>
                      <msup>
                        <mi>cos</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>α</mi>
                    </msqrt>
                    <mo>=</mo>
                    <mo>−</mo>
                    <msqrt>
                      <mn>1</mn>
                      <mo>−</mo>
                      <msup>
                        <mrow data-mjx-texclass="INNER">
                          <mo data-mjx-texclass="OPEN">(</mo>
                          <mfrac>
                            <mn>3</mn>
                            <mn>5</mn>
                          </mfrac>
                          <mo data-mjx-texclass="CLOSE">)</mo>
                        </mrow>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </msqrt>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mn>4</mn>
                      <mn>5</mn>
                    </mfrac>
                    <mo>,</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mrow>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                      </mrow>
                    </mfrac>
                    <mo>=</mo>
                    <mfrac>
                      <mrow>
                        <mo>−</mo>
                        <mfrac>
                          <mn>4</mn>
                          <mn>5</mn>
                        </mfrac>
                      </mrow>
                      <mfrac>
                        <mn>3</mn>
                        <mn>5</mn>
                      </mfrac>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mn>4</mn>
                      <mn>3</mn>
                    </mfrac>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </div>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              根据sin<sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>=1,可得<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <msqrt>
                  <mn>1</mn>
                  <mo>−</mo>
                  <msup>
                    <mi>cos</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </msqrt>
              </math>或<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mo>−</mo>
                <msqrt>
                  <mn>1</mn>
                  <mo>−</mo>
                  <msup>
                    <mi>cos</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </msqrt>
              </math>.其开方后的符号是由正弦值的象限符号来确定的.同理,开方后余弦值的符号也一样.
            </p>
          </div>
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例2</b></span> 已知<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>12</mn>
                  <mn>5</mn>
                </mfrac>
              </math>,且<i>α</i>是第三象限角,求sin <i>α</i>,cos <i>α</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(22)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer22" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <math display="block">
              <mtext>&nbsp;由&nbsp;</mtext>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mn>12</mn>
                <mn>5</mn>
              </mfrac>
              <mtext>&nbsp;得,&nbsp;</mtext>
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
                <mrow>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>12</mn>
                <mn>5</mn>
              </mfrac>
              <mtext>, 即&nbsp;</mtext>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mn>12</mn>
                <mn>5</mn>
              </mfrac>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mtext>.&nbsp;</mtext>
            </math>
            <p>把①代入</p>
            <math display="block">
              <msup>
                <mi>sin</mi>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>+</mo>
              <msup>
                <mi>cos</mi>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mn>1</mn>
              <mo>,</mo>
            </math>
            <p class="right">①</p>
            <p>得</p>
            <math display="block">
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mfrac>
                          <mn>12</mn>
                          <mn>5</mn>
                        </mfrac>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo>+</mo>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mn>1</mn>
                    <mo>,</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mfrac>
                      <mn>169</mn>
                      <mn>25</mn>
                    </mfrac>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mn>1</mn>
                    <mo>,</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>=</mo>
                    <mfrac>
                      <mn>25</mn>
                      <mn>169</mn>
                    </mfrac>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
            <p>因为<i>α</i>是第三象限角,所以cos<i>α</i><0.</p>
            <p>
              所以<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>13</mn>
                </mfrac>
              </math>.
            </p>
            <p>
            把<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mn>5</mn>
                <mn>13</mn>
              </mfrac>
            </math>代入①式,得
          </p>
            <math display="block">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mn>12</mn>
                <mn>5</mn>
              </mfrac>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mn>12</mn>
                <mn>5</mn>
              </mfrac>
              <mo>×</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>13</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mn>12</mn>
                <mn>13</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例3</b></span> 求证sin<sup>4</sup><i>α</i>-cos<sup>4</sup><i>α</i>=2sin
              <sup>2</sup><i>α</i>-1.
            </span>
            <span class="btn-box" @click="hadleAnswer(23)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer23" >
            <p>
              <b>证明</b> sin<sup>4</sup><i>α</i>-cos<sup>4</sup><i>α</i>=(sin
              <sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>)(sin<sup>2</sup><i>α</i>-cos<sup>2</sup><i>α</i>)
            </p>
            <p>=sin<sup>2</sup><i>α</i>-cos<sup>2</sup><i>α</i></p>
            <p>=sin<sup>2</sup><i>α</i>-(1-sin<sup>2</sup><i>α</i>)</p>
            <p>=2sin<sup>2</sup><i>α</i>-1.</p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例4</b></span> 化简<math display="0">
                <mfrac>
                  <mrow>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>−</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                  <mrow>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>−</mo>
                    <mn>1</mn>
                  </mrow>
                </mfrac>
              </math>.
            </span>
            <span class="btn-box" @click="hadleAnswer(24)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer24" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <math display="block">
              <mo>由</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>θ</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
                <mrow>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mn>3</mn>
              <mo>,</mo>
              <mo>得</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>θ</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mn>3</mn>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>θ</mi>
              <mo>.</mo>
              <mtable displaystyle="true" columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd>
                    <mfrac>
                      <mrow>
                        <mn>4</mn>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                        <mo>−</mo>
                        <mn>2</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mn>5</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                        <mo>+</mo>
                        <mn>3</mn>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                  </mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mfrac>
                      <mrow>
                        <mn>4</mn>
                        <mo stretchy="false">(</mo>
                        <mo>−</mo>
                        <mn>3</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                        <mo stretchy="false">)</mo>
                        <mo>−</mo>
                        <mn>2</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mn>5</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                        <mo>+</mo>
                        <mn>3</mn>
                        <mo stretchy="false">(</mo>
                        <mo>−</mo>
                        <mn>3</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                        <mo stretchy="false">)</mo>
                      </mrow>
                    </mfrac>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mfrac>
                      <mrow>
                        <mo>−</mo>
                        <mn>14</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mo>−</mo>
                        <mn>4</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                    <mo>=</mo>
                    <mfrac>
                      <mn>7</mn>
                      <mn>2</mn>
                    </mfrac>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </div>
          <div class="bk mt-60">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              方法一的运算思路是由正弦函数、余弦函数变化为正切函数求出结果,我们简称为“弦化切”;方法二的运算思路是由正切函数变化为正弦函数和余弦函数的关系后求出结果,我们简称为“切化弦”.
            </p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例5</b></span> 已知tan<i>θ</i>=-3,求<math display="0">
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                  <mrow>
                    <mn>5</mn>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>+</mo>
                    <mn>3</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                </mfrac>
              </math>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(25)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer25" >
            <p>
              <span class="zt-ls"><b>解</b></span> 方法一:显然cos <i>θ</i>≠0,
            </p>
            <p class="left1">
              <math display="">
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                  <mrow>
                    <mn>5</mn>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>+</mo>
                    <mn>3</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mfrac>
                      <mrow>
                        <mn>4</mn>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                    <mo>−</mo>
                    <mfrac>
                      <mrow>
                        <mn>2</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                  </mrow>
                  <mrow>
                    <mfrac>
                      <mrow>
                        <mn>5</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                    <mo>+</mo>
                    <mfrac>
                      <mrow>
                        <mn>3</mn>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                  </mrow>
                  <mrow>
                    <mn>5</mn>
                    <mo>+</mo>
                    <mn>3</mn>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mo>×</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mn>3</mn>
                    <mo stretchy="false">)</mo>
                    <mo>−</mo>
                    <mn>2</mn>
                  </mrow>
                  <mrow>
                    <mn>5</mn>
                    <mo>+</mo>
                    <mn>3</mn>
                    <mo>×</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mn>3</mn>
                    <mo stretchy="false">)</mo>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mn>7</mn>
                  <mn>2</mn>
                </mfrac>
                <mo>.</mo>
              </math>
            </p>
            <p>方法二:</p>
            <p class="left1">
              <math display="">
                <mo>由</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>θ</mi>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                  <mrow>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>θ</mi>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <mn>3</mn>
                <mo>,</mo>
                <mo>得</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>θ</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mn>3</mn>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>θ</mi>
                <mo>.</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mtable displaystyle="true"
                  columnalign="right left right left right left right left right left right left"
                  columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                  <mtr>
                    <mtd>
                      <mfrac>
                        <mrow>
                          <mn>4</mn>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                          <mo>−</mo>
                          <mn>2</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                        </mrow>
                        <mrow>
                          <mn>5</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                          <mo>+</mo>
                          <mn>3</mn>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                        </mrow>
                      </mfrac>
                    </mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mfrac>
                        <mrow>
                          <mn>4</mn>
                          <mo stretchy="false">(</mo>
                          <mo>−</mo>
                          <mn>3</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                          <mo stretchy="false">)</mo>
                          <mo>−</mo>
                          <mn>2</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                        </mrow>
                        <mrow>
                          <mn>5</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                          <mo>+</mo>
                          <mn>3</mn>
                          <mo stretchy="false">(</mo>
                          <mo>−</mo>
                          <mn>3</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                          <mo stretchy="false">)</mo>
                        </mrow>
                      </mfrac>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mfrac>
                        <mrow>
                          <mo>−</mo>
                          <mn>14</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                        </mrow>
                        <mrow>
                          <mo>−</mo>
                          <mn>4</mn>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>θ</mi>
                        </mrow>
                      </mfrac>
                      <mo>=</mo>
                      <mfrac>
                        <mn>7</mn>
                        <mn>2</mn>
                      </mfrac>
                      <mo>.</mo>
                    </mtd>
                  </mtr>
                </mtable>
              </math>
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 176 -->
    <div class="page-box" page="183">
      <div v-if="showPageList.indexOf(183) > -1">
        <ul class="page-header-odd fl al-end">
          <li>176</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="183">
    </div>
    <!-- 177 -->
    <div class="page-box" page="184">
      <div v-if="showPageList.indexOf(184) > -1">
@@ -331,11 +3366,22 @@
            <p><span>177</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[184] ? questionData[184][1] : []" :hideCollect="true"
              sourceType="json" inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
          <h3 id="c055">习题5.4<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[184] ? questionData[184][2] : []" :hideCollect="true"
              sourceType="json" inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 178 -->
    <div class="page-box" page="185">
      <div v-if="showPageList.indexOf(185) > -1">
@@ -344,10 +3390,170 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b034">
            5.5 诱导公式<span class="fontsz1">>>>>>>>></span>
          </h2>
          <p>
            我们知道,图像的对称性是函数性质(如奇偶性)的重要几何特征.在上一节,我们借助单位圆推导了同角三角函数的基本关系式.下面,我们继续利用在平面直角坐标系中关于原点中心对称的单位圆,推导三角函数的诱导公式.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            我们知道,<math display="0">
              <mfrac>
                <mi>α</mi>
                <mn>3</mn>
              </mfrac>
            </math>和<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>(<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>可写为<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>+</mo>
              <mn>2</mn>
              <mi>π</mi>
            </math>)所对应的角是终边相同的角.想一想,<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>之间有什么关系?
