zhongshujie
2024-10-16 218a387c6191311ed29b1aa81612e0aa3b4fa9dc
src/books/mathBook/view/components/chapter005.vue
@@ -1,25 +1,52 @@
<template>
  <div class="chapter" num="6">
  <div class="chapter" num="5">
    <!-- 第五单元首页 -->
    <div class="page-box" page="160">
      <div v-if="showPageList.indexOf(160) > -1">
        <div class="padding-116">第五单元首页</div>
        <h1 id="a009"><img class="img-0" alt="" src="../../assets/images/dy5.jpg" /></h1>
        <div class="padding-116">
          <p>
            中华优秀传统文化源远流长、博大精深,是中华文明的智慧结晶.成语“周而复始”出自《汉书·礼乐志》,“精健日月,星辰度理,阴阳五行,周而复始”.在现实世界中,许多事物的运动变化会呈现循环往复、周而复始的规律,我们称这种变化规律为周期性.例如,表针旋转、车轮滚动、物体简谐振动等.这些有规律的变化现象都可用三角函数来刻画.
          </p>
          <p>
            本单元我们将在已学函数概念的基础上,利用函数的思想和方法来学习三角函数的相关内容.三角函数是研究自然界中周期性现象的重要数学工具,它在测量、物理等方面都有着广泛应用.
          </p>
          <p>
            本单元主要将角的概念推广到任意情形,引入弧度制、任意角的三角函数,学习三角函数基本公式及任意角的三角函数的图像和性质.本单元将借助图像理解任意角的三角函数的概念,利用直观想象发现三角函数中数与形之间的联系,会表达其特征与关系;感受用直观想象从具体问题中抽象出数学问题的过程,认识数学中的通性、通法;通过对三角函数具体问题的分析,利用逻辑推理进行三角函数基本公式的推导;初步感知三角函数模型所刻画的简单的周期性函数;提升数学运算、直观想象、逻辑推理和数学抽象等核心素养.
          </p>
        </div>
      </div>
    </div>
    <!-- 目标 -->
    <div class="page-box" page="161">
      <div v-if="showPageList.indexOf(161) > -1">
        <div class="padding-116">目标</div>
        <div class="padding-116">
          <p class="left"><img class="inline2" alt="" src="../../assets/images/xxmb.jpg" /></p>
          <div class="fieldset">
            <p>1.角的概念推广.</p>
            <p>知道推广角的意义和任意角所在的象限,能识别终边相同的角.</p>
            <p>2.弧度制.</p>
            <p>知道引入弧度制的意义,会进行角度与弧度的换算.</p>
            <p>3.任意角的正弦函数、余弦函数和正切函数.</p>
            <p>
              能根据任意角的三角函数(正弦函数、余弦函数和正切函数)定义,判断三角函数值的符号.
            </p>
            <p>4.同角三角函数的基本关系.</p>
            <p>
              会根据三角函数的定义或借助单位圆,推导同角三角函数的平方关系和商数关系,能进行有关化简和计算.
            </p>
            <p>5.诱导公式.</p>
            <p>知道诱导公式在三角函数求值与化简中的作用.</p>
            <p>6.正弦函数、余弦函数的图像和性质.</p>
            <p>会借助代数运算与几何直观,认识正弦函数、余弦函数的图像和性质;</p>
            <p>知道运用“五点法”可以画出正弦函数、余弦函数在一个周期上的简图.</p>
            <p>7.已知三角函数值求指定范围的角.</p>
            <p>知道特殊的三角函数值与[0,2<i>π</i>]范围内角的对应关系;</p>
            <p>会用计算工具进行有关的三角计算.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 155 -->
    <div class="page-box" page="162">
      <div v-if="showPageList.indexOf(162) > -1">
@@ -32,7 +59,31 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b030">
            5.1 角的概念推广<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c048">5.1.1 角的概念的推广<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            (1)
            中国跳水队享有奥运“梦之队”的美誉.自1984年到2016年,奥运会跳水项目一共产生了56枚奥运金牌,中国跳水队一共夺得了40枚,约占其中的71.4%.如图5-1(1)
            所示,跳水比赛中有“向前翻腾一周半”和“向后翻腾两周半”的动作,你知道这两个动作分别表示的旋转的角度是多少吗?
          </p>
          <p>
            (2)
            环青海湖国际公路自行车赛是我国规模最大、参赛队伍最多的竞赛,也是世界上海拔最高的国际性竞赛,“绿色、人文、和谐”的竞赛主题倡导体育运动应低碳环保,促进文化交流、人与自然和谐共生.如图5-1(2)
            所示,选手在骑自行车时,自行车车轮在前进和后退的过程中旋转形成的角一样吗?
          </p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0166-1.jpg" /></p>
          <p class="img">图5-1</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            生活中随处可见超出0°~360°范围的角.问题(1)
            中“向前翻腾一周半”和“向后翻腾两周半”的跳水动作,不仅有超出360°的“一周半”和“两周半”的角,而且旋转的方向也不同,产生的效果也不一样;问题(2)
            中自行车前进时车轮若是逆时针方向旋转,可以旋转几百圈甚至上万圈,后退时车轮则是顺时针方向旋转,其形成的角是不一样的.因此,要准确描述这些现象,就应知道旋转度数和旋转方向,这就需要对角的概念进行推广.
          </p>
        </div>
      </div>
    </div>
    <!-- 156 -->
@@ -44,7 +95,47 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            我们规定,一条射线绕其端点按逆时针方向旋转形成的角叫作<b>正角</b>,如图5-2(1)
            所示.按顺时针方向旋转形成的角叫作<b>负角</b>,如图5-2(2)
            所示.如果一条射线没有做任何旋转,就称它形成了一个<b>零角</b>,如图5-2(3)
            所示.
          </p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0167-1.jpg" /></p>
          <p class="img">图5-2</p>
          <p>这样我们就把角的概念推广到了<b>任意角</b>,包括正角、负角和零角.</p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <p class="block">
              类比实数<i>a</i>与-<i>a</i>互为相反数,角<i>α</i>与角-<i>α</i>是什么关系呢?类比实数减法的“减去一个数等于加上这个数的相反数”,角的减法可以转化为角的加法吗?即<i>α</i>-<i>β</i>=<i>α</i>+(-<i>β</i>)
              成立吗?不妨画图试试.
            </p>
          </div>
          <p>
            为了简便起见,在不引起混淆的前提下,我们把“角<i>α</i>”或“∠<i>α</i>”简记为“<i>α</i>”.今后我们可以用小写希腊字母<i>α</i>,<i>β</i>,<i>γ</i>,…来表示角.
          </p>
          <p>
            在问题(1)
            中,若“向前翻腾一周半”记为<i>α</i>=540°,那么“向后翻腾两周半”则记为<i>α</i>=-900°.在问题(2)
            中,自行车前进或后退,车轮按逆时针方向旋转形成正角,按顺时针方向旋转形成负角.
          </p>
          <p>
            为了方便研究,通常在平面直角坐标系内讨论角.我们将角的顶点与原点重合,角的始边与<i>x</i>轴的非负半轴重合.这样,角的终边在第几象限,就说这个角是第几象限角.
          </p>
          <p>例如,图5-3中的690°角、-210°角分别是第四象限角和第二象限角.</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0167-2.jpg" /></p>
          <p class="img">图5-3</p>
          <p>
            如果角的终边在坐标轴上,那么就认为这个角不属于任何一个象限(也称界限角).例如,0°,90°,180°,270°,360°角.
          </p>
        </div>
      </div>
    </div>
    <!-- 157 -->
@@ -59,7 +150,37 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例1</b></span> 在平面直角坐标系中,分别画出下列各角,并指出它们是第几象限角.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0168-1.jpg" /></p>
          <p class="img">图5-4</p>
          <p>(1) 225°;(2) -300°.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            以<i>x</i>轴的非负半轴为始边,逆时针方向旋转225°,即形成225°角,如图5-4(1)
            所示.因为225°角的终边在第三象限内,所以225°角是第三象限角.
          </p>
          <p>
            (2)
            以<i>x</i>轴的非负半轴为始边,顺时针方向旋转300°,即形成-300°角,如图5-4(2)
            所示.因为-300°角的终边在第一象限内,所以-300°角是第一象限角.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.如图所示,已知锐角∠<i>AOB</i>=45°,写出下图中箭头所示角的度数.</p>
            <p class="center">
              <img class="img-b" alt="" src="../../assets/images/0168-2.jpg" />
            </p>
            <p class="img">第1题图</p>
            <p>2.在平面直角坐标系中,分别画出下列各角,并指出它们各是第几象限角.</p>
            <p class="center">
              <img class="img-b" alt="" src="../../assets/images/0168-3.jpg" />
            </p>
            <p class="img">第2题图</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 158 -->
@@ -71,7 +192,39 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>3.判断下列说法是否正确,正确的画“√”,错误的画“×”.</p>
            <p>(1) 锐角是第一象限角,钝角是第二象限角.( )</p>
            <p>(2) 小于90°的角一定是锐角.( )</p>
            <p>(3) 直角是第一象限角或第二象限角.( )</p>
            <p>(4) 第二象限角一定比第一象限角大.( )</p>
            <p>
              4.(1)
              若0°<<i>α</i><90°,则<i>α</i>是第___象限角;若90°<<i>α</i><180°,则<i>α</i>是第___象限角;若180°<<i>α</i><270°,则<i>α</i>是第___象限角;若270°<<i>α</i><360°,则<i>α</i>是第___象限角.
            </p>
            <p>
              (2)
              若-90°<<i>α</i><0°,则<i>α</i>是第___象限角;若-180°<<i>α</i><-90°,则<i>α</i>是第___象限角;若-270°<<i>α</i><-180°,则<i>α</i>是第___象限角;若-360°<<i>α</i><-270°,则<i>α</i>是第___象限角.
            </p>
          </div>
          <h3 id="c049">5.1.2 终边相同的角<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            如图5-5所示,在平面直角坐标系中,分别画出了-330°,30°,390°角,观察其终边有何联系?-330°,390°与30°在数值上有什么关系?
          </p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0169-1.jpg" /></p>
          <p class="img">图5-5</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            观察发现,图5-5中-330°,390°与30°角终边相同,并且与30°角终边相同的这些角都可以表示成30°角与<i>k</i>个(<i>k</i>∈<b>Z</b>)周角的和,如
          </p>
          <p class="center">-330°=30°-360°(这里<i>k</i>=-1),</p>
          <p class="center">390°=30°+360°(这里<i>k</i>=1).</p>
          <p>
            进一步分析可知,与30°角终边相同的所有角都可以表示成30°角与<i>k</i>(<i>k</i>∈<b>Z</b>)个周角的和,因此可用集合<i>S</i>={<i>β</i>|<i>β</i>=30°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}表示与30°角终边相同的角.显然,-330°,390°角都是集合<i>S</i>中的元素,30°角也是<i>S</i>中的元素(此时<i>k</i>=0).反之,集
          </p>
        </div>
      </div>
    </div>
    <!-- 159 -->
@@ -85,7 +238,53 @@
            <p><span>159</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            合<i>S</i>中的任何一个元素都与30°角终边相同.
          </p>
          <p>与45°,60°,70°,100°,…角终边相同的角构成的集合又应该如何表达呢?</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            一般地,所有与<i>α</i>终边相同的角,连同<i>α</i>在内,可以组成一个集合
          </p>
          <p class="center">
            <i>S</i>={<i>β</i>|<i>β</i>=<i>α</i>+<i>k</i>·360°,<i>k</i>∈<i>Z</i>}.
          </p>
          <p>
            <b>任意的与<i>α</i>终边相同的角都可以表示成<i>α</i>与整数个周角(360°的整数倍)的和.</b>例如,与100°角终边相同的角组成的集合为<i>S</i>={<i>β</i>|<i>β</i>=100°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>},当<i>k</i>=0时,<i>β</i>=100°;<i>k</i>=1时,<i>β</i>=460°;<i>k</i>=-1时,<i>β</i>=-260°.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 在0°~360°内,找出与下列各角终边相同的角,并分别判断它们是第几象限角.
          </p>
          <p>(1) 600°;(2) -230°;(3) -890°.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为600°=240°+360°,所以600°角与240°角终边相同,是第三象限角.
          </p>
          <p>
            (2) 因为-230°=130°-360°,所以-230°角与130°角终边相同,是第二象限角.
          </p>
          <p>
            (3) 因为-890°=190°-3×360°,所以-890°角与190°角终边相同,是第三象限角.
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 写出下列角的集合.
          </p>
          <p>(1) 终边在<i>y</i>轴正半轴上的角的集合;</p>
          <p>(2) 终边在<i>y</i>轴负半轴上的角的集合;</p>
          <p>(3) 终边在<i>y</i>轴上的角的集合.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 在0°~360°内,终边在<i>y</i>轴正半轴上的角是90°角,
          </p>
          <p>所以,终边在<i>y</i>轴正半轴上的角的集合是</p>
          <p class="center">
            <i>S</i>1={<i>β</i>|<i>β</i>=90°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}.
          </p>
          <p>(2) 在0°~360°内,终边在<i>y</i>轴负半轴上的角是270°角,</p>
          <p>所以,终边在<i>y</i>轴负半轴上的角的集合是</p>
          <p class="center">
            <i>S</i>2={<i>β</i>|<i>β</i>=270°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}.
          </p>
        </div>
      </div>
    </div>
@@ -97,7 +296,58 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>(3) 终边在<i>y</i>轴上的角的集合是</p>
          <p><i>S</i>=<i>S</i><sub>1</sub>∪<i>S</i><sub>2</sub></p>
          <p>
            ={<i>β</i>|<i>β</i>=90°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}∪{<i>β</i>|<i>β</i>=270°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}
          </p>
          <p>
            ={<i>β</i>|<i>β</i>=90°+2<i>k</i>·180°,<i>k</i>∈<b>Z</b>}∪{<i>β</i>|<i>β</i>=90°+(2<i>k</i>+1)·180°,<i>k</i>∈<b>Z</b>}
          </p>
          <p>={<i>β</i>|<i>β</i>=90°+<i>m</i>·180°,<i>m</i>∈<b>Z</b>}.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.选择题.</p>
            <p>(1) 与60°角终边相同的角的集合表示正确的是( ).</p>
            <p>
              <i>A</i>.{<i>β</i>|<i>β</i>=60°+<i>k</i>·360°}
              <i>B</i>.{<i>β</i>|<i>β</i>=60°+<i>k</i>·180°,<i>k</i>∈<b>Z</b>}
            </p>
            <p><i>C</i>.{<i>β</i>|<i>β</i>=60°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}</p>
            <p>
              <i>D</i>.{<i>β</i>|<i>β</i>=-60°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}
            </p>
            <p>(2) 与-70°角终边相同的角的集合表示正确的是( ).</p>
            <p><i>A</i>.{<i>α</i>|<i>α</i>=-70°+<i>k</i>·360°}</p>
            <p><i>B</i>.{<i>α</i>|<i>α</i>=70°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}</p>
            <p>
              <i>C</i>.{<i>α</i>|<i>α</i>=-70°+<i>k</i>·180°,<i>k</i>∈<b>Z</b>}
            </p>
            <p>
              <i>D</i>.{<i>α</i>|<i>α</i>=-70°+<i>k</i>·360°,<i>k</i>∈<b>Z</b>}
            </p>
            <p>2.填空题.</p>
            <p>
              (1)
              在0°~360°内,与-50°角终边相同的角是____,则-50°角是第___象限角;
            </p>
            <p>
              (2) 在0°~360°内,与390°角终边相同的角是____,则390°是第___象限角;
            </p>
            <p>
              (3)
              在0°~360°内,与-480°角终边相同的角是____,则-480°角是第___象限角;
            </p>
            <p>
              (4) 在0°~360°内,与800°角终边相同的角是____,则800°角是第___象限角.
            </p>
            <p>3.写出与下列角终边相同的角的集合.</p>
            <p>(1) 与0°角终边相同的角的集合是__________________;</p>
            <p>(2) 与180°角终边相同的角的集合是__________________;</p>
            <p>(3) 终边在<i>x</i>轴上的角的集合是__________________.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 161 -->
@@ -112,7 +362,56 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c050">习题5.1<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <p>
              <span class="bj-sp"><b>水平一</b></span>
            </p>
            <p>1.230° 角是第( )象限角.</p>
            <p>A.一</p>
            <p>B.二</p>
            <p>C.三</p>
            <p>D.四</p>
            <p>2.与-420°角终边相同的角是( ).</p>
            <p>A.420°</p>
            <p>B.-120°</p>
            <p>C.280°</p>
            <p>D.-60°</p>
            <p>3.(1) 与70°角终边相同的角的集合表示为__________________;</p>
            <p>(2) 与-120°角终边相同的角的集合表示为__________________.</p>
            <p>
              4.在0°~360°内,找出与下列各角终边相同的角,并判断它们分别是第几象限角.
            </p>
            <p>(1)-285°;(2) 570°.</p>
            <p>
              5.把下列各角化成<i>α</i>+<i>k</i>·360°(0°≤<i>α</i><360°,<i>k</i>∈<b>Z</b>)的形式,并指出它们是第几象限角.
            </p>
            <p>(1) 675°;(2) -520°.</p>
            <p>
              <span class="bj-sp"><b>水平二</b></span>
            </p>
            <p>1.找出与1 200°角终边相同且绝对值最小的负角.</p>
            <p>
              2.设<i>α</i>为第二象限角,指出<math display="0">
                <mfrac>
                  <mi>α</mi>
                  <mn>2</mn>
                </mfrac>
              </math>是第几象限角.
            </p>
            <p>
              3.分别写出与下列各角终边相同的角组成的集合,并把满足不等式-360°<<i>β</i><360°的<i>β</i>写出来.
            </p>
            <p>(1) 125°;(2) -380°;(3) 485°.</p>
          </div>
          <h2 id="b031">5.2 弧度制<span class="fontsz1">>>>>>>>></span></h2>
          <h3 id="c051">5.2.1 弧度制的定义<span class="fontsz2">>>></span></h3>
          <p class="block">
            2016年9月25日,具有我国自主知识产权的世界最大单口径、最灵敏的球面射电望远镜“中国天眼”在贵州平塘落成启用.这个500
            m口径球面射电望远镜
          </p>
        </div>
      </div>
    </div>
    <!-- 162 -->
@@ -124,7 +423,97 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            主要用于实现巡视宇宙中的中性氢、观测脉冲星等科学目标和空间飞行器测量与通信等应用目标.
          </p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0172-2.jpg" /></p>
          <p>
            在衡量天体之间的距离时,我们可以用光年、米的单位制来度量;对于面积,我们可以用平方米、公顷等不同的单位制来度量;质量可以用千克、吨等不同的单位制来度量.角的大小,我们是否也能用不同的单位制来度量?
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/gn.jpg" /></p>
            </div>
            <p class="block">角度制</p>
            <p class="block">弧度制</p>
            <p class="block">弧度</p>
          </div>
          <p>
            我们知道,角可以以度为单位进行度量,把周角的<math display="0">
              <mfrac>
                <mn>1</mn>
                <mn>360</mn>
              </mfrac>
            </math>所对应的圆心角规定为1度的角,记为1°.这种以度为单位来度量角的单位制,叫作<b>角度制</b>.
          </p>
          <p>
            在数学和其他科学研究中,经常使用另一种度量角的单位制——<b>弧度制</b>.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            我们规定,长度等于半径的圆弧所对的圆心角叫作1弧度的角,弧度单位用符号rad表示,读作弧度.1弧度的角就记作1
            rad,读作“1弧度”,如图5-6所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0173-2.jpg" /></p>
          <p class="img">图5-6</p>
          <p>
            根据上述规定可知,在半径为<i>r</i>的圆中,若弧长为<i>l</i>的弧所对的圆心角为<i>α</i>
            rad,则<i>α</i>的大小为
          </p>
          <math display="block">
            <mo stretchy="false">|</mo>
            <mi>α</mi>
            <mrow>
              <mo stretchy="false">|</mo>
            </mrow>
            <mo>=</mo>
            <mfrac>
              <mi>l</mi>
              <mi>r</mi>
            </mfrac>
            <mtext>.&nbsp;</mtext>
          </math>
          <p>
            <i>α</i>的正负由<i>α</i>的始边到终边的旋转方向决定,逆时针方向旋转为正,顺时针方向旋转为负.
          </p>
          <p>
            当一个圆的半径为<i>r</i>时,若圆心角∠<i>AOB</i>所对的圆弧长为2<i>r</i>,则∠<i>AOB</i>的弧度数就为<math display="0">
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>r</mi>
                </mrow>
                <mi>r</mi>
              </mfrac>
              <mo>=</mo>
              <mn>2</mn>
              <mrow>
                <mi mathvariant="normal">r</mi>
                <mi mathvariant="normal">a</mi>
                <mi mathvariant="normal">d</mi>
              </mrow>
            </math>=2
            rad(如图5-7(1));若圆心角∠<i>AOB</i>所对的圆弧长为整个圆周长2<i>πr</i>,则∠<i>AOB</i>的弧度数就为<math display="0">
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mi>r</mi>
                </mrow>
                <mi>r</mi>
              </mfrac>
              <mo>=</mo>
              <mn>2</mn>
              <mi>π</mi>
              <mrow>
                <mi mathvariant="normal">r</mi>
                <mi mathvariant="normal">a</mi>
                <mi mathvariant="normal">d</mi>
              </mrow>
            </math>(如图5-7(2)),即一个周角的弧度数是2<i>π rad</i>.
          </p>
        </div>
      </div>
    </div>
    <!-- 163 -->
@@ -138,7 +527,275 @@
            <p><span>163</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk">
            <p>360°=2<i>π</i> rad; 180°=<i>π</i> rad;</p>
            <p>
              <math display="0">
                <msup>
                  <mn>1</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>180</mn>
                </mfrac>
                <mi>rad</mi>
                <mo>≈</mo>
                <mn>0.01745</mn>
                <mrow>
                  <mi mathvariant="normal">r</mi>
                  <mi mathvariant="normal">a</mi>
                  <mi mathvariant="normal">d</mi>
                </mrow>
              </math>;
            </p>
            <p>
              <math display="0">
                <mn>1</mn>
                <mrow>
                  <mi mathvariant="normal">r</mi>
                  <mi mathvariant="normal">a</mi>
                  <mi mathvariant="normal">d</mi>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mi>π</mi>
                </mfrac>
                <mo>≈</mo>
                <msup>
                  <mn>57.30</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>=</mo>
                <msup>
                  <mn>57</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <msup>
                  <mn>18</mn>
                  <mrow>
                    <mi data-mjx-alternate="1" mathvariant="normal">′</mi>
                  </mrow>
                </msup>
              </math>.
            </p>
          </div>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0174-3.jpg" /></p>
          <p class="img">图5-7</p>
          <p>
            为了简便起见,以弧度为单位表示角的大小时,单位“弧度”或“rad”一般省略不写.例如,1
            rad,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mrow>
                <mi mathvariant="normal">r</mi>
                <mi mathvariant="normal">a</mi>
                <mi mathvariant="normal">d</mi>
              </mrow>
            </math>,0 rad 可简写成1,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>,0.
          </p>
          <p>一般地,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为0.</p>
          <p>
            当形成角的射线旋转一周后继续旋转,就可以得到弧度数大于2<i>π</i>或小于-2<i>π</i>的角.这样就可以得到任意弧度数的角.
          </p>
          <p>
            因此,每一个确定的角都有唯一确定的实数与它对应;反之,每一个确定的实数也都有唯一确定的角与它对应,如图5-8所示.这样,角与实数之间就建立了一一对应的关系.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0174-6.jpg" /></p>
          <p class="img">图5-8</p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 把下列各角化为弧度.
          </p>
          <p>(1) 30°;(2) -225°;(3) 0°.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <msup>
                <mn>30</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>30</mn>
              <mo>×</mo>
              <mfrac>
                <mi>π</mi>
                <mn>180</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <mo>−</mo>
              <msup>
                <mn>225</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mo>−</mo>
              <mn>225</mn>
              <mo>×</mo>
              <mfrac>
                <mi>π</mi>
                <mn>180</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(3)</mo>
              <msup>
                <mn>0</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>0</mn>
              <mo>×</mo>
              <mfrac>
                <mi>π</mi>
                <mn>180</mn>
              </mfrac>
              <mo>=</mo>
              <mn>0</mn>
              <mo>.</mo>
            </math>
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 把下列各角化为角度.
          </p>
          <p>
            (1)
            <math display="0">
              <mo>−</mo>
              <mfrac>
                <mrow>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>;(2) 5rad(结果精确到0.01).
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msup>
                  <mn>180</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <msup>
                <mn>60</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>.</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <mn>5</mn>
              <mrow>
                <mi mathvariant="normal">r</mi>
                <mi mathvariant="normal">a</mi>
                <mi mathvariant="normal">d</mi>
              </mrow>
              <mo>=</mo>
              <mn>5</mn>
              <mo>×</mo>
              <mfrac>
                <msup>
                  <mn>180</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mi>π</mi>
              </mfrac>
              <mo>≈</mo>
              <msup>
                <mn>286.44</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>.</mo>
            </math>
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              弧度化角度时,如果式子里有<i>π</i> ,直接把<i>π</i>转化成180°即可.
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -150,7 +807,68 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例3</b></span> 利用科学计算器,把下列各角进行弧度与角度的互化.(结果精确到0.01)
          </p>
          <p>(1) -5.6;(2) 154°13′.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            先将科学计算器的精确度设置为0.01,再将科学计算器设置为角度计算模式,科学计算器Ⅰ按<img class="inline" alt=""
              src="../../assets/images/0175-1.jpg" />,科学计算器Ⅱ按<img class="inline" alt=""
              src="../../assets/images/0175-2.jpg" />.之后依次按下列各键.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0175-3.jpg" /></p>
          <p>结果显示:</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0175-4.jpg" /></p>
          <p>所以 -5.6 <i>rad</i> ≈-320.86°.</p>
          <p>
            (2)
            先将科学计算器的精确度设置为0.01,再将科学计算器设置为弧度计算模式,科学计算器Ⅰ按<img class="inline" alt=""
              src="../../assets/images/0175-5.jpg" />,科学计算器Ⅱ按<img class="inline" alt=""
              src="../../assets/images/0175-6.jpg" />.之后依次按下列各键.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0175-7.jpg" /></p>
          <p>结果显示:</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0175-8.jpg" /></p>
          <p>所以 154°13′≈2.69 rad.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.补充下列表格.</p>
            <p class="img">表5-1</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0175-9.jpg" />
            </p>
            <p>2.角度与弧度互化.</p>
            <p>(1) 225°=____;(2) -330°=____;</p>
            <p>
              (3)
              <math display="0">
                <mfrac>
                  <mrow>
                    <mn>9</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>=</mo>
              </math>____;(4)
              <math display="0">
                <mo>−</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>6</mn>
                </mfrac>
                <mo>=</mo>
              </math>____.
            </p>
            <p>3.利用科学计算器,进行弧度与角度的互化.(结果精确到0.01)</p>
            <p>(1) -3 <i>rad</i> =____;(2) 12°=____.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 165 -->
@@ -164,7 +882,255 @@
            <p><span>165</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c052">
            5.2.2 弧长公式、扇形的面积公式<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>学习了弧度制后,你能推导出弧度制下的弧长和扇形的面积公式吗?</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0176-1.jpg" /></p>
          <p class="img">图5-9</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            如图5-9所示,已知半径为<i>r</i>的圆,设圆心角<i>α</i>=<i>n</i>°,且0°<<i>α</i><360°,<i>α</i>所对的<math display="0">
              <mover>
                <mrow>
                  <mi>A</mi>
                  <mi>B</mi>
                </mrow>
                <mo>⏜</mo>
              </mover>
            </math>长为<i>l</i>,<i>α</i>所对应的扇形面积为<i>S</i>,则
          </p>
          <p class="center">
            <math display="">
              <mfrac>
                <mi>l</mi>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mi>r</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mi>n</mi>
                <mn>360</mn>
              </mfrac>
            </math>,即<math display="0">
              <mi>l</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>n</mi>
                  <mi>π</mi>
                  <mi>r</mi>
                </mrow>
                <mn>180</mn>
              </mfrac>
            </math>(<i>n</i>°的圆心角所对的弧长为<math display="0">
              <mfrac>
                <mrow>
                  <mi>n</mi>
                  <mi>π</mi>
                  <mi>r</mi>
                </mrow>
                <mn>180</mn>
              </mfrac>
            </math>).
          </p>
          <p class="center">
            <math display="">
              <mfrac>
                <mi>S</mi>
                <mrow>
                  <mi>π</mi>
                  <msup>
                    <mi>r</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mi>n</mi>
                <mn>360</mn>
              </mfrac>
            </math>,即<math display="0">
              <mi>S</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>n</mi>
                  <mi>π</mi>
                  <msup>
                    <mi>r</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                </mrow>
                <mn>360</mn>
              </mfrac>
            </math>(<i>n</i>°的圆心角所对应的扇形面积为<math display="0">
              <mfrac>
                <mrow>
                  <mi>n</mi>
                  <mi>π</mi>
                  <msup>
                    <mi>r</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                </mrow>
                <mn>360</mn>
              </mfrac>
            </math>).
          </p>
          <p>
            我们知道,弧长<i>l</i>与半径<i>r</i>的比值等于所对圆心角的弧度数,即<i>α</i>,<i>r</i>,<i>l</i>三者之间满足关系式
          </p>
          <math display="block">
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mi>l</mi>
              <mi>r</mi>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>所以,弧长公式为<i>l</i>=<i>αr</i>.</p>
          <p>
            扇形的圆心角为<i>α</i>(0<<i>α</i><2<i>π</i>),圆周角为2<i>π</i>,圆面积为<i>πr</i><sup>2</sup>,所以圆心角为<i>α</i>的扇形面积为
          </p>
          <math display="block">
            <mi>S</mi>
            <mo>=</mo>
            <mfrac>
              <mi>α</mi>
              <mrow>
                <mn>2</mn>
                <mi>π</mi>
              </mrow>
            </mfrac>
            <mo>⋅</mo>
            <mi>π</mi>
            <msup>
              <mi>r</mi>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo>=</mo>
            <mfrac>
              <mn>1</mn>
              <mn>2</mn>
            </mfrac>
            <mi>α</mi>
            <msup>
              <mi>r</mi>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo>=</mo>
            <mfrac>
              <mn>1</mn>
              <mn>2</mn>
            </mfrac>
            <mi>r</mi>
            <mo>⋅</mo>
            <mi>α</mi>
            <mi>r</mi>
            <mo>=</mo>
            <mfrac>
              <mn>1</mn>
              <mn>2</mn>
            </mfrac>
            <mi>r</mi>
            <mi>l</mi>
            <mo>.</mo>
          </math>
          <p>
            将采用角度制表示的和弧度制表示的弧长公式与扇形的面积公式进行对比可知,采用弧度制后弧长公式和扇形的面积公式就更简洁了.
          </p>
          <p class="center"><img class="img-d" alt="" src="../../assets/images/0176-11.jpg" /></p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 截至2021年4月,中国高速公路总里程约为16万千米,位居全球第一.某高速公路转弯处为一弧形高架桥,测得此处公路中线的总长为1
            200 m,该弧形高架桥所对应的圆心角为<math display="0">
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
              </mfrac>
            </math>,求该弧形高架桥的转弯半径(结果精确到1 m).