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0189-9.jpg" />
          </p>
          <p class="img">图5-19</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            在平面直角坐标系中,由于<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>和<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>所对应的角的终边相同,所以由三角函数的定义可知,<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            如图5-19所示,角<i>α</i>的终边与单位圆的交点为<i>P</i>(cos<i>α</i>,sin<i>α</i>),终边继续旋转2<i>πk</i>(<i>k</i>∈<b>Z</b>)后,点<i>P</i>(cos<i>α</i>,sin<i>α</i>)又回到原来的位置,所以各三角函数值并不发生变化.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            我们知道,所有与<i>α</i>终边相同的角,连同<i>α</i>在内,可以组成一个集合
          </p>
          <p class="center">
            <i>S</i>={<i>β</i>|<i>β</i>=<i>α</i>+2<i>kπ</i>,<i>k</i>∈<b>Z</b>}.
          </p>
          <p>
            由三角函数的定义可知,角<i>α</i>+2<i>kπ</i>(<i>k</i>∈<b>Z</b>)与角<i>α</i>的同名三角函数的值相等(“同名”指同为正弦、余弦或正切,下同).于是,当<i>k</i>∈<b>Z</b>时,
          </p>
          <div class="bj">
            <p class="center">
              有sin(<i>α</i>+2<i>kπ</i>)=sin <i>α</i>(<i>k</i>∈<b>Z</b>);
            </p>
            <p class="center">
                  cos(<i>α</i>+2<i>kπ</i>)=cos<i>α</i>(<i>k</i>∈<i>Z</i>);
              公式一
            </p>
            <p class="center">
              tan(<i>α</i>+2<i>kπ</i>)=tan<i>α</i>(<i>k</i>∈<b>Z</b>).
            </p>
          </div>
          <p>即终边相同的角同名三角函数值相等.</p>
        </div>
      </div>
    </div>
    <!-- 179 -->
    <div class="page-box" page="186">
      <div v-if="showPageList.indexOf(186) > -1">
@@ -359,8 +3565,214 @@
            <p><span>179</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例1</b></span> 求下列三角函数的值.</span>
            <span class="btn-box" @click="hadleAnswer(26)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
              (1)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>13</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>6</mn>
                </mfrac>
              </math>;(2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>5</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>;(3) tan 405°.
            </p>
          <div v-if="isShowAnswer26" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>13</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>6</mn>
                </mfrac>
                <mo>=</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>6</mn>
                  </mfrac>
                  <mo>+</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>;
            </p>
            <p>
              (2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>5</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>3</mn>
                  </mfrac>
                  <mo>−</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>;
            </p>
            <p>(3) tan405°=tan(45°+360°)=tan45°=1.</p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[186]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <p>
            如图5-20所示,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>和<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>(<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>可写为<math display="0">
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>)所对应的角的终边关于坐标原点对称.想一想,<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>之间有什么关系?
          </p>
          <p class="center">
            <img class="img-f" alt="" src="../../assets/images/0190-25.jpg" />
          </p>
          <p class="img">图5-20</p>
        </div>
      </div>
    </div>
    <!-- 180 -->
@@ -371,7 +3783,168 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            如图5-20所示,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>和<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>所对应的角的终边与单位圆的交点分别是点<i>P</i>与点<i>P</i>′.根据对称性可知,它们的横坐标与纵坐标都互为相反数.
          </p>
          <p>由此得到</p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mi>π</mi>
              <mn>6</mn>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>7</mn>
                <mi>π</mi>
              </mrow>
              <mn>6</mn>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>,</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mi>π</mi>
              <mn>6</mn>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>7</mn>
                <mi>π</mi>
              </mrow>
              <mn>6</mn>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>.</mo>
          </math>
          <p>
            如图5-21所示,设单位圆与任意角<i>α</i>,π+<i>α</i>的终边分别相交于点<i>P</i>和<i>P</i>′,则点<i>P</i>和<i>P</i>′关于原点中心对称.如果点<i>P</i>的坐标是(cos
            <i>α</i>,sin
            <i>α</i>),那么点<i>P</i>′的坐标应该是(-cos<i>α</i>,-sin<i>α</i>).又由于点<i>P</i>′作为角π+<i>α</i>的终边与单位圆的交点,其坐标应该是(cos(π+<i>α</i>),sin(π+<i>α</i>)),由此得到
          </p>
          <p class="center">
            cos(π+<i>α</i>)=-cos<i>α</i>,sin(π+<i>α</i>)=-sin<i>α</i>.
          </p>
          <p>由同角三角函数的关系式知</p>
          <math display="block">
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mo stretchy="false">(</mo>
            <mi>π</mi>
            <mo>+</mo>
            <mi>α</mi>
            <mo stretchy="false">)</mo>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mo>−</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
              <mrow>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>.</mo>
          </math>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0191-5.jpg" />
          </p>
          <p class="img">图5-21</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            与任意角<i>α</i>的终边关于原点中心对称的角π+<i>α</i>的正弦函数、余弦函数和正切函数的计算公式如下.
          </p>
          <div class="bj">
            <p class="center"> sin(π+<i>α</i>)=-sin<i>α</i>;</p>
            <p class="center">    cos(π+<i>α</i>)=-cos<i>α</i>;公式二</p>
            <p class="center">tan(π+<i>α</i>)=tan<i>α</i>.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 181 -->
@@ -385,7 +3958,284 @@
            <p><span>181</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例2</b></span> 求下列三角函数的值. </span>
            <span class="btn-box" @click="hadleAnswer(27)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            (1) sin 225°;(2)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>;(3) tan 570°.
          </p>
          <div v-if="isShowAnswer27" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>225</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>+</mo>
                  <msup>
                    <mn>45</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mo>−</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>45</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>;
            </p>
            <p>
               (2)<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>π</mi>
                  <mo>+</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>;
            </p>
            <p>
               (3)<math display="0">
                <mtable displaystyle="true"
                  columnalign="right left right left right left right left right left right left"
                  columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                  <mtr>
                    <mtd>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <msup>
                        <mn>570</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                    </mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <msup>
                          <mn>210</mn>
                          <mrow>
                            <mo>∘</mo>
                          </mrow>
                        </msup>
                        <mo>+</mo>
                        <msup>
                          <mn>360</mn>
                          <mrow>
                            <mo>∘</mo>
                          </mrow>
                        </msup>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mo>=</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <msup>
                        <mn>210</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                      <mo>=</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <msup>
                          <mn>180</mn>
                          <mrow>
                            <mo>∘</mo>
                          </mrow>
                        </msup>
                        <mo>+</mo>
                        <msup>
                          <mn>30</mn>
                          <mrow>
                            <mo>∘</mo>
                          </mrow>
                        </msup>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mo>=</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <msup>
                        <mn>30</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mfrac>
                        <msqrt>
                          <mn>3</mn>
                        </msqrt>
                        <mn>3</mn>
                      </mfrac>
                    </mtd>
                  </mtr>
                </mtable>
              </math>
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[188]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <p>
            如图5-22所示,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>和<math display="0">
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>所对应的角的终边关于<i>x</i>轴对称.想一想,<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>之间有什么关系?
          </p>
          <p class="center">
            <img class="img-f" alt="" src="../../assets/images/0192-23.jpg" />
          </p>
          <p class="img">图5-22</p>
        </div>
      </div>
    </div>
    <!-- 182 -->
@@ -396,7 +4246,382 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            如图5-22所示,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>和<math display="0">
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>所对应的角的终边与单位圆的交点分别是点<i>P</i>与点<i>P</i>′.根据对称性可知,点<i>P</i>与点<i>P</i>′的横坐标相同、纵坐标互为相反数.
          </p>
          <p>
            由此得到<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0193-5.jpg" />
          </p>
          <p class="img">图5-23</p>
          <p>
            如图5-23所示,设单位圆与任意角<i>α</i>,-<i>α</i>的终边分别相交于点<i>P</i>和点<i>P</i>′,则点<i>P</i>与点<i>P</i>′关于<i>x</i>轴对称.如果点<i>P</i>的坐标是(cos<i>α</i>,sin<i>α</i>),那么点<i>P</i>′的坐标是(cos<i>α</i>,-sin<i>α</i>).由于点<i>P</i>′作为角-<i>α</i>的终边与单位圆的交点,其坐标应该是(cos(-<i>α</i>),sin(-<i>α</i>)),于是得到
          </p>
          <p class="center">
            cos(-<i>α</i>)=cos<i>α</i>,sin(-<i>α</i>)=-sin<i>α</i>.
          </p>
          <p>由同角三角函数的关系式知</p>
          <math display="block">
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mo stretchy="false">(</mo>
            <mo>−</mo>
            <mi>α</mi>
            <mo stretchy="false">)</mo>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mo>−</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mo>−</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mo>−</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>.</mo>
          </math>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            与任意角<i>α</i>的终边关于<i>x</i>轴对称的角-<i>α</i>的正弦函数、余弦函数和正切函数的计算公式如下.
          </p>
          <div class="bj">
            <p class="center">sin(-<i>α</i>)=-sin<i>α</i>;</p>
            <p class="center">cos(-<i>α</i>)=cos<i>α</i>;公式三</p>
            <p class="center">tan(-<i>α</i>)=-tan<i>α</i>.</p>
          </div>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              利用公式三,可以把负角的三角函数转化为正角的三角函数.
            </p>
          </div>
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例3</b></span> 求下列三角函数的值.</span>
            <span class="btn-box" @click="hadleAnswer(28)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            (1) sin(-45°);(2) cos(-390°);(3)
            <math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mo stretchy="false">(</mo>
              <mo>−</mo>
              <mfrac>
                <mrow>
                  <mn>16</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo stretchy="false">)</mo>
            </math>.