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 由题意可知,<i>l</i>=1 200,<math display="0">
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
              </mfrac>
            </math>,由<i>l</i>=<i>αr</i>可得
          </p>
          <math display="block">
            <mi>r</mi>
            <mo>=</mo>
            <mfrac>
              <mi>l</mi>
              <mi>α</mi>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mn>1200</mn>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
              </mfrac>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mn>1200</mn>
                <mo>×</mo>
                <mn>5</mn>
              </mrow>
              <mrow>
                <mn>3</mn>
                <mi>π</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mn>2000</mn>
              <mi>π</mi>
            </mfrac>
            <mo>≈</mo>
            <mn>645</mn>
            <mo stretchy="false">(</mo>
            <mrow>
              <mtext>&nbsp;</mtext>
              <mi mathvariant="normal">m</mi>
            </mrow>
            <mo stretchy="false">)</mo>
            <mo>.</mo>
          </math>
          <p>所以,该弧形高架桥的转弯半径约为645 m.</p>
        </div>
      </div>
    </div>
@@ -176,8 +1142,128 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0177-1.jpg" /></p>
          <p class="img">图5-10</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 如图5-10所示,要在一块废铁皮上剪出一个扇形,用于制作一个圆锥筒,要求这个扇形的圆心角为60°,半径为90
            cm .请求出这个扇形的弧长与面积.(结果分别精确到0.01 cm和0.01
            cm<sup>2</sup>)
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 由于<math display="0">
              <msup>
                <mn>60</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>, 所以
          </p>
          <math display="block">
            <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mi>l</mi>
                  <mo>=</mo>
                  <mi>α</mi>
                  <mi>r</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>3</mn>
                  </mfrac>
                  <mo>×</mo>
                  <mn>90</mn>
                  <mo>=</mo>
                  <mn>30</mn>
                  <mi>π</mi>
                  <mo>≈</mo>
                  <mn>94.26</mn>
                  <mo stretchy="false">(</mo>
                  <mrow>
                    <mtext>&nbsp;</mtext>
                    <mi mathvariant="normal">c</mi>
                    <mi mathvariant="normal">m</mi>
                  </mrow>
                  <mo stretchy="false">)</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mi>S</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mi>r</mi>
                  <mi>l</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo>×</mo>
                  <mn>90</mn>
                  <mo>×</mo>
                  <mn>30</mn>
                  <mi>π</mi>
                  <mo>≈</mo>
                  <mn>4241.70</mn>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <msup>
                      <mrow>
                        <mtext>&nbsp;</mtext>
                        <mi mathvariant="normal">c</mi>
                        <mi mathvariant="normal">m</mi>
                      </mrow>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p>所以,这个扇形的弧长约为94.26 cm,面积约为4 241.70 cm<sup>2</sup>.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>
              1.要在一个半径为120 mm的圆形塑料上切割一片弧长为144
              mm的扇形物料,切割时,该弧所对应的圆心角(正角)为____弧度.2.若弧形花台的弧长为20
              m,该弧所对应的圆心角为1.6 rad,则该弧形花台对应的转弯半径是____m.
            </p>
            <p>
              3.若扇形的圆心角为<math display="0">
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
              </math>,半径为5 cm,则此扇形的弧长为____cm,面积为____cm<sup>2</sup>.
            </p>
          </div>
          <h3 id="c053">习题5.2<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <p>
              <span class="bj-sp"><b>水平一</b></span>
            </p>
            <p>1.在下图中填入适当的值.</p>
            <p class="center">
              <img class="img-f" alt="" src="../../assets/images/0177-5.jpg" />
            </p>
            <p class="img">第1题图</p>
          </div>
        </div>
      </div>
    </div>
@@ -193,7 +1279,179 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>2.角度与弧度互化.</p>
            <p>(1) 135°=____;(2) -225°=____;</p>
            <p>
              (3) -300°=___;(4)
              <math display="0">
                <mfrac>
                  <mn>2</mn>
                  <mn>3</mn>
                </mfrac>
                <mi>π</mi>
                <mo>=</mo>
              </math>
            </p>
            <p>
              (5)
              <math display="0">
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>=</mo>
              </math>;(6)-3<i>π</i>=____.
            </p>
            <p>
              3.(1) 若<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mi>π</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,则<i>α</i>是第____象限角,<math display="0">
                <mfrac>
                  <mi>α</mi>
                  <mn>2</mn>
                </mfrac>
              </math>是第____象限角;
            </p>
            <p>
              (2) 若<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>π</mi>
                  <mo>,</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,则<i>α</i>是第____象限角,<math display="0">
                <mfrac>
                  <mi>α</mi>
                  <mn>2</mn>
                </mfrac>
              </math>是第____象限角.
            </p>
            <p>4.三角形的三个内角的度数之比为1∶2∶3,求最小内角的弧度数.</p>
            <p>5.经过1 <i>h</i>,钟表的时针和分针各转了多少度?分别是多少弧度?</p>
            <p>
              <span class="bj-sp"><b>水平二</b></span>
            </p>
            <p>1.已知扇形的面积为2,扇形的圆心角的弧度数为4,求该扇形的周长.</p>
            <p>
              2.要在半径为100 cm的圆金属板上截取一块扇形板,使它的弧长为112
              cm,求该弧所对的圆心角的弧度数与角度数.(结果精确到1°)
            </p>
            <p>
              3.已知长50 cm 的弧所对的圆心角为200°,求该弧所在圆的半径.(结果精确到1
              cm)
            </p>
          </div>
          <h2 id="b032">
            5.3 任意角的正弦函数、余弦函数和正切函数<span class="fontsz1">>>>>>>>></span>
          </h2>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block">
              初中我们在Rt△<i>ABC</i>中定义了锐角<i>α</i>的正弦、余弦和正切,如图5-11所示.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0178-7.jpg" />
            </p>
            <p class="img">图5-11</p>
            <p class="block">
              正弦:<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>a</mi>
                  <mi>c</mi>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mi mathvariant="normal">∠</mi>
                    <mi>α</mi>
                    <mtext>&nbsp;的对边&nbsp;</mtext>
                  </mrow>
                  <mtext>&nbsp;斜边&nbsp;</mtext>
                </mfrac>
              </math>.
            </p>
            <p class="block">
              余弦:<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>b</mi>
                  <mi>c</mi>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mi mathvariant="normal">∠</mi>
                    <mi>α</mi>
                    <mtext>&nbsp;的邻边&nbsp;</mtext>
                  </mrow>
                  <mtext>&nbsp;斜边&nbsp;</mtext>
                </mfrac>
              </math>.
            </p>
            <p class="block">
              正切:<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>a</mi>
                  <mi>b</mi>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mi mathvariant="normal">∠</mi>
                    <mi>α</mi>
                    <mtext>&nbsp;的对边&nbsp;</mtext>
                  </mrow>
                  <mrow>
                    <mi mathvariant="normal">∠</mi>
                    <mi>α</mi>
                    <mtext>&nbsp;的邻边&nbsp;</mtext>
                  </mrow>
                </mfrac>
              </math>.
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -206,7 +1464,220 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0179-1.jpg" /></p>
          <p class="img">图5-12</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            现在我们将一个锐角<i>α</i>放入平面直角坐标系中,使得顶点与原点重合,始边与<i>x</i>轴的非负半轴重合,如图5-12所示.已知点<i>P</i>(<i>x</i>,<i>y</i>)是锐角<i>α</i>终边上的任意一点,点
            <i>P</i>与原点<i>O</i>的距离<i>OP</i>=<i>r</i>(<i>r</i>>0),你能利用锐角三角函数的定义计算出锐角<i>α</i>所对应的三角函数值吗?
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            过点<i>P</i>作<i>x</i>轴的垂线,垂足为<i>M</i>,则线段<i>OM</i>的长度为<i>x</i>,线段<i>MP</i>的长度为<i>y</i>.
          </p>
          <p>
            在<i>Rt</i> △<i>OMP</i>中,根据勾股定理可得,<math display="0">
              <mi>r</mi>
              <mo>=</mo>
              <msqrt>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mo>+</mo>
                <msup>
                  <mi>y</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </msqrt>
              <mo>&gt;</mo>
              <mn>0</mn>
            </math>.
          </p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>M</mi>
                <mi>P</mi>
              </mrow>
              <mrow>
                <mi>O</mi>
                <mi>P</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>r</mi>
            </mfrac>
            <mo>,</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>O</mi>
                <mi>M</mi>
              </mrow>
              <mrow>
                <mi>O</mi>
                <mi>P</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mi>x</mi>
              <mi>r</mi>
            </mfrac>
            <mo>,</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>M</mi>
                <mi>P</mi>
              </mrow>
              <mrow>
                <mi>O</mi>
                <mi>M</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>x</mi>
            </mfrac>
            <mo>.</mo>
          </math>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>在弧度制下,我们已将<i>α</i>的范围扩展到了全体实数.</p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0179-4.jpg" /></p>
          <p class="img">图5-13</p>
          <p>
            一般地,如图5-13所示,当<i>α</i>为任意角时,点<i>P</i>(<i>x</i>,<i>y</i>)是<i>α</i>的终边上异于原点的任意一点,点<i>P</i>到原点的距离为<math
              display="0">
              <mi>r</mi>
              <mo>=</mo>
              <msqrt>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mo>+</mo>
                <msup>
                  <mi>y</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </msqrt>
            </math>.我们仍然将<i>α</i>的正弦、余弦、正切分别定义如下.
          </p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>r</mi>
            </mfrac>
            <mo>,</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mi>x</mi>
              <mi>r</mi>
            </mfrac>
            <mo>,</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>x</mi>
            </mfrac>
            <mo stretchy="false">(</mo>
            <mi>x</mi>
            <mo>≠</mo>
            <mn>0</mn>
            <mo stretchy="false">)</mo>
            <mo>.</mo>
          </math>
          <p>注意:当<i>α</i>的终边不在<i>y</i>轴上时,tan<i>α</i>才有意义.</p>
          <p>
            对于每一个确定的<i>α</i>,其正弦、余弦及正切都分别对应一个确定的比值,因此,正弦、余弦及正切都是以<i>α</i>为自变量的函数,分别叫作正弦函数、余弦函数及正切函数.
          </p>
          <p>
            当点<i>P</i>的横坐标<i>x</i>=0时,<i>α</i>的终边在<i>y</i>轴上,此时<math display="0">
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>+</mo>
              <mi>k</mi>
              <mi>π</mi>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>,<math display="0">
              <mfrac>
                <mi>y</mi>
                <mi>x</mi>
              </mfrac>
              <mo>=</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
            </math>无意义.除此之外,对于确定的<i>α</i>,三个函数都有意义.
          </p>
          <p>我们将正弦函数、余弦函数和正切函数统称为三角函数,通常记为:</p>
          <p><b>正弦函数</b> <i>y</i>=sin <i>x</i>,<i>x</i>∈<b>R</b>;</p>
          <p><b>余弦函数</b> <i>y</i>=cos <i>x</i>,<i>x</i>∈<b>R</b>;</p>
          <p>
            <b>正切函数</b> <i>y</i>=tan <i>x</i>,<math display="0">
              <mi>x</mi>
              <mo>≠</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>+</mo>
              <mi>k</mi>
              <mi>π</mi>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>.
          </p>
        </div>
      </div>
    </div>
@@ -221,7 +1692,131 @@
            <p><span>169</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例1</b></span> 如图5-14所示,已知<i>α</i>的终边经过点 <i>P</i>(3,-4),
            求sin<i>α</i>,cos<i>α</i>,tan<i>α</i>的值.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0180-3.jpg" /></p>
          <p class="img">图5-14</p>
          <p>
            <span class="zt-ls"><b>解</b></span> 由已知有<i>x</i>=3,<i>y</i>=-4,
          </p>
          <p>则</p>
          <math display="block">
            <mi>r</mi>
            <mo>=</mo>
            <msqrt>
              <msup>
                <mn>3</mn>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
              <mo>+</mo>
              <mo stretchy="false">(</mo>
              <mo>−</mo>
              <mn>4</mn>
              <msup>
                <mo stretchy="false">)</mo>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
            </msqrt>
            <mo>=</mo>
            <mn>5</mn>
            <mo>.</mo>
          </math>
          <p>于是</p>
          <math display="block">
            <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mi>y</mi>
                    <mi>r</mi>
                  </mfrac>
                  <mo>=</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mn>4</mn>
                    <mn>5</mn>
                  </mfrac>
                  <mo>,</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mi>x</mi>
                    <mi>r</mi>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mn>3</mn>
                    <mn>5</mn>
                  </mfrac>
                  <mo>,</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mi>y</mi>
                    <mi>x</mi>
                  </mfrac>
                  <mo>=</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mn>4</mn>
                    <mn>3</mn>
                  </mfrac>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.(1) 正弦函数表示为<i>y</i>=____,<i>x</i>∈____;</p>
            <p>(2) 余弦函数表示为<i>y</i>=____,<i>x</i>∈____;</p>
            <p>(3) 正切函数表示为<i>y</i>=____,<i>x</i>≠____.</p>
            <p>
              2.若<i>α</i>的终边过点(-8,6),则sin<i>α</i>=____,cos<i>α</i>=____,tan<i>α</i>=
              ____.
            </p>
            <p>
              3.若<i>α</i>的终边过点(5,12),则sin<i>α</i>=____,cos<i>α</i>=____,tan<i>α</i>=
              ____.
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            从<i>α</i>的正弦、余弦和正切的定义与实例可知,任意角的正弦值、余弦值和正切值在不同的象限有不同的符号.下面我们来研究各个象限内,任意角的正弦值、余弦值和正切值的符号的规律.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            以第二象限角为例,根据任意角的正弦、余弦和正切的定义,试分析它们在第二象限的符号情况.
          </p>
          <p>
            因为<i>α</i>的终边在第二象限,任取终边上异于原点的一点<i>P</i>(<i>x</i>,<i>y</i>),有
          </p>
          <p class="center"><i>x</i><0, <i>y</i>>0, <i>OP</i>= <i>r</i>>0.</p>
          <p>根据任意角的正弦、余弦和正切的定义可知,</p>
        </div>
      </div>
    </div>
@@ -233,7 +1828,76 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            (1)<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>y</mi>
                <mi>r</mi>
              </mfrac>
              <mo>&gt;</mo>
              <mn>0</mn>
            </math>;
          </p>
          <p>
            (2)<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>x</mi>
                <mi>r</mi>
              </mfrac>
              <mo>&lt;</mo>
              <mn>0</mn>
            </math>;
          </p>
          <p>
            (3)<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>y</mi>
                <mi>x</mi>
              </mfrac>
              <mo>&lt;</mo>
              <mn>0</mn>
            </math>.
          </p>
          <p>所以,可以得出第二象限各值的符号,见表5-2.</p>
          <p class="img">表5-2</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0181-4.jpg" /></p>
          <p>同理,可得出其他象限内各值的符号.</p>
          <p>
            一般地,<i>α</i>为任意角,<i>P</i>(<i>x</i>,<i>y</i>)为<i>α</i>终边上异于原点的任意一点,点
            <i>P</i>与原点<i>O</i>的距离<i>OP</i>=<i>r</i>.因为<i>r</i>>0,由定义可知,
          </p>
          <p><b>正弦值的符号与点<i>P</i>的纵坐标<i>y</i>的符号相同;</b></p>
          <p><b>余弦值的符号与点<i>P</i>的横坐标<i>x</i>的符号相同;</b></p>
          <p>
            <b>正切值的符号与点<i>P</i>的纵坐标与横坐标的比值</b><math display="0">
              <mfrac>
                <mi>y</mi>
                <mi>x</mi>
              </mfrac>
            </math><b>的符号相同.</b>
          </p>
          <p>
            将点<i>P</i>(<i>x</i>,<i>y</i>)的坐标与各象限角的正弦值、余弦值和正切值的符号列表,如表5-3所示.
          </p>
          <p class="img">表5-3</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0181-6.jpg" /></p>
          <p>
            为了便于记忆,我们将sin<i>α</i>,cos<i>α</i>,tan<i>α</i>的符号标在各象限内,如图5-15所示.
          </p>
        </div>
      </div>
    </div>
    <!-- 171 -->
@@ -248,7 +1912,129 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0182-1.jpg" /></p>
          <p class="img">图5-15</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 确定下列各三角函数值的符号.
          </p>
          <p>
            (1) sin(-210°);(2) tan760°;(3)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>17</mn>
                  <mi>π</mi>
                </mrow>
                <mn>12</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为-210°是第二象限角,所以
          </p>
          <p class="center">sin(-210°)>0.</p>
          <p>
            (2)
            因为760°=40°+2×360°,可知760°角与40°角的终边相同,是第一象限角,所以
          </p>
          <p class="center">tan 760°>0.</p>
          <p>
            (3) 由<math display="0">
              <mfrac>
                <mrow>
                  <mn>17</mn>
                  <mi>π</mi>
                </mrow>
                <mn>12</mn>
              </mfrac>
              <mo>=</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mn>5</mn>
                <mn>12</mn>
              </mfrac>
              <mi>π</mi>
            </math>,可看出<math display="0">
              <mi>π</mi>
              <mo>&lt;</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>12</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mrow>
                  <mn>6</mn>
                  <mi>π</mi>
                </mrow>
                <mn>12</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>,是第三象限角,
          </p>
          <p>所以</p>
          <math display="block">
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>17</mn>
                <mi>π</mi>
              </mrow>
              <mn>12</mn>
            </mfrac>
            <mo>&lt;</mo>
            <mn>0</mn>
          </math>
          <p>
            <span class="zt-ls"><b>例3</b></span> 根据sin <i>α</i>>0,且cos <i>α</i><0,确定<i>α</i>是第几象限角.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为sin
            <i>α</i>>0,所以<i>α</i>的终边在第一或第二象限或<i>y</i>轴的正半轴上;又因为cos<i>α</i><0,所以<i>α</i>的终边在第二或第三象限或<i>x</i>轴的负半轴上.因此,<i>α</i>为第二象限角.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.用“<”“>”或“=”填空.</p>
            <p>
              (1) sin160°___0;(2)<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>18</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </math>
              ___0;
            </p>
            <p>(3) tan590°___0.</p>
            <p>2.(1) 若sin<i>α</i>>0,则<i>α</i>的终边在______;</p>
            <p>(2) 若cos<i>α</i><0,则<i>α</i>的终边在______;</p>
            <p>(3) 若tan<i>α</i>>0,则<i>α</i>的终边在第___或第___象限.</p>
            <p>3.若sin<i>α</i><0,且tan<i>α</i><0,则<i>α</i>是第___象限角.</p>
          </div>
        </div>
      </div>
    </div>
@@ -261,7 +2047,80 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center"><img style="width: 24%;" alt="" src="../../assets/images/0183-1.jpg" /></p>
          <p class="img">图5-16</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            如图5-16所示,两个三角板上有几个特殊的锐角:30°,45°,60°.初中已研究了它们对应的正弦值、余弦值和正切值.现将角的范围进行了推广,已经在平面直角坐标系中研究了各象限角的正弦值、余弦值和正切值的符号分布规律.对于在平面直角坐标系中不属于任何象限的特殊角,如0°,90°,180°,270°等,它们的正弦值、余弦值和正切值又是多少?以180°为例,试求出它的正弦值、余弦值和正切值.
          </p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0183-2.jpg" /></p>
          <p class="img">图5-17</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            在平面直角坐标系中,180°角的终边正好与<i>x</i>轴的负半轴重合,如图5-17所示.以坐标原点为圆心、半径为单位长度的圆(简称单位圆)与<i>x</i>轴交于点<i>P</i>(-1,0),于是有
          </p>
          <p class="center"><i>x</i>=-1,<i>y</i>=0,<i>r</i>=1.</p>
          <p>根据任意角的正弦、余弦和正切的定义可知,</p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <msup>
              <mn>180</mn>
              <mrow>
                <mo>∘</mo>
              </mrow>
            </msup>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>r</mi>
            </mfrac>
            <mo>=</mo>
            <mn>0</mn>
            <mo>;</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <msup>
              <mn>180</mn>
              <mrow>
                <mo>∘</mo>
              </mrow>
            </msup>
            <mo>=</mo>
            <mfrac>
              <mi>x</mi>
              <mi>r</mi>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mn>1</mn>
            <mo>;</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <msup>
              <mn>180</mn>
              <mrow>
                <mo>∘</mo>
              </mrow>
            </msup>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>x</mi>
            </mfrac>
            <mo>=</mo>
            <mn>0</mn>
            <mo>.</mo>
          </math>
          <p><b>类比归纳</b></p>
          <p>
            一般地,取单位圆与坐标轴的交点就可以得到0°,90°,180°和270°等特殊角的正弦值、余弦值和正切值,如表5-4所示.
          </p>
          <p class="img">表5-4</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0183-4.jpg" /></p>
          <p>表中360°角与0°角的终边相同,对应的三角函数值也相同.</p>
        </div>
      </div>
    </div>
    <!-- 173 -->
@@ -275,8 +2134,264 @@
            <p><span>173</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例4</b></span> 求5sin180°-4sin90°+2tan180°-7sin270°的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 5sin 180°-4sin 90°+2 tan 180°-7sin
            270°
          </p>
          <p>=5×0-4×1+2×0-7×(-1)</p>
          <p>=3.</p>
          <p>
            <span class="zt-ls"><b>例5</b></span> 求<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>−</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>+</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>π</mi>
              <mo>−</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mtable displaystyle="true"
                columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>6</mn>
                    </mfrac>
                    <mo>−</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>3</mn>
                    </mfrac>
                    <mo>+</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mrow>
                        <mn>3</mn>
                        <mi>π</mi>
                      </mrow>
                      <mn>2</mn>
                    </mfrac>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>=</mo>
                  </mtd>
                  <mtd>
                    <mfrac>
                      <mn>1</mn>
                      <mn>2</mn>
                    </mfrac>
                    <mo>−</mo>
                    <mfrac>
                      <mn>1</mn>
                      <mn>2</mn>
                    </mfrac>
                    <mo>+</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mn>1</mn>
                    <mo stretchy="false">)</mo>
                    <mo>−</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mn>1</mn>
                    <mo stretchy="false">)</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>=</mo>
                  </mtd>
                  <mtd>
                    <mn>0</mn>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>
              1.<math display="0">
                <mfrac>
                  <mrow>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <msup>
                      <mn>60</mn>
                      <mrow>
                        <mo>∘</mo>
                      </mrow>
                    </msup>
                  </mrow>
                  <mrow>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <msup>
                      <mn>45</mn>
                      <mrow>
                        <mo>∘</mo>
                      </mrow>
                    </msup>
                  </mrow>
                </mfrac>
                <mo>=</mo>
                <mo stretchy="false">(</mo>
                <mstyle scriptlevel="0">
                  <mspace width="1em"></mspace>
                </mstyle>
                <mo stretchy="false">)</mo>
              </math>( ).
            </p>
            <p>
              A.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>6</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>4</mn>
                </mfrac>
              </math>
            </p>
            <p>2.2cos 270°+5sin 0°+2cos 180°=____.</p>
            <p>
              3.<math display="0">
                <mn>5</mn>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>+</mo>
                <mn>2</mn>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo>−</mo>
                <mn>3</mn>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mn>6</mn>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mn>0</mn>
                <mo>=</mo>
              </math>____.
            </p>
          </div>
          <h3 id="c054">习题5.3<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <p>
              <span class="bj-sp"><b>水平一</b></span>
            </p>
            <p>1.若<i>α</i>的终边经过点<i>P</i>(-3,-4),则tan<i>α</i>=( ).</p>
            <p>A.-3</p>
            <p>B.-4</p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>4</mn>
                  <mn>3</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <mn>3</mn>
                  <mn>4</mn>
                </mfrac>
              </math>
            </p>
            <p>2.(1) 若sin<i>α</i><0,则<i>α</i>的终边在______;</p>
            <p>(2) 若cos<i>α</i>>0,则<i>α</i>的终边在______;</p>
            <p>(3) 若tan<i>α</i><0,则<i>α</i>的终边在第___或第___象限.</p>
            <p>3.用“<”“>”或“=”填空.</p>
            <p>(1) sin 210°___0;(2) cos(-30°)___0;</p>
            <p>(3) tan 240°___0;(4) sin 150°___0.</p>
          </div>
        </div>
      </div>
    </div>
@@ -289,7 +2404,142 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>
              4.若<i>α</i>的终边经过点<i>P</i>,求sin<i>α</i>,cos<i>α</i>,tan<i>α</i>的值.
            </p>
            <p>(1) <i>P</i>(3,4);(2) <i>P</i>(12,-5).</p>
            <p>5.计算.</p>
            <p>
              (1)<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo>+</mo>
                <mn>2</mn>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>−</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>4</mn>
                </mfrac>
              </math>;
            </p>
            <p>(2) 2sin 0°-3sin 90°+4sin 180°-5sin 270°-6sin 360°;</p>
            <p>
              (3)<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mn>0</mn>
                <mo>−</mo>
                <mn>2</mn>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>+</mo>
                <mn>3</mn>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mn>4</mn>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo>+</mo>
                <mn>5</mn>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mn>2</mn>
                <mi>π</mi>
              </math>.
            </p>
            <p>
              <span class="bj-sp"><b>水平二</b></span>
            </p>
            <p>
              1.若tan<i>α</i>·cos<i>α</i>>0,且cos<i>α</i>·sin<i>α</i><0,求<i>α</i>所在的象限.
            </p>
            <p>
              2.若<i>α</i>的终边经过点<i>Ρ</i>(3,<i>y</i>),且满足<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>3</mn>
                  <mn>5</mn>
                </mfrac>
              </math>,求sin<i>α</i>,tan<i>α</i>的值.
            </p>
            <p>
              3.已知<i>α</i>的终边经过点<i>P</i>(3<i>a</i>,-4<i>a</i>)(<i>a</i>≠0),求sin<i>α</i>,cos<i>α</i>,tan<i>α</i>的值.
            </p>
          </div>
          <h2 id="b033">
            5.4 同角三角函数的基本关系<span class="fontsz1">>>>>>>>></span>
          </h2>
          <p>
            在上一节,我们学习了三角函数的定义以及在各个象限的符号,那么同一个角的三角函数值之间是否存在某种关系呢?
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0185-4.jpg" /></p>
          <p class="img">图5-18</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            我们知道,在平面直角坐标系中,单位圆是以原点为圆心、单位长度为半径的圆.下面我们利用单位圆来研究同角三角函数的基本关系.如图5-18所示,已知点<i>P</i>(<i>x</i>,<i>y</i>)是角<i>α</i>的终边与单位圆的交点.过点<i>P</i>作<i>x</i>轴的垂线,垂足为<i>M</i>,则△<i>OMP</i>是直角三角形,且<i>OM</i>=|<i>x</i>|,<i>PM</i>=|<i>y</i>|,<i>OP</i>=<i>r</i>=1.
          </p>
          <p>根据正弦、余弦和正切的定义可知,在单位圆上,</p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mi>y</mi>
            <mo>;</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mi>x</mi>
            <mo>;</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mi>y</mi>
              <mi>x</mi>
            </mfrac>
            <mo>,</mo>
            <mi>x</mi>
            <mo>≠</mo>
            <mn>0</mn>
            <mo>.</mo>
          </math>
          <p>
            在Rt △<i>OPM</i>中,由勾股定理有<i>OM</i><sup>2</sup>+<i>PM</i><sup>2</sup>=<i>OP</i><sup>2</sup>,
          </p>
        </div>
      </div>
    </div>
@@ -304,7 +2554,397 @@
            <p><span>175</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>即<i>x</i><sup>2</sup>+<i>y</i><sup>2</sup>=1,</p>
          <p>所以sin<sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>=1.</p>
          <p>显然,当<i>α</i>的终边与坐标轴重合时,这个公式也成立.</p>
          <p>
            根据正切的定义,当<math display="0">
              <mi>α</mi>
              <mo>≠</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>+</mo>
              <mi>k</mi>
              <mi>π</mi>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>时,
          </p>
          <math display="block">
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
            </mfrac>
            <mo>.</mo>
          </math>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>一般地,可以得到同角三角函数的基本关系式.</p>
          <p>
            <b>(1) 平方关系:</b>sin<sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>=1.
          </p>
          <p>
            <b>(2) 商数关系:</b><math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
                <mrow>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mn>3</mn>
                <mn>5</mn>
              </mfrac>
            </math>, 且<i>α</i>是第四象限角,求sin<i>α</i>,tan<i>α</i>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为
            <i>α</i>是第四象限角,所以sin<i>α</i><0 .
          </p>
          <math display="block">
            <mtable columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mo>−</mo>
                  <msqrt>
                    <mn>1</mn>
                    <mo>−</mo>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                  </msqrt>
                  <mo>=</mo>
                  <mo>−</mo>
                  <msqrt>
                    <mn>1</mn>
                    <mo>−</mo>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mfrac>
                          <mn>3</mn>
                          <mn>5</mn>
                        </mfrac>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                  </msqrt>
                  <mo>=</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mn>4</mn>
                    <mn>5</mn>
                  </mfrac>
                  <mo>,</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>α</mi>
                    </mrow>
                    <mrow>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>α</mi>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mo>−</mo>
                      <mfrac>
                        <mn>4</mn>
                        <mn>5</mn>
                      </mfrac>
                    </mrow>
                    <mfrac>
                      <mn>3</mn>
                      <mn>5</mn>
                    </mfrac>
                  </mfrac>
                  <mo>=</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mn>4</mn>
                    <mn>3</mn>
                  </mfrac>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              根据sin<sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>=1,可得<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <msqrt>
                  <mn>1</mn>
                  <mo>−</mo>
                  <msup>
                    <mi>cos</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </msqrt>
              </math>或<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mo>−</mo>
                <msqrt>
                  <mn>1</mn>
                  <mo>−</mo>
                  <msup>
                    <mi>cos</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </msqrt>
              </math>.其开方后的符号是由正弦值的象限符号来确定的.同理,开方后余弦值的符号也一样.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例2</b></span> 已知<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mn>12</mn>
                <mn>5</mn>
              </mfrac>
            </math>,且<i>α</i>是第三象限角,求sin <i>α</i>,cos <i>α</i>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <math display="block">
            <mtext>&nbsp;由&nbsp;</mtext>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mn>12</mn>
              <mn>5</mn>
            </mfrac>
            <mtext>&nbsp;得,&nbsp;</mtext>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mn>12</mn>
              <mn>5</mn>
            </mfrac>
            <mtext>, 即&nbsp;</mtext>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mn>12</mn>
              <mn>5</mn>
            </mfrac>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mtext>.&nbsp;</mtext>
          </math>
          <p>把①代入</p>
          <math display="block">
            <msup>
              <mi>sin</mi>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>+</mo>
            <msup>
              <mi>cos</mi>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mn>1</mn>
            <mo>,</mo>
          </math>
          <p class="right">①</p>
          <p>得</p>
          <math display="block">
            <mtable columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <msup>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <mfrac>
                        <mn>12</mn>
                        <mn>5</mn>
                      </mfrac>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>α</mi>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo>+</mo>
                  <msup>
                    <mi>cos</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mn>1</mn>
                  <mo>,</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mfrac>
                    <mn>169</mn>
                    <mn>25</mn>
                  </mfrac>
                  <msup>
                    <mi>cos</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mn>1</mn>
                  <mo>,</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <msup>
                    <mi>cos</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mn>25</mn>
                    <mn>169</mn>
                  </mfrac>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p>因为<i>α</i>是第三象限角,所以cos<i>α</i><0.</p>
          <p>
            所以<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mn>5</mn>
                <mn>13</mn>
              </mfrac>
            </math>.