          </p>
          <div v-if="isShowAnswer28" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(1)</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <msup>
                    <mn>45</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mo>−</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>45</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
                <mo>;</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(2)</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <msup>
                    <mn>390</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>390</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mn>30</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>+</mo>
                  <msup>
                    <mn>360</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>30</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
                <mo>;</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(3)</mo>
                <mtable displaystyle="true"
                  columnalign="right left right left right left right left right left right left"
                  columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                  <mtr>
                    <mtd>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mo>−</mo>
                        <mfrac>
                          <mrow>
                            <mn>16</mn>
                            <mi>π</mi>
                          </mrow>
                          <mn>3</mn>
                        </mfrac>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                    </mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mrow>
                          <mn>16</mn>
                          <mi>π</mi>
                        </mrow>
                        <mn>3</mn>
                      </mfrac>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mfrac>
                          <mrow>
                            <mn>4</mn>
                            <mi>π</mi>
                          </mrow>
                          <mn>3</mn>
                        </mfrac>
                        <mo>+</mo>
                        <mn>4</mn>
                        <mi>π</mi>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mrow>
                          <mn>4</mn>
                          <mi>π</mi>
                        </mrow>
                        <mn>3</mn>
                      </mfrac>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mi>π</mi>
                        <mo>+</mo>
                        <mfrac>
                          <mi>π</mi>
                          <mn>3</mn>
                        </mfrac>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mfrac>
                        <mi>π</mi>
                        <mn>3</mn>
                      </mfrac>
                      <mo>=</mo>
                      <mo>−</mo>
                      <msqrt>
                        <mn>3</mn>
                      </msqrt>
                    </mtd>
                  </mtr>
                </mtable>
              </math>
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 183  -->
@@ -410,7 +4635,85 @@
            <p><span>183</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[190]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <p>
            如图5-24所示,<i>α</i>和π-<i>α</i>所对应的角的终边关于<i>y</i>轴对称.想一想,sin<i>α</i>与sin(π-<i>α</i>),cos<i>α</i>与cos(π-<i>α</i>)之间有什么关系?
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0194-14.jpg" />
          </p>
          <p class="img">图5-24</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            如图5-24所示,设单位圆与角<i>α</i>,π-<i>α</i>的终边分别相交于点<i>P</i>和点<i>P</i>′,则点<i>P</i>与点<i>P</i>′关于<i>y</i>轴对称.如果点<i>P</i>的坐标是(cos<i>α</i>,sin<i>α</i>),那么点<i>P</i>′的坐标是(-cos<i>α</i>,sin<i>α</i>).由于点<i>P</i>′作为角π-<i>α</i>的终边与单位圆的交点,其坐标应该是(cos(π-<i>α</i>),sin(π-<i>α</i>)),
          </p>
          <p class="center">
            cos(π-<i>α</i>)=-cos<i>α</i>, sin(π-<i>α</i>)=sin<i>α</i>.
          </p>
          <p>由同角三角函数的关系式知</p>
          <math display="block">
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mo stretchy="false">(</mo>
            <mi>π</mi>
            <mo>−</mo>
            <mi>α</mi>
            <mo stretchy="false">)</mo>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
              <mrow>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>.</mo>
          </math>
        </div>
      </div>
    </div>
    <!-- 184 -->
@@ -421,10 +4724,446 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            与任意角<i>α</i>的终边关于<i>y</i>轴对称的角π-<i>α</i>的正弦函数、余弦函数和正切函数的计算公式如下.
          </p>
          <div class="bj">
            <p class="center">sin(π-<i>α</i>)=sin<i>α</i>;</p>
            <p class="center">cos(π-<i>α</i>)=-cos<i>α</i>; 公式四</p>
            <p class="center">tan(π-<i>α</i>)=-tan<i>α</i>.</p>
          </div>
          <p>
            公式一至公式四统称为三角函数的诱导公式.利用这些公式可以把任意角的三角函数转化为锐角三角函数.
          </p>
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例4</b></span> 求下列三角函数的值.</span>
            <span class="btn-box" @click="hadleAnswer(29)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p>
            (1) cos 135°;(2)
            <math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>8</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>;(3)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>11</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>.
          </p>
          <div v-if="isShowAnswer29" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(1)</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>135</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>−</mo>
                  <msup>
                    <mn>45</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <msup>
                  <mn>45</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
                <mo>;</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(2)</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>8</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mrow>
                      <mn>2</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>3</mn>
                  </mfrac>
                  <mo>+</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mo>−</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
                <mo>;</mo>
              </math>
            </p>
            <p class="left1">
              <math display="">
                <mo stretchy="false">(3)</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>11</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>4</mn>
                  </mfrac>
                  <mo>+</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>4</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>4</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
                <mo>.</mo>
              </math>
            </p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例5</b></span> 化简:<math display="0">
                <mfrac>
                  <mrow>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>2</mn>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>3</mn>
                    <mi>π</mi>
                    <mo>+</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                  </mrow>
                  <mrow>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mi>π</mi>
                    <mo>+</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>3</mn>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo>−</mo>
                    <mi>π</mi>
                    <mo stretchy="false">)</mo>
                  </mrow>
                </mfrac>
              </math>
            </span>
            <span class="btn-box" @click="hadleAnswer(30)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer30" >
            <p>
              <span class="zt-ls"><b>解</b></span>
            </p>
            <p class="left1">
              <math display="">
                <mtable displaystyle="true"
                  columnalign="right left right left right left right left right left right left"
                  columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                  <mtr>
                    <mtd>
                      <mtext>&nbsp;原式&nbsp;</mtext>
                    </mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mfrac>
                        <mrow>
                          <mo>−</mo>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo>⋅</mo>
                          <mo stretchy="false">(</mo>
                          <mo>−</mo>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo stretchy="false">)</mo>
                        </mrow>
                        <mrow>
                          <mo>−</mo>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo stretchy="false">(</mo>
                          <mo>−</mo>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo stretchy="false">)</mo>
                          <mo stretchy="false">(</mo>
                          <mo>−</mo>
                          <mi>tan</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo stretchy="false">)</mo>
                        </mrow>
                      </mfrac>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mfrac>
                        <mrow>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo>⋅</mo>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                        </mrow>
                        <mrow>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo>⋅</mo>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                          <mo>⋅</mo>
                          <mfrac>
                            <mrow>
                              <mi>sin</mi>
                              <mo data-mjx-texclass="NONE">⁡</mo>
                              <mi>α</mi>
                            </mrow>
                            <mrow>
                              <mi>cos</mi>
                              <mo data-mjx-texclass="NONE">⁡</mo>
                              <mi>α</mi>
                            </mrow>
                          </mfrac>
                        </mrow>
                      </mfrac>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd></mtd>
                    <mtd>
                      <mi></mi>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mfrac>
                        <mrow>
                          <mi>sin</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                        </mrow>
                        <mrow>
                          <mi>cos</mi>
                          <mo data-mjx-texclass="NONE">⁡</mo>
                          <mi>α</mi>
                        </mrow>
                      </mfrac>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mi>tan</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>α</mi>
                      <mo>.</mo>
                    </mtd>
                  </mtr>
                </mtable>
              </math>
            </p>
          </div>
          <p><b>归纳总结</b></p>
          <p>
            利用诱导公式,把任意角的三角函数值转化为锐角的三角函数值的一般步骤为:
          </p>
          <p class="center">
            <img class="img-d" alt="" src="../../assets/images/0195-6.jpg" />
          </p>
        </div>
      </div>
    </div>
    <!-- 185 -->
    <div class="page-box" page="192">
      <div v-if="showPageList.indexOf(192) > -1">
@@ -433,24 +5172,194 @@
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>185</span></p>
            <p><span>185-186</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            事实上,以上步骤体现了将未知转化为已知的化归思想.利用公式一至公式四,按上述步骤解决了求三角函数值这个重要而困难的问题.现在,由于计算工具的便捷使用,对于三角函数的“求值”已不是问题,但其中的思想方法在解决三角函数的各种问题中却依然有重要的作用.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[192]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            前面我们探究了求特殊角的三角函数值的方法,而对于不是特殊角的三角函数值又该如何求值呢?使用计算工具就能很容易地解决这个问题.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            利用科学计算器的<img class="inline" alt="" src="../../assets/images/0196-13.jpg" />键,可以方便地计算任意角的三角函数值.
          </p>
          <p>
            主要步骤如下:设置精确度→设置模式(角度制或弧度制)→按键<img class="inline" alt="" src="../../assets/images/0196-14.jpg" />(或键<img
              class="inline" alt="" src="../../assets/images/0196-15.jpg" />)→输入角的大小→按键<img class="inline" alt=""
              src="../../assets/images/0196-16.jpg" />显示结果.
          </p>
          <p>
            <span class="zt-ls"><b>例6</b></span> 利用科学计算器计算.(结果精确到0.01)
          </p>
          <p class="p-btn" >
            <span>(1) sin 63°52′41″;</span>
            <span class="btn-box" @click="hadleAnswer(31)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer31" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              先将精确度设置为0.01,再将科学计算器设置为角度计算模式,然后依次按下列各键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-1.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-2.jpg" />
            </p>
            <p>所以 sin 63°52′41″≈0.90.</p>
          </div>
          <p class="p-btn" >
            <span>
              (2)<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
              </math>;
            </span>
            <span class="btn-box" @click="hadleAnswer(32)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer32" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2)
              先将精确度设置为0.01,再将科学计算器设置为弧度计算模式,然后依次按下列各键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-3.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-4.jpg" />
            </p>
            <p>
              所以
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <mn>0.50</mn>
                <mo>.</mo>
              </math>
            </p>
          </div>
          <p class="p-btn" >
            <span>
              (3)
              <math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>6</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>.
            </span>
            <span class="btn-box" @click="hadleAnswer(33)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer33" >
            <p>
              <span class="zt-ls"><b>解</b></span>
              (3)
              先将精确度设置为0.01,再将科学计算器设置为弧度计算模式,然后依次按下列各键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-6.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0197-7.jpg" />
            </p>
            <p>
              所以<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>6</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>≈</mo>
                <mo>−</mo>
                <mn>0.73</mn>
                <mo>.</mo>
              </math>
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[193]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 186 -->
    <div class="page-box" page="193">
      <div v-if="showPageList.indexOf(193) > -1">
        <ul class="page-header-odd fl al-end">
          <li>186</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="193">
    </div>
    <!-- 187 -->
    <div class="page-box" page="194">
      <div v-if="showPageList.indexOf(194) > -1">
@@ -462,7 +5371,13 @@
            <p><span>187</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c056">习题5.5<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[194]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 188 -->
@@ -473,10 +5388,64 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b035">
            5.6 正弦函数的图像和性质<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c057">
            5.6.1 正弦函数的图像<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <p>
            如果今天是2021年3月17日星期三,那么往前推7天是周几?往后推7天是周几?再过7天又是周几?
          </p>
          <p>显然,前面所有问题都是同一个答案:周三.</p>
          <p>
            生活中,像这样每隔7天,“周三”又会重复出现,这个“7天”就是我们常说的一周(一个周期),这种每隔一段时间便会重复出现的现象称为周期现象.