          </p>
        </div>
      </div>
    </div>
@@ -316,7 +2956,538 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            把<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mn>5</mn>
                <mn>13</mn>
              </mfrac>
            </math>代入①式,得
          </p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mn>12</mn>
              <mn>5</mn>
            </mfrac>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>=</mo>
            <mfrac>
              <mn>12</mn>
              <mn>5</mn>
            </mfrac>
            <mo>×</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mfrac>
                <mn>5</mn>
                <mn>13</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>=</mo>
            <mo>−</mo>
            <mfrac>
              <mn>12</mn>
              <mn>13</mn>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>
            <span class="zt-ls"><b>例3</b></span> 求证sin<sup>4</sup><i>α</i>-cos<sup>4</sup><i>α</i>=2sin
            <sup>2</sup><i>α</i>-1.
          </p>
          <p>
            <b>证明</b> sin<sup>4</sup><i>α</i>-cos<sup>4</sup><i>α</i>=(sin
            <sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>)(sin<sup>2</sup><i>α</i>-cos<sup>2</sup><i>α</i>)
          </p>
          <p>=sin<sup>2</sup><i>α</i>-cos<sup>2</sup><i>α</i></p>
          <p>=sin<sup>2</sup><i>α</i>-(1-sin<sup>2</sup><i>α</i>)</p>
          <p>=2sin<sup>2</sup><i>α</i>-1.</p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 化简<math display="0">
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>−</mo>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
                <mrow>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>−</mo>
                  <mn>1</mn>
                </mrow>
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <math display="block">
            <mo>由</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>θ</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>θ</mi>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>θ</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mn>3</mn>
            <mo>,</mo>
            <mo>得</mo>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>θ</mi>
            <mo>=</mo>
            <mo>−</mo>
            <mn>3</mn>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>θ</mi>
            <mo>.</mo>
            <mtable displaystyle="true" columnalign="right left right left right left right left right left right left"
              columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
              <mtr>
                <mtd>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                      <mo>−</mo>
                      <mn>2</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mn>5</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                      <mo>+</mo>
                      <mn>3</mn>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                </mtd>
                <mtd>
                  <mi></mi>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>3</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                      <mo stretchy="false">)</mo>
                      <mo>−</mo>
                      <mn>2</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mn>5</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                      <mo>+</mo>
                      <mn>3</mn>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>3</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                      <mo stretchy="false">)</mo>
                    </mrow>
                  </mfrac>
                </mtd>
              </mtr>
              <mtr>
                <mtd></mtd>
                <mtd>
                  <mi></mi>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mo>−</mo>
                      <mn>14</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mo>−</mo>
                      <mn>4</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mn>7</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              方法一的运算思路是由正弦函数、余弦函数变化为正切函数求出结果,我们简称为“弦化切”;方法二的运算思路是由正切函数变化为正弦函数和余弦函数的关系后求出结果,我们简称为“切化弦”.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例5</b></span> 已知tan<i>θ</i>=-3,求<math display="0">
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>−</mo>
                  <mn>2</mn>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
                <mrow>
                  <mn>5</mn>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>+</mo>
                  <mn>3</mn>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
              </mfrac>
            </math>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 方法一:显然cos <i>θ</i>≠0,
          </p>
          <p class="left1">
            <math display="">
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>−</mo>
                  <mn>2</mn>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
                <mrow>
                  <mn>5</mn>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>+</mo>
                  <mn>3</mn>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>2</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                </mrow>
                <mrow>
                  <mfrac>
                    <mrow>
                      <mn>5</mn>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>sin</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                    <mrow>
                      <mi>cos</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>θ</mi>
                    </mrow>
                  </mfrac>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                  <mo>−</mo>
                  <mn>2</mn>
                </mrow>
                <mrow>
                  <mn>5</mn>
                  <mo>+</mo>
                  <mn>3</mn>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mo>×</mo>
                  <mo stretchy="false">(</mo>
                  <mo>−</mo>
                  <mn>3</mn>
                  <mo stretchy="false">)</mo>
                  <mo>−</mo>
                  <mn>2</mn>
                </mrow>
                <mrow>
                  <mn>5</mn>
                  <mo>+</mo>
                  <mn>3</mn>
                  <mo>×</mo>
                  <mo stretchy="false">(</mo>
                  <mo>−</mo>
                  <mn>3</mn>
                  <mo stretchy="false">)</mo>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>7</mn>
                <mn>2</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </p>
          <p>方法二:</p>
          <p class="left1">
            <math display="">
              <mo>由</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>θ</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
                <mrow>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>θ</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mn>3</mn>
              <mo>,</mo>
              <mo>得</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>θ</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mn>3</mn>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>θ</mi>
              <mo>.</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mtable displaystyle="true"
                columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd>
                    <mfrac>
                      <mrow>
                        <mn>4</mn>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                        <mo>−</mo>
                        <mn>2</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mn>5</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                        <mo>+</mo>
                        <mn>3</mn>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                  </mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mfrac>
                      <mrow>
                        <mn>4</mn>
                        <mo stretchy="false">(</mo>
                        <mo>−</mo>
                        <mn>3</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                        <mo stretchy="false">)</mo>
                        <mo>−</mo>
                        <mn>2</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mn>5</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                        <mo>+</mo>
                        <mn>3</mn>
                        <mo stretchy="false">(</mo>
                        <mo>−</mo>
                        <mn>3</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                        <mo stretchy="false">)</mo>
                      </mrow>
                    </mfrac>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mfrac>
                      <mrow>
                        <mo>−</mo>
                        <mn>14</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                      <mrow>
                        <mo>−</mo>
                        <mn>4</mn>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>θ</mi>
                      </mrow>
                    </mfrac>
                    <mo>=</mo>
                    <mfrac>
                      <mn>7</mn>
                      <mn>2</mn>
                    </mfrac>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </p>
        </div>
      </div>
    </div>
@@ -332,7 +3503,210 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>
              1.已知<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>13</mn>
                </mfrac>
              </math>,且<i>α</i>是第二象限角,则cos<i>α</i>=____,tan<i>α</i>=____.
            </p>
            <p>
              2.已知<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mo>−</mo>
                <msqrt>
                  <mo>−</mo>
                  <mn>3</mn>
                </msqrt>
              </math>,且<i>α</i>是第四象限角,则sin<i>α</i>=____,cos <i>α</i>=____.
            </p>
            <p>3.化简.</p>
            <p>
              (1)
              cos<i>α</i>·tan<i>α</i>=____;(2)(1-sin<i>x</i>)(1+sin<i>x</i>)=____.
            </p>
          </div>
          <h3 id="c055">习题5.4<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <p>
              <span class="bj-sp"><b>水平一</b></span>
            </p>
            <p>
              1.已知<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>3</mn>
                  <mn>5</mn>
                </mfrac>
              </math>,且<i>α</i>是第四象限角,则cos<i>α</i>=( ).
            </p>
            <p>
              A.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>4</mn>
                  <mn>5</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>3</mn>
                  <mn>4</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>3</mn>
                  <mn>5</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <mn>4</mn>
                  <mn>5</mn>
                </mfrac>
              </math>
            </p>
            <p>2.sin<sup>2</sup>25°+cos<sup>2</sup>25°=____.</p>
            <p>
              3.已知<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>,且<i>α</i>是第三象限角,则sin<i>α</i>=____,tan<i>α</i>=____.
            </p>
            <p>
              4.已知tan <i>α</i>=-1,且<i>α</i>是第四象限角,求sin <i>α</i>,cos
              <i>α</i>的值.
            </p>
            <p>
              5.化简<math display="0">
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>−</mo>
                    <mn>1</mn>
                  </mrow>
                  <mrow>
                    <mn>1</mn>
                    <mo>−</mo>
                    <mn>2</mn>
                    <msup>
                      <mi>sin</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                  </mrow>
                </mfrac>
              </math>.
            </p>
            <p>
              <span class="bj-sp"><b>水平二</b></span>
            </p>
            <p>
              1.已知<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>3</mn>
                </mfrac>
              </math>,且<math display="0">
                <mi>α</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,求cos<i>α</i>,tan<i>α</i>的值.
            </p>
            <p>
              2.设tan<i>α</i>=3,求<math display="0">
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>+</mo>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                  </mrow>
                  <mrow>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                  </mrow>
                </mfrac>
              </math>的值.
            </p>
            <p>3.求证.</p>
            <p>
              (1) sin<sup>4</sup><i>α</i>+sin<sup>2</sup><i>α</i>·cos<sup>2</sup><i>α</i>+cos<sup>2</sup><i>α</i>=1;
            </p>
            <p>
              (2) tan<sup>2</sup><i>α</i>-sin<sup>2</sup><i>α</i>=tan<sup>2</sup><i>α</i>·sin<sup>2</sup><i>α</i>.
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -344,7 +3718,160 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b034">
            5.5 诱导公式<span class="fontsz1">>>>>>>>></span>
          </h2>
          <p>
            我们知道,图像的对称性是函数性质(如奇偶性)的重要几何特征.在上一节,我们借助单位圆推导了同角三角函数的基本关系式.下面,我们继续利用在平面直角坐标系中关于原点中心对称的单位圆,推导三角函数的诱导公式.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            我们知道,<math display="0">
              <mfrac>
                <mi>α</mi>
                <mn>3</mn>
              </mfrac>
            </math>和<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>(<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>可写为<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>+</mo>
              <mn>2</mn>
              <mi>π</mi>
            </math>)所对应的角是终边相同的角.想一想,<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>之间有什么关系?
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0189-9.jpg" /></p>
          <p class="img">图5-19</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            在平面直角坐标系中,由于<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>和<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>所对应的角的终边相同,所以由三角函数的定义可知,<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            如图5-19所示,角<i>α</i>的终边与单位圆的交点为<i>P</i>(cos<i>α</i>,sin<i>α</i>),终边继续旋转2<i>πk</i>(<i>k</i>∈<b>Z</b>)后,点<i>P</i>(cos<i>α</i>,sin<i>α</i>)又回到原来的位置,所以各三角函数值并不发生变化.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            我们知道,所有与<i>α</i>终边相同的角,连同<i>α</i>在内,可以组成一个集合
          </p>
          <p class="center">
            <i>S</i>={<i>β</i>|<i>β</i>=<i>α</i>+2<i>kπ</i>,<i>k</i>∈<b>Z</b>}.
          </p>
          <p>
            由三角函数的定义可知,角<i>α</i>+2<i>kπ</i>(<i>k</i>∈<b>Z</b>)与角<i>α</i>的同名三角函数的值相等(“同名”指同为正弦、余弦或正切,下同).于是,当<i>k</i>∈<b>Z</b>时,
          </p>
          <div class="bj">
            <p class="center">
              有sin(<i>α</i>+2<i>kπ</i>)=sin <i>α</i>(<i>k</i>∈<b>Z</b>);
            </p>
            <p class="center">
                  cos(<i>α</i>+2<i>kπ</i>)=cos<i>α</i>(<i>k</i>∈<i>Z</i>);
              公式一
            </p>
            <p class="center">
              tan(<i>α</i>+2<i>kπ</i>)=tan<i>α</i>(<i>k</i>∈<b>Z</b>).
            </p>
          </div>
          <p>即终边相同的角同名三角函数值相等.</p>
        </div>
      </div>
    </div>
@@ -360,7 +3887,326 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例1</b></span> 求下列三角函数的值.
          </p>
          <p>
            (1)
            <math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>13</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>;(2)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>;(3) tan 405°.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>13</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo>+</mo>
                <mn>2</mn>
                <mi>π</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>;
          </p>
          <p>
            (2)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo>−</mo>
                <mn>2</mn>
                <mi>π</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>;
          </p>
          <p>(3) tan405°=tan(45°+360°)=tan45°=1.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.sin 750°=( ).</p>
            <p>
              A.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              2.<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>25</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>6</mn>
                </mfrac>
                <mo>=</mo>
              </math>( ).
            </p>
            <p>
              A.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              3.<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>7</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>4</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
              </math>=( ).
            </p>
            <p>A.-1</p>
            <p>B.1</p>
            <p>
              C.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>3</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <msqrt>
                  <mn>3</mn>
                </msqrt>
              </math>
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" /></p>
          <p>
            如图5-20所示,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>和<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>(<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>可写为<math display="0">
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>)所对应的角的终边关于坐标原点对称.想一想,<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>之间有什么关系?
          </p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0190-25.jpg" /></p>
          <p class="img">图5-20</p>
        </div>
      </div>
    </div>
    <!-- 180 -->
@@ -371,7 +4217,162 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            如图5-20所示,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>和<math display="0">
              <mfrac>
                <mrow>
                  <mn>7</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>所对应的角的终边与单位圆的交点分别是点<i>P</i>与点<i>P</i>′.根据对称性可知,它们的横坐标与纵坐标都互为相反数.
          </p>
          <p>由此得到</p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mi>π</mi>
              <mn>6</mn>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>7</mn>
                <mi>π</mi>
              </mrow>
              <mn>6</mn>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>,</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mi>π</mi>
              <mn>6</mn>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>7</mn>
                <mi>π</mi>
              </mrow>
              <mn>6</mn>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>.</mo>
          </math>
          <p>
            如图5-21所示,设单位圆与任意角<i>α</i>,π+<i>α</i>的终边分别相交于点<i>P</i>和<i>P</i>′,则点<i>P</i>和<i>P</i>′关于原点中心对称.如果点<i>P</i>的坐标是(cos
            <i>α</i>,sin
            <i>α</i>),那么点<i>P</i>′的坐标应该是(-cos<i>α</i>,-sin<i>α</i>).又由于点<i>P</i>′作为角π+<i>α</i>的终边与单位圆的交点,其坐标应该是(cos(π+<i>α</i>),sin(π+<i>α</i>)),由此得到
          </p>
          <p class="center">
            cos(π+<i>α</i>)=-cos<i>α</i>,sin(π+<i>α</i>)=-sin<i>α</i>.
          </p>
          <p>由同角三角函数的关系式知</p>
          <math display="block">
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mo stretchy="false">(</mo>
            <mi>π</mi>
            <mo>+</mo>
            <mi>α</mi>
            <mo stretchy="false">)</mo>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mo>−</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
              <mrow>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>.</mo>
          </math>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0191-5.jpg" /></p>
          <p class="img">图5-21</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            与任意角<i>α</i>的终边关于原点中心对称的角π+<i>α</i>的正弦函数、余弦函数和正切函数的计算公式如下.
          </p>
          <div class="bj">
            <p class="center"> sin(π+<i>α</i>)=-sin<i>α</i>;</p>
            <p class="center">    cos(π+<i>α</i>)=-cos<i>α</i>;公式二</p>
            <p class="center">tan(π+<i>α</i>)=tan<i>α</i>.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 181 -->
@@ -385,7 +4386,391 @@
            <p><span>181</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例2</b></span> 求下列三角函数的值.
          </p>
          <p>
            (1) sin 225°;(2)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>;(3) tan 570°.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>225</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <msup>
                  <mn>180</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>+</mo>
                <msup>
                  <mn>45</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>45</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
            </math>;
          </p>
          <p>
             (2)<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>;
          </p>
          <p>
             (3)<math display="0">
              <mtable displaystyle="true"
                columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <msup>
                      <mn>570</mn>
                      <mrow>
                        <mo>∘</mo>
                      </mrow>
                    </msup>
                  </mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <msup>
                        <mn>210</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                      <mo>+</mo>
                      <msup>
                        <mn>360</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mo>=</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <msup>
                      <mn>210</mn>
                      <mrow>
                        <mo>∘</mo>
                      </mrow>
                    </msup>
                    <mo>=</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <msup>
                        <mn>180</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                      <mo>+</mo>
                      <msup>
                        <mn>30</mn>
                        <mrow>
                          <mo>∘</mo>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mo>=</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <msup>
                      <mn>30</mn>
                      <mrow>
                        <mo>∘</mo>
                      </mrow>
                    </msup>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mfrac>
                      <msqrt>
                        <mn>3</mn>
                      </msqrt>
                      <mn>3</mn>
                    </mfrac>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.sin 240°( ).</p>
            <p>
              A.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              2.<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>10</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
              </math>( ).