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0199-1.jpg" />
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            我们知道,单位圆上任意一点在圆周上旋转一周就回到原来的位置,这说明,
            在函数<i>y</i>=sin<i>x</i>中,当自变量每间隔2π个单位长度时,对应的函数值都会重复出现,即sin(<i>x</i>+2π)=sin<i>x</i>.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">周期函数</p>
            <p class="block">周期</p>
            <p class="block">最小正周期</p>
          </div>
          <p>
            一般地,对于函数<i>y</i>=<i>f</i>(<i>x</i>),如果存在一个非零常数<i>T</i>,当<i>x</i>取定义域<i>D</i>内的每一个值时,都有<i>x</i>+<i>T</i>∈<i>D</i>,并且都满足
          </p>
          <p class="center">
            <i>f</i>(<i>x</i>+<i>T</i>)=<i>f</i>(<i>x</i>),
          </p>
          <p>
            则称函数<i>y</i>=<i>f</i>(<i>x</i>)为<b>周期函数</b>,非零常数<i>T</i>叫作这个函数的一个<b>周期</b>.
          </p>
          <p>
            例如,函数<i>y</i>=sin<i>x</i>中,对于任意<i>x</i>∈<b>R</b>,都有<i>x</i>+2π∈<b>R</b>,且满足<i>f</i>(<i>x</i>+2π)=<i>f</i>(<i>x</i>).可见,正弦函数是周期函数,且2π是它的一个周期.
          </p>
          <p>
            又由sin(<i>x</i>+2π<i>k</i>)=sin<i>x</i>(<i>k</i>∈<b>Z</b>),可知2π,4π,6π,…及-2π,-4π,-6π,…都是正弦函数<i>y</i>=sin<i>x</i>的周期.
          </p>
          <p>
            对于一个周期函数<i>y</i>=<i>f</i>(<i>x</i>),如果在它的所有的周期中存在一个最小的正数,就称这个最小的正数为<i>y</i>=<i>f</i>(<i>x</i>)的<b>最小正周期</b>.
          </p>
        </div>
      </div>
    </div>
    <!-- 189 -->
    <div class="page-box" page="196">
      <div v-if="showPageList.indexOf(196) > -1">
@@ -488,10 +5457,90 @@
            <p><span>189</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            由此可见,2π就是正弦函数<i>y</i>=sin<i>x</i>的最小正周期.为了简便起见,本书所指的三角函数的周期一般指函数的最小正周期.因此,我们说正弦函数的周期是2π.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            <i>y</i>=sin<i>x</i>是以2π为周期的函数,所以只要画出它在一个完整周期内的图像,再利用周期性就可以得到正弦函数的图像.
          </p>
          <p>
            首先,列表.自变量<i>x</i>的取值如表5-5所示,利用科学计算器求出<i>y</i>=sin<i>x</i>的各个值并填入表中.
          </p>
          <p class="img">表5-5</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0200-1.jpg" />
          </p>
          <p>
            其次,描点连线.根据表中数值描点,然后用光滑的曲线把各点连接起来,绘制出在[0,2π]上的图像,如图5-25所示.
          </p>
          <p class="center">
            <img class="img-b" alt="" src="../../assets/images/0200-2.jpg" />
          </p>
          <p class="img">图5-25</p>
          <p>
            由图5-25可以看出,决定函数<i>y</i>=sin<i>x</i>(<i>x</i>∈0,2π)
            图像形状的有五个关键点,即
          </p>
          <math display="block">
            <mo stretchy="false">(</mo>
            <mn>0</mn>
            <mo>,</mo>
            <mn>0</mn>
            <mo stretchy="false">)</mo>
            <mo>,</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>,</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>,</mo>
            <mo stretchy="false">(</mo>
            <mi>π</mi>
            <mo>,</mo>
            <mn>0</mn>
            <mo stretchy="false">)</mo>
            <mo>,</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
              <mo>,</mo>
              <mo>−</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>,</mo>
            <mo stretchy="false">(</mo>
            <mn>2</mn>
            <mi>π</mi>
            <mo>,</mo>
            <mn>0</mn>
            <mo stretchy="false">)</mo>
            <mo>.</mo>
          </math>
          <p>
            因此,在精确度要求不高时,经常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到函数<i>y</i>=sin<i>x</i>(<i>x</i>∈0,2π)的简图,我们称这种画图方法为“五点(画图)法”.
          </p>
          <p>
            最后,利用正弦函数的周期性,我们将函数<i>y</i>=sin<i>x</i>(<i>x</i>∈0,2π)的图像向左或向右平移2π,4π,…,即可画出<i>y</i>=sin<i>x</i>在<b>R</b>的图像,如图5-26所示.
          </p>
        </div>
      </div>
    </div>
    <!-- 190 -->
    <div class="page-box" page="197">
      <div v-if="showPageList.indexOf(197) > -1">
@@ -500,10 +5549,73 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center">
            <img class="img-b" alt="" src="../../assets/images/0201-1.jpg" />
          </p>
          <p class="img">图5-26</p>
          <p>
            正弦函数<i>y</i>=sin<i>x</i>,<i>x</i>∈<b>R</b>的图像叫作正弦曲线.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 用“五点法”画出下列函数在区间[0,2π]内的简图.
          </p>
          <p class="p-btn" >
            <span>
              (1) <i>y</i>=-sin<i>x</i>;
            </span>
            <span class="btn-box" @click="hadleAnswer(34)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer34" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 列表(表5-6).
            </p>
            <p class="img">表5-6</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0201-2.jpg" />
            </p>
            <p>
              描点连线得<i>y</i>=-sin<i>x</i>在区间[0,2π]内的简图,如图5-27所示.
            </p>
            <p class="center">
              <img class="img-d" alt="" src="../../assets/images/0201-3.jpg" />
            </p>
            <p class="img">图5-27</p>
          </div>
          <p class="p-btn" >
            <span>(2) <i>y</i>=1+sin<i>x</i>.</span>
            <span class="btn-box" @click="hadleAnswer(35)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer35" >
            <p><span class="zt-ls"><b>解</b></span>(2) 列表(表5-7).</p>
            <p class="img">表5-7</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0201-4.jpg" />
            </p>
            <p>
              描点连线得<i>y</i>=1+sin<i>x</i>在区间[0,2π]内的简图,如图5-28所示.
            </p>
            <p class="center">
              <img class="img-d" alt="" src="../../assets/images/0201-5.jpg" />
            </p>
            <p class="img">图5-28</p>
          </div>
          <iframe src="https://www.geogebra.org/calculator" frameborder="0" class="iframe-box"></iframe>
        </div>
      </div>
    </div>
    <!-- 191 -->
    <div class="page-box" page="198">
      <div v-if="showPageList.indexOf(198) > -1">
@@ -515,8 +5627,88 @@
            <p><span>191</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[198]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
            <p class="block">
              <i>y</i>=-sin<i>x</i>与<i>y</i>=sin<i>x</i>的图像有什么关系?
              <i>y</i>=1+sin<i>x</i>与<i>y</i>=sin<i>x</i>的图像有什么关系?
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <fillInTable :queryData="queryDataOne"  />
            <paint
              :page="198"
              :imgUrl="this.config.activeBook.resourceUrl + '/images/0103-2.jpg'"
            />
          </div>
          <h3 id="c058">
            5.6.2 正弦函数的性质(一)<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            通过观察<i>y</i>=sin<i>x</i>的图像可知正弦函数<i>y</i>=sin<i>x</i>的性质.本节主要研究正弦函数的定义域、值域、周期性和奇偶性.
          </p>
          <p>1.定义域.</p>
          <p><i>y</i>=sin<i>x</i>的定义域是<b>R</b>.</p>
          <p>2.值域.</p>
          <p>
            曲线夹在两条直线<i>y</i>=1和<i>y</i>=-1之间,因此-1≤sin<i>x</i>≤1,即<i>y</i>=sin<i>x</i>的值域是[-1,1].
          </p>
          <p>
            当<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mn>2</mn>
              <mi>k</mi>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>时,<i>y</i>=sin <i>x</i>取得最大值1;
          </p>
          <p>
            当<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mn>2</mn>
              <mi>k</mi>
              <mi>π</mi>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>时,<i>y</i>=sin <i>x</i>取得最小值-1.
          </p>
        </div>
      </div>
    </div>
@@ -524,29 +5716,565 @@
    <div class="page-box" page="199">
      <div v-if="showPageList.indexOf(199) > -1">
        <ul class="page-header-odd fl al-end">
          <li>192</li>
          <li>192-193</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>3.周期性.</p>
          <p><i>y</i>=sin<i>x</i>是周期函数,周期是2π.</p>
          <p>4.奇偶性.</p>
          <p>
            因为sin(-<i>x</i>)=-sin<i>x</i>,所以<i>y</i>=sin<i>x</i>是奇函数,其图像关于原点对称.
          </p>
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mo>−</mo>
                    <mi>a</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
              </math>,求<i>a</i>的取值范围.
            </span>
            <span class="btn-box" @click="hadleAnswer(36)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer36" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为 -1≤sin<i>x</i>≤1,
            </p>
            <p>
              所以 <math display="0">
                <mo>−</mo>
                <mn>1</mn>
                <mo>⩽</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mo>−</mo>
                    <mi>a</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo>⩽</mo>
                <mn>1</mn>
              </math>,
            </p>
            <p>解得 1≤<i>a</i>≤5.</p>
          </div>
          <p>
            <span class="zt-ls"><b>例2</b></span> 求使下列函数取得最大值、最小值的<i>x</i>的集合,并求出这些函数的最大值、最小值.
          </p>
          <p class="p-btn" >
            <span>
              (1) <i>y</i>=3+sin<i>x</i>;
            </span>
            <span class="btn-box" @click="hadleAnswer(37)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer37" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              使函数<i>y</i>=3+sin<i>x</i>取得最大值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最大值的<i>x</i>的集合<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">|</mo>
                    <mstyle scriptlevel="0">
                      <mspace width="thinmathspace"></mspace>
                    </mstyle>
                    <mi>x</mi>
                    <mo>=</mo>
                    <mn>2</mn>
                    <mi>k</mi>
                    <mi>π</mi>
                    <mo>+</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>2</mn>
                    </mfrac>
                    <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                  </mrow>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
              </math>.这时函数<i>y</i>=3+sin<i>x</i>的最大值为<i>y</i>=3+1=4.