            </p>
            <p>
              A.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              3.<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>21</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>=</mo>
              </math>( ).
            </p>
            <p>A.-1</p>
            <p>
              B.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>3</mn>
                </mfrac>
              </math>
            </p>
            <p>C.1</p>
            <p>
              D.<math display="0">
                <msqrt>
                  <mn>3</mn>
                </msqrt>
              </math>
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" /></p>
          <p>
            如图5-22所示,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>和<math display="0">
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>所对应的角的终边关于<i>x</i>轴对称.想一想,<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>之间有什么关系?
          </p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0192-23.jpg" /></p>
          <p class="img">图5-22</p>
        </div>
      </div>
    </div>
    <!-- 182 -->
@@ -396,7 +4781,368 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            如图5-22所示,<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>和<math display="0">
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>所对应的角的终边与单位圆的交点分别是点<i>P</i>与点<i>P</i>′.根据对称性可知,点<i>P</i>与点<i>P</i>′的横坐标相同、纵坐标互为相反数.
          </p>
          <p>
            由此得到<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0193-5.jpg" /></p>
          <p class="img">图5-23</p>
          <p>
            如图5-23所示,设单位圆与任意角<i>α</i>,-<i>α</i>的终边分别相交于点<i>P</i>和点<i>P</i>′,则点<i>P</i>与点<i>P</i>′关于<i>x</i>轴对称.如果点<i>P</i>的坐标是(cos<i>α</i>,sin<i>α</i>),那么点<i>P</i>′的坐标是(cos<i>α</i>,-sin<i>α</i>).由于点<i>P</i>′作为角-<i>α</i>的终边与单位圆的交点,其坐标应该是(cos(-<i>α</i>),sin(-<i>α</i>)),于是得到
          </p>
          <p class="center">
            cos(-<i>α</i>)=cos<i>α</i>,sin(-<i>α</i>)=-sin<i>α</i>.
          </p>
          <p>由同角三角函数的关系式知</p>
          <math display="block">
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mo stretchy="false">(</mo>
            <mo>−</mo>
            <mi>α</mi>
            <mo stretchy="false">)</mo>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mo>−</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mo>−</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mo>−</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>.</mo>
          </math>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            与任意角<i>α</i>的终边关于<i>x</i>轴对称的角-<i>α</i>的正弦函数、余弦函数和正切函数的计算公式如下.
          </p>
          <div class="bj">
            <p class="center">sin(-<i>α</i>)=-sin<i>α</i>;</p>
            <p class="center">cos(-<i>α</i>)=cos<i>α</i>;公式三</p>
            <p class="center">tan(-<i>α</i>)=-tan<i>α</i>.</p>
          </div>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              利用公式三,可以把负角的三角函数转化为正角的三角函数.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例3</b></span> 求下列三角函数的值.
          </p>
          <p>
            (1) sin(-45°);(2) cos(-390°);(3)
            <math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mo stretchy="false">(</mo>
              <mo>−</mo>
              <mfrac>
                <mrow>
                  <mn>16</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo stretchy="false">)</mo>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <msup>
                  <mn>45</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>45</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <msup>
                  <mn>390</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>390</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <msup>
                  <mn>30</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>+</mo>
                <msup>
                  <mn>360</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>30</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(3)</mo>
              <mtable displaystyle="true"
                columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <mo>−</mo>
                      <mfrac>
                        <mrow>
                          <mn>16</mn>
                          <mi>π</mi>
                        </mrow>
                        <mn>3</mn>
                      </mfrac>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                  </mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mrow>
                        <mn>16</mn>
                        <mi>π</mi>
                      </mrow>
                      <mn>3</mn>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <mfrac>
                        <mrow>
                          <mn>4</mn>
                          <mi>π</mi>
                        </mrow>
                        <mn>3</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mn>4</mn>
                      <mi>π</mi>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mrow>
                        <mn>4</mn>
                        <mi>π</mi>
                      </mrow>
                      <mn>3</mn>
                    </mfrac>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <mi>π</mi>
                      <mo>+</mo>
                      <mfrac>
                        <mi>π</mi>
                        <mn>3</mn>
                      </mfrac>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mfrac>
                      <mi>π</mi>
                      <mn>3</mn>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <msqrt>
                      <mn>3</mn>
                    </msqrt>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </p>
        </div>
      </div>
    </div>
    <!-- 183  -->
@@ -410,7 +5156,223 @@
            <p><span>183</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>
              1.<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>6</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>( ).
            </p>
            <p>
              A.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              2.<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
              </math>( ).
            </p>
            <p>
              A.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              3.<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>9</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>4</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
              </math>( ).
            </p>
            <p>A.1</p>
            <p>
              B.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>3</mn>
                </mfrac>
              </math>
            </p>
            <p>C.-1</p>
            <p>
              D.<math display="0">
                <msqrt>
                  <mn>3</mn>
                </msqrt>
              </math>
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" /></p>
          <p>
            如图5-24所示,<i>α</i>和π-<i>α</i>所对应的角的终边关于<i>y</i>轴对称.想一想,sin<i>α</i>与sin(π-<i>α</i>),cos<i>α</i>与cos(π-<i>α</i>)之间有什么关系?
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0194-14.jpg" /></p>
          <p class="img">图5-24</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            如图5-24所示,设单位圆与角<i>α</i>,π-<i>α</i>的终边分别相交于点<i>P</i>和点<i>P</i>′,则点<i>P</i>与点<i>P</i>′关于<i>y</i>轴对称.如果点<i>P</i>的坐标是(cos<i>α</i>,sin<i>α</i>),那么点<i>P</i>′的坐标是(-cos<i>α</i>,sin<i>α</i>).由于点<i>P</i>′作为角π-<i>α</i>的终边与单位圆的交点,其坐标应该是(cos(π-<i>α</i>),sin(π-<i>α</i>)),
          </p>
          <p class="center">
            cos(π-<i>α</i>)=-cos<i>α</i>, sin(π-<i>α</i>)=sin<i>α</i>.
          </p>
          <p>由同角三角函数的关系式知</p>
          <math display="block">
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mo stretchy="false">(</mo>
            <mi>π</mi>
            <mo>−</mo>
            <mi>α</mi>
            <mo stretchy="false">)</mo>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
              <mrow>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mo stretchy="false">(</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mi>α</mi>
                <mo stretchy="false">)</mo>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
              <mrow>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>tan</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>α</mi>
            <mo>.</mo>
          </math>
        </div>
      </div>
    </div>
    <!-- 184 -->
@@ -421,7 +5383,420 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            与任意角<i>α</i>的终边关于<i>y</i>轴对称的角π-<i>α</i>的正弦函数、余弦函数和正切函数的计算公式如下.
          </p>
          <div class="bj">
            <p class="center">sin(π-<i>α</i>)=sin<i>α</i>;</p>
            <p class="center">cos(π-<i>α</i>)=-cos<i>α</i>; 公式四</p>
            <p class="center">tan(π-<i>α</i>)=-tan<i>α</i>.</p>
          </div>
          <p>
            公式一至公式四统称为三角函数的诱导公式.利用这些公式可以把任意角的三角函数转化为锐角三角函数.
          </p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 求下列三角函数的值.
          </p>
          <p>
            (1) cos 135°;(2)
            <math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>8</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>;(3)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>11</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>135</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <msup>
                  <mn>180</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo>−</mo>
                <msup>
                  <mn>45</mn>
                  <mrow>
                    <mo>∘</mo>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>45</mn>
                <mrow>
                  <mo>∘</mo>
                </mrow>
              </msup>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>8</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>+</mo>
                <mn>2</mn>
                <mi>π</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <msqrt>
                <mn>3</mn>
              </msqrt>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(3)</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>11</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>+</mo>
                <mn>2</mn>
                <mi>π</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>4</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>4</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
              <mo>.</mo>
            </math>
          </p>
          <p>
            <span class="zt-ls"><b>例5</b></span> 化简:<math display="0">
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mo stretchy="false">(</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mi>α</mi>
                  <mo stretchy="false">)</mo>
                  <mo>⋅</mo>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mo stretchy="false">(</mo>
                  <mn>3</mn>
                  <mi>π</mi>
                  <mo>+</mo>
                  <mi>α</mi>
                  <mo stretchy="false">)</mo>
                </mrow>
                <mrow>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mo stretchy="false">(</mo>
                  <mo>−</mo>
                  <mi>π</mi>
                  <mo>+</mo>
                  <mi>α</mi>
                  <mo stretchy="false">)</mo>
                  <mo>⋅</mo>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mo stretchy="false">(</mo>
                  <mn>3</mn>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mi>α</mi>
                  <mo stretchy="false">)</mo>
                  <mo>⋅</mo>
                  <mi>tan</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mo stretchy="false">(</mo>
                  <mo>−</mo>
                  <mi>α</mi>
                  <mo>−</mo>
                  <mi>π</mi>
                  <mo stretchy="false">)</mo>
                </mrow>
              </mfrac>
            </math>
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mtable displaystyle="true"
                columnalign="right left right left right left right left right left right left"
                columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
                <mtr>
                  <mtd>
                    <mtext>&nbsp;原式&nbsp;</mtext>
                  </mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mfrac>
                      <mrow>
                        <mo>−</mo>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo>⋅</mo>
                        <mo stretchy="false">(</mo>
                        <mo>−</mo>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo stretchy="false">)</mo>
                      </mrow>
                      <mrow>
                        <mo>−</mo>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo stretchy="false">(</mo>
                        <mo>−</mo>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo stretchy="false">)</mo>
                        <mo stretchy="false">(</mo>
                        <mo>−</mo>
                        <mi>tan</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo stretchy="false">)</mo>
                      </mrow>
                    </mfrac>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mrow>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo>⋅</mo>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo>⋅</mo>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                        <mo>⋅</mo>
                        <mfrac>
                          <mrow>
                            <mi>sin</mi>
                            <mo data-mjx-texclass="NONE">⁡</mo>
                            <mi>α</mi>
                          </mrow>
                          <mrow>
                            <mi>cos</mi>
                            <mo data-mjx-texclass="NONE">⁡</mo>
                            <mi>α</mi>
                          </mrow>
                        </mfrac>
                      </mrow>
                    </mfrac>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd></mtd>
                  <mtd>
                    <mi></mi>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mfrac>
                      <mrow>
                        <mi>sin</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                      </mrow>
                      <mrow>
                        <mi>cos</mi>
                        <mo data-mjx-texclass="NONE">⁡</mo>
                        <mi>α</mi>
                      </mrow>
                    </mfrac>
                    <mo>=</mo>
                    <mo>−</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </p>
          <p><b>归纳总结</b></p>
          <p>
            利用诱导公式,把任意角的三角函数值转化为锐角的三角函数值的一般步骤为:
          </p>
          <p class="center"><img class="img-d" alt="" src="../../assets/images/0195-6.jpg" /></p>
        </div>
      </div>
    </div>
@@ -436,7 +5811,189 @@
            <p><span>185</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            事实上,以上步骤体现了将未知转化为已知的化归思想.利用公式一至公式四,按上述步骤解决了求三角函数值这个重要而困难的问题.现在,由于计算工具的便捷使用,对于三角函数的“求值”已不是问题,但其中的思想方法在解决三角函数的各种问题中却依然有重要的作用.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.sin 150°=( ).</p>
            <p>
              A.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              2.<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>14</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
              </math>( ).
            </p>
            <p>
              A.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              3.<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>29</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>6</mn>
                </mfrac>
                <mo>=</mo>
              </math>( ).
            </p>
            <p>A.-1</p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>3</mn>
                </mfrac>
              </math>
            </p>
            <p>C.1</p>
            <p>
              D.<math display="0">
                <msqrt>
                  <mn>3</mn>
                </msqrt>
              </math>
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            前面我们探究了求特殊角的三角函数值的方法,而对于不是特殊角的三角函数值又该如何求值呢?使用计算工具就能很容易地解决这个问题.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            利用科学计算器的<img class="inline" alt="" src="../../assets/images/0196-13.jpg" />键,可以方便地计算任意角的三角函数值.
          </p>
          <p>
            主要步骤如下:设置精确度→设置模式(角度制或弧度制)→按键<img class="inline" alt="" src="../../assets/images/0196-14.jpg" />(或键<img
              class="inline" alt="" src="../../assets/images/0196-15.jpg" />)→输入角的大小→按键<img class="inline" alt=""
              src="../../assets/images/0196-16.jpg" />显示结果.
          </p>
          <p>
            <span class="zt-ls"><b>例6</b></span> 利用科学计算器计算.(结果精确到0.01)
          </p>
          <p>
            (1) sin 63°52′41″;(2)<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>;(3)
            <math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mrow>
                    <mn>6</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
        </div>
      </div>
    </div>
    <!-- 186 -->
@@ -447,7 +6004,90 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            先将精确度设置为0.01,再将科学计算器设置为角度计算模式,然后依次按下列各键:
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0197-1.jpg" /></p>
          <p>结果显示:</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0197-2.jpg" /></p>
          <p>所以 sin 63°52′41″≈0.90.</p>
          <p>
            (2)
            先将精确度设置为0.01,再将科学计算器设置为弧度计算模式,然后依次按下列各键:
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0197-3.jpg" /></p>
          <p>结果显示:</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0197-4.jpg" /></p>
          <p>
            所以
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>4</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mn>0.50</mn>
              <mo>.</mo>
            </math>
          </p>
          <p>
            (3)
            先将精确度设置为0.01,再将科学计算器设置为弧度计算模式,然后依次按下列各键:
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0197-6.jpg" /></p>
          <p>结果显示:</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0197-7.jpg" /></p>
          <p>
            所以<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mrow>
                    <mn>6</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>≈</mo>
              <mo>−</mo>
              <mn>0.73</mn>
              <mo>.</mo>
            </math>
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.利用科学计算器求值.(结果精确到0.01)</p>
            <p>
              (1) sin 1 480°10′12″____;(2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>9</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>7</mn>
                </mfrac>
                <mo>≈</mo>
              </math>____;
            </p>
            <p>(3) tan(-3.6)≈____.</p>
          </div>
        </div>
      </div>
    </div>
@@ -462,7 +6102,344 @@
            <p><span>187</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>2.先填“<”“>”或“=”,再用科学计算器加以验证.</p>
            <p>
              (1) sin 516°____0;(2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>16</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </math>;
            </p>
            <p>(3) tan(-1 050°)____0.</p>
          </div>
          <h3 id="c056">习题5.5<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <p>
              <span class="bj-sp"><b>水平一</b></span>
            </p>
            <p>
              1.<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>14</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
              </math>( ).
            </p>
            <p>
              A.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>2.tan 315°=( ).</p>
            <p>A.1</p>
            <p>B.-1</p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>
            </p>
            <p>3.填空题.((7)~(9)小题用科学计算器完成,结果精确到0.001)</p>
            <p>(1) sin 240°=____;(2) cos330°=____;</p>
            <p>
              (3) tan 225°=____;(4)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>13</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>=</mo>
              </math>;
            </p>
            <p>
              (5)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>7</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>6</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
              </math>;(6)
              <math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>17</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>4</mn>
                </mfrac>
                <mo>=</mo>
              </math>____;
            </p>
            <p>
              (7)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>12</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
                <mo>≈</mo>
              </math>____;(8)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>7</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>≈</mo>
              </math>____;
            </p>
            <p>(9) tan236°7′≈____.</p>
            <p>
              4.计算<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>6</mn>
                </mfrac>
                <mo>−</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>+</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>4</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>.
            </p>
            <p>
              5.化简<math display="0">
                <mfrac>
                  <mrow>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mi>α</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                    <mi>π</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>2</mn>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                  </mrow>
                  <mrow>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mi>π</mi>
                    <mo>+</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                  </mrow>
                </mfrac>
              </math>.