            </p>
            <p>
              使函数<i>y</i>=3+sin<i>x</i>取得最小值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最小值的<i>x</i>的集合<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">|</mo>
                    <mstyle scriptlevel="0">
                      <mspace width="thinmathspace"></mspace>
                    </mstyle>
                    <mi>x</mi>
                    <mo>=</mo>
                    <mn>2</mn>
                    <mi>k</mi>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>2</mn>
                    </mfrac>
                    <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                  </mrow>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
              </math>.这时函数<i>y</i>=3+sin<i>x</i>的最小值为<i>y</i>=3+(-1)=2.
            </p>
          </div>
          <p class="p-btn" >
            <span>
              (2) <i>y</i>=-2sin<i>x</i>.
            </span>
            <span class="btn-box" @click="hadleAnswer(38)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer38" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2)
              使函数<i>y</i>=-2sin<i>x</i>取得最大值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最小值的<i>x</i>的集合<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">|</mo>
                    <mstyle scriptlevel="0">
                      <mspace width="thinmathspace"></mspace>
                    </mstyle>
                    <mi>x</mi>
                    <mo>=</mo>
                    <mn>2</mn>
                    <mi>k</mi>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>2</mn>
                    </mfrac>
                    <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                  </mrow>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
              </math>.这时函数<i>y</i>=-2sin<i>x</i>的最大值为<i>y</i>=-2×(-1)=2.
            </p>
            <p>
              使函数<i>y</i>=-2sin<i>x</i>取得最小值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最大值的<i>x</i>的集合<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mi>x</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">|</mo>
                    <mstyle scriptlevel="0">
                      <mspace width="thinmathspace"></mspace>
                    </mstyle>
                    <mi>x</mi>
                    <mo>=</mo>
                    <mn>2</mn>
                    <mi>k</mi>
                    <mi>π</mi>
                    <mo>+</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>2</mn>
                    </mfrac>
                    <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                  </mrow>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">}</mo>
                </mrow>
              </math>.这时函数<i>y</i>=-2sin<i>x</i>的最小值为<i>y</i>=-2×1=-2.
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[199]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h3 id="c059">
            5.6.3 正弦函数的性质(二)<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>5.单调性.</p>
          <p>
            如图5-29所示,选取正弦曲线在长度为2π的区间<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>内的图像进行考查.
          </p>
          <p class="center">
            <img class="img-d" alt="" src="../../assets/images/0204-3.jpg" />
          </p>
          <p class="img">图5-29</p>
          <p>
            <i>y</i>=sin<i>x</i> 在区间<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是增函数,在区间<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是减函数.由正弦函数的周期性可知:<i>y</i>=sin<i>x</i>在每一个区间<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mn>2</mn>
                <mi>k</mi>
                <mi>π</mi>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>2</mn>
                <mi>k</mi>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上都是增函数,函数值由-1增大到1;在每一个区间<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mn>2</mn>
                <mi>k</mi>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>2</mn>
                <mi>k</mi>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上都是减函数,函数值由1减小到-1.
          </p>
          <p>
            <b>例</b> 不求值,利用正弦函数的单调性,比较下列各对正弦值的大小.
          </p>
          <p class="p-btn" >
            <span>
                (1)<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
              </math>与<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
              </math>;
            </span>
            <span class="btn-box" @click="hadleAnswer(39)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer39" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 因为 <math display="0">
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
              </math>,
            </p>
            <p>
              而<i>y</i>=sin <i>x</i> 在<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>上是减函数,所以
            </p>
            <math display="block">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mtext>.&nbsp;</mtext>
            </math>
          </div>
          <p class="p-btn" >
            <span>
              (2)<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>9</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>与<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>10</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>.
            </span>
            <span class="btn-box" @click="hadleAnswer(40)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer40" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2) 因为 <math display="0">
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>&lt;</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>9</mn>
                  </mfrac>
                  <mo>&lt;</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>10</mn>
                  </mfrac>
                  <mo>&lt;</mo>
                  <mn>0</mn>
                </math>,
              </p>
              <p>
                而<i>y</i>=sin <i>x</i>在<math display="0">
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">[</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>2</mn>
                    </mfrac>
                    <mo>,</mo>
                    <mn>0</mn>
                    <mo data-mjx-texclass="CLOSE">]</mo>
                  </mrow>
                </math>上是增函数,所以
              </p>
              <math display="block">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>9</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>&lt;</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>10</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>
          </div>
        </div>
      </div>
    </div>
    <!-- 193 -->
    <div class="page-box" page="200">
      <div v-if="showPageList.indexOf(200) > -1">
        <ul class="page-header-box">
          <li>
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>193</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
      </div>
    </div>
    <div class="page-box hidePage" page="200"></div>
    <!-- 194 -->
    <div class="page-box" page="201">
@@ -556,10 +6284,22 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[201] ? questionData[201][1] : []" :hideCollect="true"
              sourceType="json" inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
          <h3 id="c060">习题5.6<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[201] ? questionData[201][2] : []" :hideCollect="true"
              sourceType="json" inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 195 -->
    <div class="page-box" page="202">
      <div v-if="showPageList.indexOf(202) > -1">
@@ -571,7 +6311,51 @@
            <p><span>195</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b036">
            5.7 余弦函数的图像和性质<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c061">
            5.7.1 余弦函数的图像<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            我们学习了正弦函数的图像和性质,你能用类似的方法绘制出余弦函数的图像,并根据图像研究它的性质吗?
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>根据诱导公式可知,</p>
          <p class="center">cos(<i>x</i>+2π)=cos <i>x</i>.</p>
          <p>
            由周期函数的定义可知,余弦函数<i>y</i>=cos<i>x</i>是以2π为周期的周期函数.为画出函数<i>y</i>=cos<i>x</i>的图像,可仿照正弦曲线的画法,先用描点法画出它在一个周期[0,2π]内的图像,然后利用周期性画出其完整图像.
          </p>
          <p>
            首先,列表.自变量<i>x</i>取值如表5-9所示,利用科学计算器求出cos
            <i>x</i>的各个值并填入表中.
          </p>
          <p class="img">表5-9</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0206-1.jpg" />
          </p>
          <p>
            其次,描点连线.根据表中数值描点,用光滑的曲线把各点连接起来,得出图像如图5-30所示.
          </p>
          <p class="center">
            <img class="img-d" alt="" src="../../assets/images/0206-2.jpg" />
          </p>
          <p class="img">图5-30</p>
          <p>
            最后,利用余弦函数的周期性,把<i>y</i>=cos
            <i>x</i>在[0,2π]内的图像向左或向右平移2π,4π,…就可以画出<i>y</i>=cos
            <i>x</i>在<b>R</b>上的图像,如图5-31所示.
          </p>
          <p>
            余弦函数<i>y</i>=cos<i>x</i>,<i>x</i>∈<b>R</b>的图像叫作<b>余弦曲线</b>.
          </p>
        </div>
      </div>
    </div>
    <!-- 196 -->
@@ -582,10 +6366,135 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center">
            <img class="img-b" alt="" src="../../assets/images/0207-1.jpg" />
          </p>
          <p class="img">图5-31</p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              1.与画正弦函数的图像一样,也可以用“五点法”画出<i>y</i>=cos<i>x</i>在0,2π内的简图,这五个关键点是:
            </p>
            <math display="block">
              <mo stretchy="false">(</mo>
              <mn>0</mn>
              <mo>,</mo>
              <mn>1</mn>
              <mo stretchy="false">)</mo>
              <mo>,</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>,</mo>
              <mo stretchy="false">(</mo>
              <mi>π</mi>
              <mo>,</mo>
              <mo>−</mo>
              <mn>1</mn>
              <mo stretchy="false">)</mo>
              <mo>,</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>,</mo>
              <mo stretchy="false">(</mo>
              <mn>2</mn>
              <mi>π</mi>
              <mo>,</mo>
              <mn>1</mn>
              <mo stretchy="false">)</mo>
              <mtext>.&nbsp;</mtext>
            </math>
            <p class="block">
              2.正弦函数的图像向左平移<math display="0">
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
              </math>个单位长度即可得到余弦函数的图像,如图5-32所示.
            </p>
            <p class="center">
              <img class="img-b" alt="" src="../../assets/images/0207-4.jpg" />
            </p>
            <p class="img">图5-32</p>
          </div>
          <p><b>例</b> 用“五点法”画出下列函数在区间[0,2π]内的简图.</p>
          <p class="p-btn" >
            <span>(1) <i>y</i>=2cos <i>x</i>;</span>
            <span class="btn-box" @click="hadleAnswer(41)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="p-btn" >
            <span>(2) <i>y</i>=-1+cos <i>x</i>.</span>
            <span class="btn-box" @click="hadleAnswer(42)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <iframe src="https://www.geogebra.org/calculator" frameborder="0" class="iframe-box"></iframe>
          <div v-if="isShowAnswer41" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 列表(表5-10).
            </p>
            <p class="img">表5-10</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0207-5.jpg" />
            </p>
            <p class="center">
              <img class="img-f" alt="" src="../../assets/images/0207-6.jpg" />
            </p>
            <p class="img">图5-33</p>
            <p>描点连线得<i>y</i>=2cos <i>x</i>在区间[0,2π]</p>
            <p>内的简图,如图5-33所示.</p>
          </div>
          <div v-if="isShowAnswer42" >
            <p>(2) 列表(表5-11).</p>
            <p class="img">表5-11</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0208-1.jpg" />
            </p>
            <p>
              描点连线得<i>y</i>=-1+cos
              <i>x</i>在区间[0,2π]内的简图,如图5-34所示.
            </p>
            <p class="center">
              <img class="img-d" alt="" src="../../assets/images/0208-2.jpg" />
            </p>
            <p class="img">图5-34</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 197 -->
    <div class="page-box" page="204">
      <div v-if="showPageList.indexOf(204) > -1">
@@ -597,10 +6506,38 @@
            <p><span>197</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <fillInTable :queryData="queryDataTwo" />
            <p>
              对比<i>y</i>=cos <i>x</i>的图像,<i>y</i>=1-cos
              <i>x</i>图像是将<i>y</i>=cos <i>x</i>的图像通过
              <input type="text" class="input-table" />
              变化而得到的.
              <span class="btn-box" @click="isShowAnswer = !isShowAnswer" >
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                </svg>
              </span>
            </p>
            <p class="table-answer-box" v-if="isShowAnswer">
              答案:翻转和平移
            </p>
            <paint
              :page="204"
              :canvasHeight="200"
              :imgUrl="this.config.activeBook.resourceUrl + '/images/0208-4.jpg'"
            />
          </div>
        </div>
      </div>
    </div>
    <!-- 198 -->
    <div class="page-box" page="205">
      <div v-if="showPageList.indexOf(205) > -1">
@@ -609,7 +6546,74 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c062">
            5.7.2 余弦函数的性质<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            通过观察<i>y</i>=cos <i>x</i>的图像可知,余弦函数<i>y</i>=cos
            <i>x</i>的性质有:
          </p>
          <p>1.定义域.</p>
          <p><i>y</i>=cos <i>x</i>的定义域是<b>R</b>.</p>
          <p>2.值域.</p>
          <p>
            由余弦函数的图像可以看出,曲线夹在两条直线<i>y</i>=1和<i>y</i>=-1之间,因此-1≤cos
            <i>x</i>≤1,即<i>y</i>=cos <i>x</i>的值域是[-1,1].
          </p>
          <p>
            当<i>x</i>=2<i>k</i>π(<i>k</i>∈<b>Z</b>)时,<i>y</i>=cos
            <i>x</i>取得最大值1;
          </p>
          <p>
            当<i>x</i>=2<i>k</i>π+π(<i>k</i>∈<b>Z</b>)时,<i>y</i>=cos
            <i>x</i>取得最小值-1.
          </p>
          <p>3.周期性.</p>
          <p><i>y</i>=cos <i>x</i>是周期函数,周期是2π.</p>
          <p>4.奇偶性.</p>
          <p>
            因为cos(-<i>x</i>)=cos <i>x</i>,所以<i>y</i>=cos
            <i>x</i>是偶函数,其图像关于<i>y</i>轴对称.
          </p>
          <p>5.单调性.</p>
          <p>
            <i>y</i>=cos
            <i>x</i>在区间[0,π]上是减函数,在[π,2π]上是增函数.
          </p>
          <p>
            余弦函数<i>y</i>=cos
            <i>x</i>在每一个区间[2<i>k</i>π,2<i>k</i>π+π](<i>k</i>∈<b>Z</b>)上都是减函数,其值由1减小到-1;在每一个区间[2<i>k</i>π+π,2<i>k</i>π+2π](<i>k</i>∈<b>Z</b>)上都是增函数,其值由-1增大到1.
          </p>
          <p class="p-btn" >
            <span><span class="zt-ls"><b>例1</b></span> 求函数<i>y</i>=-1+cos <i>x</i>的最大值、最小值、最小正周期及值域.</span>
            <span class="btn-box" @click="hadleAnswer(43)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer43" >
            <p>
              <span class="zt-ls"><b>解</b></span>
              当<i>x</i>=2<i>k</i>π(<i>k</i>∈<b>Z</b>)时,函数<i>y</i>=-1+cos
              <i>x</i>的最大值为<i>y</i>=1-1=0;
            </p>
            <p>
              当<i>x</i>=2<i>k</i>π+π(<i>k</i>∈<i>Z</i>)时,函数<i>y</i>=-1+cos
              <i>x</i>的最小值为<i>y</i>=-1-1=-2;
            </p>
            <p>
              函数<i>y</i>=-1+cos <i>x</i>的最小正周期为2π;函数<i>y</i>=-1+cos
              <i>x</i>的值域为[-2,0].
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 199 -->
@@ -623,11 +6627,280 @@
            <p><span>199</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[206] ? questionData[206][1] : []" :hideCollect="true"
              sourceType="json" v-if="questionData"></examinations>
          </div>
          <p>
            <span class="zt-ls"><b>例2</b></span> 不求值,利用余弦函数的单调性,比较下列各对余弦值的大小.
          </p>
          <p class="p-btn" >
            <span>
              (1)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>6</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </math>与<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
              </math>;
            </span>
            <span class="btn-box" @click="hadleAnswer(44)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer44" >
            <p>
              <span class="zt-ls"><b>解</b></span>(1) 因为<math display="0">
                <mi>π</mi>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>6</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
              </math>,而函数<i>y</i>=cos <i>x</i>在<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mi>π</mi>
                  <mo>,</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>上是增函数,所以
            </p>
            <math display="block">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>6</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </div>
          <p class="p-btn" >
            <span>
              (2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>7</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>与<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>8</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>.
            </span>
            <span class="btn-box" @click="hadleAnswer(45)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer45" >
            <p>
              <span class="zt-ls"><b>解</b></span>(2)<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>7</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>7</mn>
                </mfrac>
              </math>,<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>8</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>8</mn>
                </mfrac>
              </math>.
            </p>
            <p>
              因为<math display="0">
                <mn>0</mn>
                <mo>&lt;</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>8</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>7</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
              </math>,而函数<i>y</i>=cos <i>x</i>在0,<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mn>0</mn>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>上是减函数,所以<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>7</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>8</mn>
                </mfrac>
              </math>,即
            </p>
            <math display="block">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>7</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>&lt;</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>8</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>.</mo>
            </math>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[206] ? questionData[206][2] : []" :hideCollect="true"
              sourceType="json" inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 200 -->
    <div class="page-box" page="207">
      <div v-if="showPageList.indexOf(207) > -1">
@@ -636,7 +6909,57 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c063">习题5.7<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[207]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h2 id="b037">
            5.8 已知三角函数值,求指定范围的角<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c064">
            5.8.1 已知特殊三角函数值求角<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            如果<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>,那么<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>;反之,如果<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>,那么<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>吗?
          </p>
        </div>
      </div>
    </div>
    <!-- 201 -->
@@ -650,10 +6973,262 @@
            <p><span>201</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            由<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>可知,<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>是满足<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>的一个角,还有没有更多的角也能满足<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>呢?我们借助正弦曲线来探究问题.
          </p>
          <p>
            如图5-35所示,条件中的<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>,在图像中就可以表示为<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>,问题就转化为求当<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>的值,即直线<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>与正弦曲线<i>y</i>=sin <i>x</i>交点所对应的<i>x</i>的值.
          </p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0212-9.jpg" />
          </p>
          <p class="img">图5-35</p>
          <p>
            观察图像可知,直线<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>与正弦曲线<i>y</i>=sin <i>x</i>的交点有无数个.
          </p>
          <p>
            现将问题的范围限定为<i>x</i>∈[0,2π],由图像可知,满足条件的交点共有两个.
          </p>
          <p>
            因为<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
              <mo>></mo>
              <mn>0</mn>
            </math>,所以<i>x</i>是第一或第二象限角.
          </p>
          <p>
            满足<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>的锐角是<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>,所以符合条件的第一象限的角是<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            由诱导公式<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>可知,<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mi>π</mi>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>,所以符合条件的第二象限角是<math display="0">
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            所以
            <math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>或<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>.
          </p>
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>,且<i>x</i>∈[0,2π] ,求<i>x</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(46)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p v-if="isShowAnswer46">
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
              <mo><</mo>
              <mn>0</mn>
            </math>,所以<i>x</i>是第二或第三象限角.
          </p>
        </div>
      </div>
    </div>
    <!-- 202 -->
    <div class="page-box" page="209">
      <div v-if="showPageList.indexOf(209) > -1">
@@ -662,10 +7237,336 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            满足<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
            </math>的锐角是<math display="0">
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>4</mn>
              </mfrac>
            </math>,所以
          </p>
          <p>
            符合条件的第二象限角是<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mi>π</mi>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>4</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>;
          </p>
          <p>
            符合条件的第三象限角是<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mi>π</mi>
                <mn>4</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            所以<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>或<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>.
          </p>
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例2</b></span> 已知<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo>≠</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>+</mo>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,且0°≤<i>x</i>≤360°,求<i>x</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(47)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer47" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
                <mo>></mo>
                <mn>0</mn>
              </math>,所以<i>x</i>是第一或第三象限角.
            </p>
            <p>
              由<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mn>60</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
              </math>可知,符合条件的第一象限角是<i>x</i>=60°.
            </p>
            <p>
              又因为<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mn>180</mn>
                  <mrow>
                    <mo>°</mo>
                  </mrow>
                  <mo>+</mo>
                  <mn>60</mn>
                  <mrow>
                    <mo>°</mo>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mn>60</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
              </math>,
            </p>
            <p>所以符合条件的第三象限角是<i>x</i>=180°+60°=240°.</p>
            <p>所以<i>x</i>=60°或<i>x</i>=240°.</p>
          </div>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              已知三角函数值,求给定范围的角<i>x</i>的值,其基本步骤如下.
            </p>
            <p class="block">
              (1) 根据已知三角函数值的符号,判定角<i>x</i>所在的象限;
            </p>
            <p class="block">(2) 求出满足三角函数值的锐角<i>x</i>′;</p>
            <p class="block">
              (3)
              根据<i>x</i>所在的象限和诱导公式,写出满足题目给定范围的<i>x</i>的值.
            </p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例3</b></span> 已知<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>,且<i>x</i>∈[-π,π],求<i>x</i>的值.
            </span>
            <span class="btn-box" @click="hadleAnswer(48)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer48" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo>></mo>
                <mn>0</mn>
              </math>,所以<i>x</i>是第一或第四象限角.
            </p>
            <p>
              满足<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>的锐角是<math display="0">
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
              </math>,所以符合条件的第一象限角是<math display="0">
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
              </math>.
            </p>
            <p>
              因为<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>,
            </p>
            <p>
              所以符合条件的第四象限角是<math display="0">
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
              </math>.
            </p>
            <p>
              所以<math display="0">
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
              </math>或<math display="0">
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
              </math>.
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[209]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 203 -->
    <div class="page-box" page="210">
      <div v-if="showPageList.indexOf(210) > -1">
@@ -677,7 +7578,124 @@
            <p><span>203</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c065">
            5.8.2 已知任意三角函数值求角<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            我们已经探究了已知特殊的三角函数值求角的方法,而对于不是特殊的三角函数值,又该如何求角呢?
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            根据已知特殊的三角函数值求角的方法,借助计算工具,可以解决已知任意三角函数值求角的问题.
          </p>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>,求<i>α</i>的值.(结果精确到0.000 1)
            </span>
            <span class="btn-box" @click="hadleAnswer(49)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <iframe src="https://www.geogebra.org/scientific" frameborder="0" class="iframe-box"></iframe>
          <div v-if="isShowAnswer49" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>,所以<i>α</i>在<i>y</i>=sin <i>α</i>的一个单调区间内,这时使sin
              <i>α</i>=0.943 7的角<i>α</i>的值是唯一的.