            </p>
            <p>
              <span class="bj-sp"><b>水平二</b></span>
            </p>
            <p>
              1.已知<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mi>α</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>3</mn>
                </mfrac>
              </math>,求sin(π-<i>α</i>)的值.
            </p>
            <p>2.求值sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°).</p>
            <p>
              3.化简<math display="0">
                <mfrac>
                  <mrow>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>3</mn>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo>−</mo>
                    <mi>π</mi>
                    <mo stretchy="false">)</mo>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>2</mn>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                  </mrow>
                  <mrow>
                    <mi>tan</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>4</mn>
                    <mi>π</mi>
                    <mo>−</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                    <mo>⋅</mo>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mo stretchy="false">(</mo>
                    <mn>5</mn>
                    <mi>π</mi>
                    <mo>+</mo>
                    <mi>α</mi>
                    <mo stretchy="false">)</mo>
                  </mrow>
                </mfrac>
              </math>.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 188 -->
@@ -473,7 +6450,50 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b035">
            5.6 正弦函数的图像和性质<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c057">5.6.1 正弦函数的图像<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" /></p>
          <p>
            如果今天是2021年3月17日星期三,那么往前推7天是周几?往后推7天是周几?再过7天又是周几?
          </p>
          <p>显然,前面所有问题都是同一个答案:周三.</p>
          <p>
            生活中,像这样每隔7天,“周三”又会重复出现,这个“7天”就是我们常说的一周(一个周期),这种每隔一段时间便会重复出现的现象称为周期现象.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0199-1.jpg" /></p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            我们知道,单位圆上任意一点在圆周上旋转一周就回到原来的位置,这说明,
            在函数<i>y</i>=sin<i>x</i>中,当自变量每间隔2π个单位长度时,对应的函数值都会重复出现,即sin(<i>x</i>+2π)=sin<i>x</i>.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/gn.jpg" /></p>
            </div>
            <p class="block">周期函数</p>
            <p class="block">周期</p>
            <p class="block">最小正周期</p>
          </div>
          <p>
            一般地,对于函数<i>y</i>=<i>f</i>(<i>x</i>),如果存在一个非零常数<i>T</i>,当<i>x</i>取定义域<i>D</i>内的每一个值时,都有<i>x</i>+<i>T</i>∈<i>D</i>,并且都满足
          </p>
          <p class="center"><i>f</i>(<i>x</i>+<i>T</i>)=<i>f</i>(<i>x</i>),</p>
          <p>
            则称函数<i>y</i>=<i>f</i>(<i>x</i>)为<b>周期函数</b>,非零常数<i>T</i>叫作这个函数的一个<b>周期</b>.
          </p>
          <p>
            例如,函数<i>y</i>=sin<i>x</i>中,对于任意<i>x</i>∈<b>R</b>,都有<i>x</i>+2π∈<b>R</b>,且满足<i>f</i>(<i>x</i>+2π)=<i>f</i>(<i>x</i>).可见,正弦函数是周期函数,且2π是它的一个周期.
          </p>
          <p>
            又由sin(<i>x</i>+2π<i>k</i>)=sin<i>x</i>(<i>k</i>∈<b>Z</b>),可知2π,4π,6π,…及-2π,-4π,-6π,…都是正弦函数<i>y</i>=sin<i>x</i>的周期.
          </p>
          <p>
            对于一个周期函数<i>y</i>=<i>f</i>(<i>x</i>),如果在它的所有的周期中存在一个最小的正数,就称这个最小的正数为<i>y</i>=<i>f</i>(<i>x</i>)的<b>最小正周期</b>.
          </p>
        </div>
      </div>
    </div>
@@ -488,7 +6508,82 @@
            <p><span>189</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            由此可见,2π就是正弦函数<i>y</i>=sin<i>x</i>的最小正周期.为了简便起见,本书所指的三角函数的周期一般指函数的最小正周期.因此,我们说正弦函数的周期是2π.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            <i>y</i>=sin<i>x</i>是以2π为周期的函数,所以只要画出它在一个完整周期内的图像,再利用周期性就可以得到正弦函数的图像.
          </p>
          <p>
            首先,列表.自变量<i>x</i>的取值如表5-5所示,利用科学计算器求出<i>y</i>=sin<i>x</i>的各个值并填入表中.
          </p>
          <p class="img">表5-5</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0200-1.jpg" /></p>
          <p>
            其次,描点连线.根据表中数值描点,然后用光滑的曲线把各点连接起来,绘制出在[0,2π]上的图像,如图5-25所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0200-2.jpg" /></p>
          <p class="img">图5-25</p>
          <p>
            由图5-25可以看出,决定函数<i>y</i>=sin<i>x</i>(<i>x</i>∈0,2π)
            图像形状的有五个关键点,即
          </p>
          <math display="block">
            <mo stretchy="false">(</mo>
            <mn>0</mn>
            <mo>,</mo>
            <mn>0</mn>
            <mo stretchy="false">)</mo>
            <mo>,</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>,</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>,</mo>
            <mo stretchy="false">(</mo>
            <mi>π</mi>
            <mo>,</mo>
            <mn>0</mn>
            <mo stretchy="false">)</mo>
            <mo>,</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
              <mo>,</mo>
              <mo>−</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>,</mo>
            <mo stretchy="false">(</mo>
            <mn>2</mn>
            <mi>π</mi>
            <mo>,</mo>
            <mn>0</mn>
            <mo stretchy="false">)</mo>
            <mo>.</mo>
          </math>
          <p>
            因此,在精确度要求不高时,经常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到函数<i>y</i>=sin<i>x</i>(<i>x</i>∈0,2π)的简图,我们称这种画图方法为“五点(画图)法”.
          </p>
          <p>
            最后,利用正弦函数的周期性,我们将函数<i>y</i>=sin<i>x</i>(<i>x</i>∈0,2π)的图像向左或向右平移2π,4π,…,即可画出<i>y</i>=sin<i>x</i>在<b>R</b>的图像,如图5-26所示.
          </p>
        </div>
      </div>
    </div>
@@ -500,7 +6595,33 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0201-1.jpg" /></p>
          <p class="img">图5-26</p>
          <p>正弦函数<i>y</i>=sin<i>x</i>,<i>x</i>∈<b>R</b>的图像叫作正弦曲线.</p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 用“五点法”画出下列函数在区间[0,2π]内的简图.
          </p>
          <p>(1) <i>y</i>=-sin<i>x</i>;(2) <i>y</i>=1+sin<i>x</i>.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 列表(表5-6).
          </p>
          <p class="img">表5-6</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0201-2.jpg" /></p>
          <p>
            描点连线得<i>y</i>=-sin<i>x</i>在区间[0,2π]内的简图,如图5-27所示.
          </p>
          <p class="center"><img class="img-d" alt="" src="../../assets/images/0201-3.jpg" /></p>
          <p class="img">图5-27</p>
          <p>(2) 列表(表5-7).</p>
          <p class="img">表5-7</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0201-4.jpg" /></p>
          <p>
            描点连线得<i>y</i>=1+sin<i>x</i>在区间[0,2π]内的简图,如图5-28所示.
          </p>
          <p class="center"><img class="img-d" alt="" src="../../assets/images/0201-5.jpg" /></p>
          <p class="img">图5-28</p>
        </div>
      </div>
    </div>
@@ -516,7 +6637,89 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <p class="block">
              <i>y</i>=-sin<i>x</i>与<i>y</i>=sin<i>x</i>的图像有什么关系?
              <i>y</i>=1+sin<i>x</i>与<i>y</i>=sin<i>x</i>的图像有什么关系?
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>
              完成下表(表5-8),并利用“五点法”画出<i>y</i>=3sin
              <i>x</i>在区间[0,2π]内的简图,并说明<i>y</i>=3sin
              <i>x</i>的图像与正弦函数<i>y</i>=sin <i>x</i>的图像的区别和联系.
            </p>
            <p class="img">表5-8</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0202-1.jpg" />
            </p>
            <p class="center">
              <img class="img-d" alt="" src="../../assets/images/0202-2.jpg" />
            </p>
          </div>
          <h3 id="c058">
            5.6.2 正弦函数的性质(一)<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            通过观察<i>y</i>=sin<i>x</i>的图像可知正弦函数<i>y</i>=sin<i>x</i>的性质.本节主要研究正弦函数的定义域、值域、周期性和奇偶性.
          </p>
          <p>1.定义域.</p>
          <p><i>y</i>=sin<i>x</i>的定义域是<b>R</b>.</p>
          <p>2.值域.</p>
          <p>
            曲线夹在两条直线<i>y</i>=1和<i>y</i>=-1之间,因此-1≤sin<i>x</i>≤1,即<i>y</i>=sin<i>x</i>的值域是[-1,1].
          </p>
          <p>
            当<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mn>2</mn>
              <mi>k</mi>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>时,<i>y</i>=sin <i>x</i>取得最大值1;
          </p>
          <p>
            当<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mn>2</mn>
              <mi>k</mi>
              <mi>π</mi>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>时,<i>y</i>=sin <i>x</i>取得最小值-1.
          </p>
        </div>
      </div>
    </div>
@@ -528,8 +6731,207 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>3.周期性.</p>
          <p><i>y</i>=sin<i>x</i>是周期函数,周期是2π.</p>
          <p>4.奇偶性.</p>
          <p>
            因为sin(-<i>x</i>)=-sin<i>x</i>,所以<i>y</i>=sin<i>x</i>是奇函数,其图像关于原点对称.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mo>−</mo>
                  <mi>a</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>,求<i>a</i>的取值范围.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为 -1≤sin<i>x</i>≤1,
          </p>
          <p>
            所以 <math display="0">
              <mo>−</mo>
              <mn>1</mn>
              <mo>⩽</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mo>−</mo>
                  <mi>a</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
              <mo>⩽</mo>
              <mn>1</mn>
            </math>,
          </p>
          <p>解得 1≤<i>a</i>≤5.</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 求使下列函数取得最大值、最小值的<i>x</i>的集合,并求出这些函数的最大值、最小值.
          </p>
          <p>(1) <i>y</i>=3+sin<i>x</i>;(2) <i>y</i>=-2sin<i>x</i>.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            使函数<i>y</i>=3+sin<i>x</i>取得最大值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最大值的<i>x</i>的集合<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">|</mo>
                  <mstyle scriptlevel="0">
                    <mspace width="thinmathspace"></mspace>
                  </mstyle>
                  <mi>x</mi>
                  <mo>=</mo>
                  <mn>2</mn>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>+</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
                <mo>,</mo>
                <mi>k</mi>
                <mo>∈</mo>
                <mrow>
                  <mi mathvariant="bold">Z</mi>
                </mrow>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>.这时函数<i>y</i>=3+sin<i>x</i>的最大值为<i>y</i>=3+1=4.
          </p>
          <p>
            使函数<i>y</i>=3+sin<i>x</i>取得最小值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最小值的<i>x</i>的集合<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">|</mo>
                  <mstyle scriptlevel="0">
                    <mspace width="thinmathspace"></mspace>
                  </mstyle>
                  <mi>x</mi>
                  <mo>=</mo>
                  <mn>2</mn>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
                <mo>,</mo>
                <mi>k</mi>
                <mo>∈</mo>
                <mrow>
                  <mi mathvariant="bold">Z</mi>
                </mrow>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>.这时函数<i>y</i>=3+sin<i>x</i>的最小值为<i>y</i>=3+(-1)=2.
          </p>
          <p>
            (2)
            使函数<i>y</i>=-2sin<i>x</i>取得最大值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最小值的<i>x</i>的集合<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">|</mo>
                  <mstyle scriptlevel="0">
                    <mspace width="thinmathspace"></mspace>
                  </mstyle>
                  <mi>x</mi>
                  <mo>=</mo>
                  <mn>2</mn>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
                <mo>,</mo>
                <mi>k</mi>
                <mo>∈</mo>
                <mrow>
                  <mi mathvariant="bold">Z</mi>
                </mrow>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>.这时函数<i>y</i>=-2sin<i>x</i>的最大值为<i>y</i>=-2×(-1)=2.
          </p>
          <p>
            使函数<i>y</i>=-2sin<i>x</i>取得最小值的<i>x</i>的集合,就是使函数<i>y</i>=sin<i>x</i>取得最大值的<i>x</i>的集合<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">|</mo>
                  <mstyle scriptlevel="0">
                    <mspace width="thinmathspace"></mspace>
                  </mstyle>
                  <mi>x</mi>
                  <mo>=</mo>
                  <mn>2</mn>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>+</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
                <mo>,</mo>
                <mi>k</mi>
                <mo>∈</mo>
                <mrow>
                  <mi mathvariant="bold">Z</mi>
                </mrow>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>.这时函数<i>y</i>=-2sin<i>x</i>的最小值为<i>y</i>=-2×1=-2.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>
              1.已知<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mi>a</mi>
                    <mo>−</mo>
                    <mn>1</mn>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </math>,则<i>a</i>的取值范围为____.
            </p>
            <p>
              2.(1)函数<i>y</i>=1+0.6sin <i>x</i>的最大值为____, 最小值为____;
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -544,7 +6946,257 @@
            <p><span>193</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>
              (2)函数<math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>2</mn>
                  <mn>3</mn>
                </mfrac>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
              </math>的最大值为____,最小值为____.
            </p>
          </div>
          <h3 id="c059">
            5.6.3 正弦函数的性质(二)<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>5.单调性.</p>
          <p>
            如图5-29所示,选取正弦曲线在长度为2π的区间<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>内的图像进行考查.
          </p>
          <p class="center"><img class="img-d" alt="" src="../../assets/images/0204-3.jpg" /></p>
          <p class="img">图5-29</p>
          <p>
            <i>y</i>=sin<i>x</i> 在区间<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是增函数,在区间<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是减函数.由正弦函数的周期性可知:<i>y</i>=sin<i>x</i>在每一个区间<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mn>2</mn>
                <mi>k</mi>
                <mi>π</mi>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>2</mn>
                <mi>k</mi>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上都是增函数,函数值由-1增大到1;在每一个区间<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mn>2</mn>
                <mi>k</mi>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>2</mn>
                <mi>k</mi>
                <mi>π</mi>
                <mo>+</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上都是减函数,函数值由1减小到-1.
          </p>
          <p><b>例</b> 不求值,利用正弦函数的单调性,比较下列各对正弦值的大小.</p>
          <p>
            (1)<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>;(2)<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>9</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>与<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>10</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为 <math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>2</mn>
                  <mi>π</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>,
          </p>
          <p>
            而<i>y</i>=sin <i>x</i> 在<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是减函数,所以
          </p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>3</mn>
                <mi>π</mi>
              </mrow>
              <mn>4</mn>
            </mfrac>
            <mo>&lt;</mo>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>2</mn>
                <mi>π</mi>
              </mrow>
              <mn>3</mn>
            </mfrac>
            <mtext>.&nbsp;</mtext>
          </math>
        </div>
      </div>
    </div>
@@ -556,7 +7208,211 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            (2) 因为 <math display="0">
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>9</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>10</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mn>0</mn>
            </math>,
          </p>
          <p>
            而<i>y</i>=sin <i>x</i>在<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是增函数,所以
          </p>
          <math display="block">
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>9</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>&lt;</mo>
            <mi>sin</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>10</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
          </math>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>不求值,利用正弦函数的单调性,比较下列各对正弦函数值的大小.</p>
            <p>
              (1)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>12</mn>
                </mfrac>
              </math>____<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>11</mn>
                </mfrac>
              </math>;(2) sin 250°____sin 260°.
            </p>
          </div>
          <h3 id="c060">习题5.6<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <p>
              <span class="bj-sp"><b>水平一</b></span>
            </p>
            <p>1.比较大小.</p>
            <p>
              (1) sin 53°____sin 78°;(2)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </math>____<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
              </math>.