            </p>
            <p>
              先将科学计算器的精确度设置为0.000
              1,再将科学计算器设置为弧度计算模式,然后依次按键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0214-4.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0214-5.jpg" />
            </p>
            <p>所以 <i>α</i>≈1.233 6.</p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例2</b></span> 已知cos <i>α</i>=0.694
              3,0°≤<i>α</i>≤180°,求<i>α</i>的值.(结果精确到0.000 1)
            </span>
            <span class="btn-box" @click="hadleAnswer(50)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer50" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为0°≤<i>α</i>≤180°,所以<i>α</i>在<i>y</i>=cos
              <i>α</i>的一个单调区间内,这时使cos <i>α</i>=0.694
              3的角<i>α</i>的值是唯一的.
            </p>
            <p>
              先将科学计算器的精确度设置为0.000
              1,再将科学计算器设置为角度计算模式,然后依次按键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-1.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-2.jpg" />
            </p>
            <p>所以<i>α</i>≈46.028 5°.</p>
            <p>
              注意:应当区分所给条件中角的单位是角度还是弧度.如果是角度,计算时应用角度计算模式;
              如果是弧度,计算时应用弧度计算模式.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 204 -->
@@ -688,11 +7706,121 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="p-btn" >
            <span>
                <span class="zt-ls"><b>例3</b></span> 已知tan <i>α</i>=-2.747 0,<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,求<i>α</i>的值.(结果精确到0.000 1)
            </span>
            <span class="btn-box" @click="hadleAnswer(51)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <iframe src="https://www.geogebra.org/scientific" frameborder="0" class="iframe-box"></iframe>
          <div v-if="isShowAnswer51" >
            <p>
              <span class="zt-ls"><b>解</b></span> 因为<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,所以<i>α</i>在<i>y</i>=tan <i>α</i>的一个单调区间内,这时使tan
              <i>α</i>=-2.747 0的角<i>α</i>的值是唯一的.
            </p>
            <p>
              先将科学计算器的精确度设置为0.000
              1,再将科学计算器设置为弧度计算模式,然后依次按键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-5.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-6.jpg" />
            </p>
            <p>所以 <i>α</i>≈-1.221 7.</p>
          </div>
          <p class="p-btn" >
            <span>
              <span class="zt-ls"><b>例4</b></span> 已知sin <i>α</i>=-0.857
              2,<i>α</i>∈[0,2π],求<i>α</i>的值.(结果精确到0.000 1)
            </span>
            <span class="btn-box" @click="hadleAnswer(52)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
            <span class="btn-box" @click="openDialog(thinkOne)">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.545" height="18.112" viewBox="0 0 20.545 22.112">
                <path class="a"
                  d="M3771.2-14311.889a2.356,2.356,0,0,1-1.727-.626c-.027-.054-.053-.1-.079-.148l0-.007c-.123-.224-.2-.371-.076-.629a.869.869,0,0,1,.784-.471.205.205,0,0,1,.158.079.205.205,0,0,0,.158.079.187.187,0,0,0,.038.1.143.143,0,0,0,.117.05h.158a.573.573,0,0,0,.471.158,2.2,2.2,0,0,0,.916-.3l.023-.011a.572.572,0,0,1,.471-.158.575.575,0,0,1,.626.626.526.526,0,0,1,.036.409.664.664,0,0,1-.349.375A3.582,3.582,0,0,1,3771.2-14311.889Zm-1.885-1.723h-.155a.718.718,0,0,1-.784-.63.38.38,0,0,1-.021-.3.976.976,0,0,1,.492-.485l4.86-1.252a1.047,1.047,0,0,1,.784.626c.151.3-.128.61-.471.784l-4.705,1.256Zm-.155-1.885H3769a.716.716,0,0,1-.784-.626c-.149-.3.129-.611.471-.784l4.234-1.1v-.158l-.021.007a7.808,7.808,0,0,1-1.861.31,5.3,5.3,0,0,1-3.137-.942,5.789,5.789,0,0,1-2.666-4.076,6.421,6.421,0,0,1,1.256-5.018,7.038,7.038,0,0,1,2.194-1.568,7.848,7.848,0,0,1,2.666-.472,6.43,6.43,0,0,1,2.979.784,4.958,4.958,0,0,1,2.2,2.194,5.522,5.522,0,0,1,.313,5.177,13.113,13.113,0,0,1-1.256,1.882l-.313.313a2.156,2.156,0,0,0-.78,1.244l0,.012a1.731,1.731,0,0,1-1.727,1.723l-.313.158-3.292.939Zm1.256-6.271v1.256h1.41v-1.256Zm.784-4.234c.718,0,1.1.271,1.1.784a.925.925,0,0,1-.316.783l-.468.156a2.235,2.235,0,0,0-.63.471l-.012.024a2.2,2.2,0,0,0-.3.918v.155h1.1v-.155a1.2,1.2,0,0,1,.313-.629.543.543,0,0,0,.315-.153c.007,0,.315,0,.315-.16a1.226,1.226,0,0,0,.626-.626,2.277,2.277,0,0,0,.313-1.1,1.409,1.409,0,0,0-.626-1.252,2.337,2.337,0,0,0-1.569-.471,2.258,2.258,0,0,0-2.507,2.353l1.252.154A1.121,1.121,0,0,1,3771.2-14326Zm-6.51,9.645a.769.769,0,0,1-.549-.237.772.772,0,0,1-.235-.549.772.772,0,0,1,.235-.548l.939-.939a.781.781,0,0,1,.55-.234.772.772,0,0,1,.547.234.772.772,0,0,1,.238.549.772.772,0,0,1-.238.549l-.939.938A.769.769,0,0,1,3764.686-14316.356Zm13.174-.157a.774.774,0,0,1-.549-.234l-.943-.942a.678.678,0,0,1-.233-.47.678.678,0,0,1,.233-.47.774.774,0,0,1,.549-.234.774.774,0,0,1,.549.234l.942.939a.427.427,0,0,1,.228.324.74.74,0,0,1-.228.618A.774.774,0,0,1,3777.859-14316.514Zm2.9-6.351h-1.414c-.469-.158-.784-.474-.784-.784a.743.743,0,0,1,.784-.784h1.414a.743.743,0,0,1,.784.784A.743.743,0,0,1,3780.761-14322.864Zm-17.566-.158h-1.41c-.469-.157-.784-.473-.784-.784a.743.743,0,0,1,.784-.784h1.41a.743.743,0,0,1,.784.784A.743.743,0,0,1,3763.195-14323.022Zm13.861-5.723a.759.759,0,0,1-.529-.237.776.776,0,0,1-.235-.549.772.772,0,0,1,.235-.549l.939-.938a.44.44,0,0,1,.413-.238.759.759,0,0,1,.529.238.772.772,0,0,1,.235.549.772.772,0,0,1-.235.548l-.942.939A.435.435,0,0,1,3777.055-14328.745Zm-11.429,0a.776.776,0,0,1-.55-.237l-.939-1.1a.678.678,0,0,1-.235-.469.678.678,0,0,1,.235-.47.772.772,0,0,1,.549-.238.772.772,0,0,1,.549.238l.939,1.1a.675.675,0,0,1,.238.47.675.675,0,0,1-.238.47A.767.767,0,0,1,3765.626-14328.745Zm5.724-2.273a.743.743,0,0,1-.784-.785v-1.413c.157-.469.473-.784.784-.784a.743.743,0,0,1,.784.784v1.413A.743.743,0,0,1,3771.35-14331.019Z"
                  transform="translate(-3761 14334.001)" />
              </svg>
            </span>
          </p>
          <div v-if="isShowAnswer52" >
            <p>
              <span class="zt-ls"><b>解</b></span>
              先将科学计算器的精确度设置为0.000
              1,再将科学计算器设置为弧度计算模式,然后依次按键:
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-7.jpg" />
            </p>
            <p>结果显示:</p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0215-8.jpg" />
            </p>
            <p>即</p>
            <p class="center">sin 1.029 8≈0.857 2.</p>
            <p>因为</p>
            <p class="center">sin(π+1.029 8)=-sin 1.029 8≈-0.857 2,</p>
            <p>所以符合条件的第三象限角是π+1.029 8≈4.171 4.</p>
            <p>因为</p>
            <p class="center">sin(2π-1.029 8)=-sin 1.029 8≈-0.857 2,</p>
            <p>所以符合条件的第四象限角是2π-1.029 8≈5.253 4.</p>
            <p>
              所以满足sin <i>α</i>=-0.857
              2,<i>α</i>∈[0,2π]的角<i>α</i>的集合为{4.171 4,5.253 4}.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 205 -->
    <div class="page-box" page="212">
      <div v-if="showPageList.indexOf(212) > -1">
@@ -701,25 +7829,28 @@
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>205</span></p>
            <p><span>205-206</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[212] ? questionData[212][1] : []" :hideCollect="true"
              sourceType="json" inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
          <h3 id="c066">习题5.8<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[212] ? questionData[212][2] : []" :hideCollect="true"
              sourceType="json" inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 206 -->
    <div class="page-box" page="213">
      <div v-if="showPageList.indexOf(213) > -1">
        <ul class="page-header-odd fl al-end">
          <li>206</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    </div>
    <div class="page-box hidePage" page="213"></div>
    <!-- 207 -->
    <div class="page-box" page="214">
@@ -733,7 +7864,34 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b038">
            数学园地<span class="fontsz1">>>>>>>>></span>
          </h2>
          <p class="center">三角学在我国的发展</p>
          <p>
            我国很早就开始了对三角知识的研究.我国古老的数学书籍《周髀算经》一书中,记载了古时候人们计算地面上一点到太阳距离的方法.魏晋时期的著名数学家刘徽在古人“重差术”的基础上,编撰了《海岛算经》一书.
          </p>
          <p>
            春秋时期的《考工记》一书,对“角”已有初步认识,并用“倨句”表示角度的多少,其中直角叫作“矩”.
          </p>
          <p>
            唐朝开元六年至十四年(718—726),唐代文学家翟昙悉达修撰《开元占经》一百二十卷,将印度数学家编制的三角函数表载于其中,这是传入我国的最早的三角函数表.
          </p>
          <p>
            由我国著名数学家徐光启(1562—1633)等人共同编译的《大测》二卷序言中说:“大测者,测三角之法也.”我国“三角学”一词即由此而来.该书介绍了三角函数值的造表方法和正弦定理、余弦定理等.
          </p>
          <p>
            明末清初数学家薛凤祚著有《三角算法》一书,这是我国数学家自己撰写的第一部三角学著作.书中所介绍的三角学知识,要比《大测》《测量全义》中的内容更详细与完备.
          </p>
          <p>
            清初著名数学家梅文鼎研究三角学数年,对所传入的三角学知识进行了通俗的解释,并著有《平三角举要》五卷.其内容由浅入深,循序渐进,条理清楚,是当时以及后人学习三角学的主要教科书.
          </p>
          <p>
            如果想知道更多的关于三角学在我国发展历程中所经历的人和事,你可以通过不同的途径(如上网搜索)查找资料,整理出更为丰富的史料来.对此,你不妨与同学合作,试一试.
          </p>
          <p>——摘录自沈文选、杨清桃编著的《数学史话览胜》一书,引用时有改动</p>
        </div>
      </div>
    </div>
@@ -745,7 +7903,182 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b039">
            单元小结<span class="fontsz1">>>>>>>>></span>
          </h2>
          <p class="bj2"><b>学习导图</b></p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0219-1.jpg" />
          </p>
          <p class="bj2"><b>学习指导</b></p>
          <p>
            1.与角<i>α</i>终边相同的角的集合:<i>S</i>={<i>β</i>|<i>β</i>=<i>α</i>+<i>k</i>·2π,<i>k</i>∈<b>Z</b>}.
          </p>
          <p>2.弧度与角度的换算.</p>
          <math display="block">
            <mtable columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mi>π</mi>
                  <mo>=</mo>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>;</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo>=</mo>
                  <msup>
                    <mn>360</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>.</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mn>1</mn>
                  <mrow>
                    <mi mathvariant="normal">r</mi>
                    <mi mathvariant="normal">a</mi>
                    <mi mathvariant="normal">d</mi>
                  </mrow>
                  <mo>=</mo>
                  <mfrac>
                    <msup>
                      <mn>180</mn>
                      <mrow>
                        <mo>∘</mo>
                      </mrow>
                    </msup>
                    <mi>π</mi>
                  </mfrac>
                  <mo>≈</mo>
                  <msup>
                    <mn>57.30</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>=</mo>
                  <msup>
                    <mn>57</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <msup>
                    <mn>18</mn>
                    <mrow>
                      <mi data-mjx-alternate="1" mathvariant="normal">′</mi>
                    </mrow>
                  </msup>
                  <mo>;</mo>
                  <msup>
                    <mn>1</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>=</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>180</mn>
                  </mfrac>
                  <mrow>
                    <mi mathvariant="normal">r</mi>
                    <mi mathvariant="normal">a</mi>
                    <mi mathvariant="normal">d</mi>
                  </mrow>
                  <mo>≈</mo>
                  <mn>0.01745</mn>
                  <mrow>
                    <mi mathvariant="normal">r</mi>
                    <mi mathvariant="normal">a</mi>
                    <mi mathvariant="normal">d</mi>
                  </mrow>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p>
            3.弧长公式为<i>l</i>=<i>αr</i>,扇形的面积公式为<math display="0">
              <mi>S</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
              <mi>r</mi>
              <mi>l</mi>
            </math>.
          </p>
          <p>4.任意角的正弦、余弦和正切.</p>
          <p>
            点<i>P</i>(<i>x</i>,<i>y</i>)是角<i>α</i>的终边上异于原点的任意一点,点<i>P</i>到原点的距离为<math display="0">
              <mi>r</mi>
              <mo>=</mo>
              <msqrt>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mo>+</mo>
                <msup>
                  <mi>y</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </msqrt>
              <mo>&gt;</mo>
              <mn>0</mn>
            </math>,则<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>y</mi>
                <mi>r</mi>
              </mfrac>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>x</mi>
                <mi>r</mi>
              </mfrac>
            </math>,<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>y</mi>
                <mi>x</mi>
              </mfrac>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo>≠</mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
        </div>
      </div>
    </div>
    <!-- 209 -->
@@ -759,59 +8092,218 @@
            <p><span>209</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>5.任意角的正弦函数、余弦函数和正切函数.</p>
          <p>正弦函数 <i>y</i>=sin <i>x</i>,<i>x</i>∈<b>R</b>;</p>
          <p>余弦函数 <i>y</i>=cos <i>x</i>,<i>x</i>∈<b>R</b>;</p>
          <p>
            正切函数 <i>y</i>=tan <i>x</i>,<math display="0">
              <mi>x</mi>
              <mo>≠</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>+</mo>
              <mi>k</mi>
              <mi>π</mi>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>.
          </p>
          <p>6.同角三角函数基本关系式.</p>
          <p>
            (1) 平方关系:sin <sup>2</sup> <i>α</i>+cos <sup>2</sup>
            <i>α</i>=1;
          </p>
          <p>
            (2) 商数关系:<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
                <mrow>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
              </mfrac>
            </math>.
          </p>
          <p>7.诱导公式表(<i>k</i>∈<b>Z</b>).</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0220-3.jpg" />
          </p>
          <p>8.正弦函数、余弦函数的图像和性质.</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0220-4.jpg" />
          </p>
        </div>
      </div>
    </div>
    <!-- 210 -->
    <div class="page-box" page="217">
      <div v-if="showPageList.indexOf(217) > -1">
        <ul class="page-header-odd fl al-end">
          <li>210</li>
          <li>210-211</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b040">
            单元检测<span class="fontsz1">>>>>>>>></span>
          </h2>
          <div class="bj">
            <examinations :cardList="questionData[217]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 211 -->
    <div class="page-box" page="218">
      <div v-if="showPageList.indexOf(218) > -1">
        <ul class="page-header-box">
          <li>
            <p>第五单元 三角函数</p>
          </li>
          <li>
            <p><span>211</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
    <div class="page-box hidePage" page="218"></div>
    <!-- 解题思路弹窗 -->
    <el-dialog :visible.sync="thinkingDialog" width="40%" :append-to-body="true" :show-close="false"
      @close="closeDialog" class="thinkDialog">
      <div slot="title" class="think-header"
        style="padding: 0; text-align: center; color: #333;display:flex;justify-content: center;">
        <span style=""> 分析 </span>
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="thinkingDialog = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
        </svg>
      </div>
    </div>
      <ul>
        <li v-for="(item, index) in thinkData" :key="index">
          <div v-if="index <= showIndex" style="display: flex">
            <span style="position: relative">
              <span style="position: absolute; top: 16px; left: 13px; color: #fff">{{ index + 1 }}</span>
              <img src="../../assets/images/icon/blue-group.png" alt="" style="margin-right: 10px"
                v-if="index < thinkOne.length - 1" />
              <img src="../../assets/images/icon/blue.png" alt="" v-if="index == thinkOne.length - 1"
                style="margin-right: 10px" />
            </span>
            <p class="txt-p" v-html="item"></p>
          </div>
        </li>
      </ul>
      <div @click="changeNext" style="
          display: flex;
          flex-direction: column;
          align-items: center;
          justify-content: center;
        ">
        <img src="../../assets/images/icon/mouse.png" alt="" v-if="showIndex < thinkData.length - 1" />
        <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" t="1710234570135"
          class="icon" viewBox="0 0 1024 1024" version="1.1" p-id="5067" width="15" height="15">
          <path
            d="M2.257993 493.371555 415.470783 906.584344 512 1003.113561 608.529217 906.584344 1021.742007 493.371555 925.212789 396.842337 512 810.055127 98.787211 396.842337Z"
            fill="#1296db" p-id="5068" />
          <path
            d="M2.257993 117.980154 415.470783 531.192944 512 627.722161 608.529217 531.192944 1021.742007 117.980154 925.212789 21.450937 512 434.663727 98.787211 21.450937Z"
            fill="#1296db" p-id="5069" />
        </svg>
      </div>
    </el-dialog>
  </div>
</template>
<script>
import paint from '@/components/paint/index.vue'
import examinations from "@/components/examinations/index.vue";
import fillInTable from "@/components/fillInTable/index.vue";
const handleShow = (num) => {
  const obj = {}
  for (let index = 0; index < num; index++) {
    obj['isShowAnswer' + index] = false
  }
  return obj
}
const showObj = handleShow(60)
export default {
  name: '',
  name: "",
  props: {
    showPageList: {
      type: Array,
      default: [],
    },
    questionData: {
      type: Object,
    },
  },
  components: {},
  components: { examinations, fillInTable,paint },
  data() {
    return {}
    return {
      ...showObj,
      isShowAnswer:false,
      queryDataOne: {
        stemTxt:"完成下表,并利用“五点法”画出<i>y</i>=3sin <i>x</i>在区间[0,2π]内的简图,并说明<i>y</i>=3sin <i>x</i>的图像与正弦函数<i>y</i>=sin <i>x</i>的图像的区别和联系.",
        showData: [
          ["<i>x</i>", "0", '<math display="block"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>', "1", '<math display="block"><mfrac><mn>3</mn><mn>2</mn></mfrac></math>', "2"],
          ["<i>y</i>=sin <i>x</i>", "0", "1", "0", "-1", "0"],
          ["<i>y</i>=3sin <i>x</i>", "", "", "", "", ""],
        ],
        answer:"0,3,0,-3,0"
      },
      queryDataTwo:{
        stemTxt:"完成下表,利用“五点法”画出y=1-cos x在区间[0,2π]内的简图,并说明y=1-cos x的图像与y=cos x的图像的区别和联系.",
        showData: [
          ["x", "0", '<math display="block"><mfrac><mi>π</mi><mn>2</mn></mfrac></math>', "1", "3/2", "2"],
          ["y=cosx", "", "", "", "", ""],
          ["y=1-cosx", "", "", "", "", ""],
        ],
        answer:"<p>1,0,-1,0,1</p><p>0,1,2,1,0</p>"
      },
      showIndex:0,
      thinkingDialog: false,
      thinkData:[],
      thinkOne:[
        '因为sin <i>α</i>=-0.8572<0,在[0,2π]范围内有两个<i>α</i>值满足条件,它们分别位于第三象限和第四象限,即<i>α</i>在[π,2π]范围内.可用科学计算器先求出sin<i>α</i>=0.857 2所对应的锐角,再利用诱导公式求出所求的角.'
      ]
    }
  },
  computed: {},
  watch: {},
  created() { },
  mounted() { },
  methods: {},
  methods:{
    hadleAnswer(index) {
      this['isShowAnswer' + index] = !this['isShowAnswer' + index]
    },
    openDialog(queryData) {
      this.thinkData = queryData
      this.thinkingDialog = !this.thinkingDialog
    },
    closeDialog() {
      this.showIndex = 0
    },
    changeNext() {
      if (this.showIndex < this.thinkData.length - 1) this.showIndex = this.showIndex + 1
    }
  }
}
</script>
<style lang="less" scoped></style>
<style lang="less" scoped>
.table-answer-box {
  padding: 4px;
  border: 1px solid #00adee;
  display: flex;
}
li {
  list-style: none;
}
</style>