            </p>
            <p>2.函数<i>y</i>=2sin <i>x</i>的最大值为____,最小值为____.</p>
            <p>
              3.已知<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>a</mi>
                    <mo>−</mo>
                    <mn>1</mn>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
              </math>,则<i>a</i>的取值范围为____.
            </p>
            <p>
              4.求函数<math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
              </math>,<i>x</i>∈0,2π的单调区间.
            </p>
            <p>
              5.利用“五点法”画出函数<math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>3</mn>
                  <mn>2</mn>
                </mfrac>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
              </math>在一个周期内的图像.
            </p>
            <p>
              <span class="bj-sp"><b>水平二</b></span>
            </p>
            <p>1.求函数<i>y</i>=-1-1.5sin <i>x</i>的最大值与最小值.</p>
            <p>2.求函数<i>y</i>=3-2sin <i>x</i>,<i>x</i>∈<b>R</b>的单调区间.</p>
            <p>3.不求值,利用函数的单调性,比较下列各对正弦值的大小.</p>
            <p>(1) sin 500°与sin 140°;</p>
            <p>
              (2)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>5</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>6</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>与<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>6</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>7</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>.
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -571,7 +7427,41 @@
            <p><span>195</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b036">
            5.7 余弦函数的图像和性质<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c061">5.7.1 余弦函数的图像<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            我们学习了正弦函数的图像和性质,你能用类似的方法绘制出余弦函数的图像,并根据图像研究它的性质吗?
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>根据诱导公式可知,</p>
          <p class="center">cos(<i>x</i>+2π)=cos <i>x</i>.</p>
          <p>
            由周期函数的定义可知,余弦函数<i>y</i>=cos<i>x</i>是以2π为周期的周期函数.为画出函数<i>y</i>=cos<i>x</i>的图像,可仿照正弦曲线的画法,先用描点法画出它在一个周期[0,2π]内的图像,然后利用周期性画出其完整图像.
          </p>
          <p>
            首先,列表.自变量<i>x</i>取值如表5-9所示,利用科学计算器求出cos
            <i>x</i>的各个值并填入表中.
          </p>
          <p class="img">表5-9</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0206-1.jpg" /></p>
          <p>
            其次,描点连线.根据表中数值描点,用光滑的曲线把各点连接起来,得出图像如图5-30所示.
          </p>
          <p class="center"><img class="img-d" alt="" src="../../assets/images/0206-2.jpg" /></p>
          <p class="img">图5-30</p>
          <p>
            最后,利用余弦函数的周期性,把<i>y</i>=cos
            <i>x</i>在[0,2π]内的图像向左或向右平移2π,4π,…就可以画出<i>y</i>=cos
            <i>x</i>在<b>R</b>上的图像,如图5-31所示.
          </p>
          <p>
            余弦函数<i>y</i>=cos<i>x</i>,<i>x</i>∈<b>R</b>的图像叫作<b>余弦曲线</b>.
          </p>
        </div>
      </div>
    </div>
    <!-- 196 -->
@@ -582,7 +7472,90 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0207-1.jpg" /></p>
          <p class="img">图5-31</p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              1.与画正弦函数的图像一样,也可以用“五点法”画出<i>y</i>=cos<i>x</i>在0,2π内的简图,这五个关键点是:
            </p>
            <math display="block">
              <mo stretchy="false">(</mo>
              <mn>0</mn>
              <mo>,</mo>
              <mn>1</mn>
              <mo stretchy="false">)</mo>
              <mo>,</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>,</mo>
              <mo stretchy="false">(</mo>
              <mi>π</mi>
              <mo>,</mo>
              <mo>−</mo>
              <mn>1</mn>
              <mo stretchy="false">)</mo>
              <mo>,</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>,</mo>
              <mo stretchy="false">(</mo>
              <mn>2</mn>
              <mi>π</mi>
              <mo>,</mo>
              <mn>1</mn>
              <mo stretchy="false">)</mo>
              <mtext>.&nbsp;</mtext>
            </math>
            <p class="block">
              2.正弦函数的图像向左平移<math display="0">
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
              </math>个单位长度即可得到余弦函数的图像,如图5-32所示.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0207-4.jpg" />
            </p>
            <p class="img">图5-32</p>
          </div>
          <p><b>例</b> 用“五点法”画出下列函数在区间[0,2π]内的简图.</p>
          <p>(1) <i>y</i>=2cos <i>x</i>;(2) <i>y</i>=-1+cos <i>x</i>.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 列表(表5-10).
          </p>
          <p class="img">表5-10</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0207-5.jpg" /></p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0207-6.jpg" /></p>
          <p class="img">图5-33</p>
          <p>描点连线得<i>y</i>=2cos <i>x</i>在区间[0,2π]</p>
          <p>内的简图,如图5-33所示.</p>
        </div>
      </div>
    </div>
@@ -597,7 +7570,35 @@
            <p><span>197</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>(2) 列表(表5-11).</p>
          <p class="img">表5-11</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0208-1.jpg" /></p>
          <p>
            描点连线得<i>y</i>=-1+cos <i>x</i>在区间[0,2π]内的简图,如图5-34所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0208-2.jpg" /></p>
          <p class="img">图5-34</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>
              完成下表(表5-12),利用“五点法”画出<i>y</i>=1-cos
              <i>x</i>在区间[0,2π]内的简图,并说明<i>y</i>=1-cos
              <i>x</i>的图像与<i>y</i>=cos <i>x</i>的图像的区别和联系.
            </p>
            <p class="img">表5-12</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0208-3.jpg" />
            </p>
            <p>
              对比<i>y</i>=cos <i>x</i>的图像,<i>y</i>=1-cos
              <i>x</i>图像是将<i>y</i>=cos <i>x</i>的图像通过____变化而得到的.
            </p>
            <p class="center">
              <img class="img-d" alt="" src="../../assets/images/0208-4.jpg" />
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -609,7 +7610,60 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c062">5.7.2 余弦函数的性质<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            通过观察<i>y</i>=cos <i>x</i>的图像可知,余弦函数<i>y</i>=cos
            <i>x</i>的性质有:
          </p>
          <p>1.定义域.</p>
          <p><i>y</i>=cos <i>x</i>的定义域是<b>R</b>.</p>
          <p>2.值域.</p>
          <p>
            由余弦函数的图像可以看出,曲线夹在两条直线<i>y</i>=1和<i>y</i>=-1之间,因此-1≤cos
            <i>x</i>≤1,即<i>y</i>=cos <i>x</i>的值域是[-1,1].
          </p>
          <p>
            当<i>x</i>=2<i>k</i>π(<i>k</i>∈<b>Z</b>)时,<i>y</i>=cos
            <i>x</i>取得最大值1;
          </p>
          <p>
            当<i>x</i>=2<i>k</i>π+π(<i>k</i>∈<b>Z</b>)时,<i>y</i>=cos
            <i>x</i>取得最小值-1.
          </p>
          <p>3.周期性.</p>
          <p><i>y</i>=cos <i>x</i>是周期函数,周期是2π.</p>
          <p>4.奇偶性.</p>
          <p>
            因为cos(-<i>x</i>)=cos <i>x</i>,所以<i>y</i>=cos
            <i>x</i>是偶函数,其图像关于<i>y</i>轴对称.
          </p>
          <p>5.单调性.</p>
          <p>
            <i>y</i>=cos <i>x</i>在区间[0,π]上是减函数,在[π,2π]上是增函数.
          </p>
          <p>
            余弦函数<i>y</i>=cos
            <i>x</i>在每一个区间[2<i>k</i>π,2<i>k</i>π+π](<i>k</i>∈<b>Z</b>)上都是减函数,其值由1减小到-1;在每一个区间[2<i>k</i>π+π,2<i>k</i>π+2π](<i>k</i>∈<b>Z</b>)上都是增函数,其值由-1增大到1.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 求函数<i>y</i>=-1+cos <i>x</i>的最大值、最小值、最小正周期及值域.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            当<i>x</i>=2<i>k</i>π(<i>k</i>∈<b>Z</b>)时,函数<i>y</i>=-1+cos
            <i>x</i>的最大值为<i>y</i>=1-1=0;
          </p>
          <p>
            当<i>x</i>=2<i>k</i>π+π(<i>k</i>∈<i>Z</i>)时,函数<i>y</i>=-1+cos
            <i>x</i>的最小值为<i>y</i>=-1-1=-2;
          </p>
          <p>
            函数<i>y</i>=-1+cos <i>x</i>的最小正周期为2π;函数<i>y</i>=-1+cos
            <i>x</i>的值域为[-2,0].
          </p>
        </div>
      </div>
    </div>
    <!-- 199 -->
@@ -624,7 +7678,319 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <p class="block">
              1.<i>y</i>=2cos <i>x</i>与<i>y</i>=cos <i>x</i>的图像有什么关系?
            </p>
            <p class="block">
              2.<i>y</i>=-1+cos <i>x</i>与<i>y</i>=cos <i>x</i>的图像有什么关系?
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例2</b></span> 不求值,利用余弦函数的单调性,比较下列各对余弦值的大小.
          </p>
          <p>
            (1)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>6</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
              </mfrac>
            </math>与<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>;(2)
            <math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>7</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>与<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>8</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为<math display="0">
              <mi>π</mi>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>6</mn>
                  <mi>π</mi>
                </mrow>
                <mn>5</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>,而函数<i>y</i>=cos <i>x</i>在<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mi>π</mi>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是增函数,所以
          </p>
          <math display="block">
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>6</mn>
                <mi>π</mi>
              </mrow>
              <mn>5</mn>
            </mfrac>
            <mo>&lt;</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mrow>
                <mn>5</mn>
                <mi>π</mi>
              </mrow>
              <mn>4</mn>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>
            (2)<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>7</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>7</mn>
              </mfrac>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>8</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>8</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            因为<math display="0">
              <mn>0</mn>
              <mo>&lt;</mo>
              <mfrac>
                <mi>π</mi>
                <mn>8</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mi>π</mi>
                <mn>7</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
            </math>,而函数<i>y</i>=cos <i>x</i>在0,<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mn>0</mn>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>上是减函数,所以<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>7</mn>
              </mfrac>
              <mo>&lt;</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>8</mn>
              </mfrac>
            </math>,即
          </p>
          <math display="block">
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>7</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>&lt;</mo>
            <mi>cos</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>8</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>.</mo>
          </math>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>
              1.(1) 函数<math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <mn>1</mn>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
              </math>的最大值为____,最小值为____,最小正周期为____;
            </p>
            <p>(2) 函数<i>y</i>=1+4cos <i>x</i>的最大值为____,最小值为____.</p>
            <p>2.比较大小.</p>
            <p>
              (1) cos 157°____cos 160°;(2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>______<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>6</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>.
            </p>
            <p>3.下列等式是否成立?并说明理由.</p>
            <p>(1) cos<sup>2</sup><i>x</i>=1;(2) 2cos <i>x</i>=3.</p>
            <p>
              4.求使下列函数取得最大值、最小值的<i>x</i>的集合,并求出这个函数的最大值、最小值.
            </p>
            <p>
              (1) <i>y</i>=-3cos <i>x</i>;(2)
              <math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <mn>4</mn>
                <mo>+</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>6</mn>
                </mfrac>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
              </math>.
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -636,7 +8002,174 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c063">习题5.7<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <p>
              <span class="bj-sp"><b>水平一</b></span>
            </p>
            <p>1.比较大小.</p>
            <p>
              (1) cos 153°____cos 173°;(2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>8</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>7</mn>
                </mfrac>
              </math>____<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>9</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>7</mn>
                </mfrac>
              </math>.
            </p>
            <p>2.(1) 函数<i>y</i>=3cos <i>x</i>的最大值为____,最小值为____;</p>
            <p>(2) 函数<i>y</i>=-0.5cos <i>x</i>的最大值为____,最小值为____.</p>
            <p>
              3.函数<i>y</i>=1+3cos
              <i>x</i>,<i>x</i>∈0,2π,当<i>x</i>=____时,<i>y</i>取最大值;当<i>x</i>=____时,<i>y</i>取最小值.
            </p>
            <p>4.求函数<i>y</i>=2+cos <i>x</i>,<i>x</i>∈0,2π的单调区间.</p>
            <p>5.利用“五点法”画出函数<i>y</i>=-4cos <i>x</i>在区间0,2π内的图像.</p>
            <p>
              <span class="bj-sp"><b>水平二</b></span>
            </p>
            <p>1.求函数<i>y</i>=|cos <i>x</i>的最小正周期.</p>
            <p>
              2.求函数<math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>2</mn>
                  <mrow>
                    <mo>−</mo>
                    <mn>1</mn>
                    <mo>+</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>x</mi>
                  </mrow>
                </mfrac>
              </math>的定义域.
            </p>
            <p>3.不求值,利用函数的单调性,比较下列各对函数值的大小.</p>
            <p>
              (1)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>23</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>与<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>17</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>4</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>;
            </p>
            <p>
              (2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>7</mn>
                </mfrac>
              </math>与<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>.
            </p>
          </div>
          <h2 id="b037">
            5.8 已知三角函数值,求指定范围的角<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c064">
            5.8.1 已知特殊三角函数值求角<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            如果<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>,那么<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>;反之,如果<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>,那么<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>吗?
          </p>
        </div>
      </div>
    </div>
    <!-- 201 -->
@@ -650,7 +8183,247 @@
            <p><span>201</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            由<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>可知,<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>是满足<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>的一个角,还有没有更多的角也能满足<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>呢?我们借助正弦曲线来探究问题.
          </p>
          <p>
            如图5-35所示,条件中的<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>,在图像中就可以表示为<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>,问题就转化为求当<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>的值,即直线<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>与正弦曲线<i>y</i>=sin <i>x</i>交点所对应的<i>x</i>的值.
          </p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0212-9.jpg" /></p>
          <p class="img">图5-35</p>
          <p>
            观察图像可知,直线<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>与正弦曲线<i>y</i>=sin <i>x</i>的交点有无数个.
          </p>
          <p>
            现将问题的范围限定为<i>x</i>∈[0,2π],由图像可知,满足条件的交点共有两个.
          </p>
          <p>
            因为<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
              <mo>></mo>
              <mn>0</mn>
            </math>,所以<i>x</i>是第一或第二象限角.
          </p>
          <p>
            满足<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>的锐角是<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>,所以符合条件的第一象限的角是<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            由诱导公式<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>π</mi>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>6</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>可知,<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mi>π</mi>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>,所以符合条件的第二象限角是<math display="0">
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            所以
            <math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>6</mn>
              </mfrac>
            </math>或<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>6</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
            </math>,且<i>x</i>∈[0,2π] ,求<i>x</i>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
              <mo><</mo>
              <mn>0</mn>
            </math>,所以<i>x</i>是第二或第三象限角.
          </p>
        </div>
      </div>
    </div>
@@ -662,7 +8435,335 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            满足<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mn>2</mn>
              </mfrac>
            </math>的锐角是<math display="0">
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>4</mn>
              </mfrac>
            </math>,所以
          </p>
          <p>
            符合条件的第二象限角是<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mi>π</mi>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>4</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>;
          </p>
          <p>
            符合条件的第三象限角是<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mi>π</mi>
              <mo>+</mo>
              <mfrac>
                <mi>π</mi>
                <mn>4</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            所以<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>3</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>或<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>5</mn>
                  <mi>π</mi>
                </mrow>
                <mn>4</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 已知<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <msqrt>
                <mn>3</mn>
              </msqrt>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo>≠</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>+</mo>
                <mi>k</mi>
                <mi>π</mi>
                <mo>,</mo>
                <mi>k</mi>
                <mo>∈</mo>
                <mrow>
                  <mi mathvariant="bold">Z</mi>
                </mrow>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,且0°≤<i>x</i>≤360°,求<i>x</i>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <msqrt>
                <mn>3</mn>
              </msqrt>
              <mo>></mo>
              <mn>0</mn>
            </math>,所以<i>x</i>是第一或第三象限角.
          </p>
          <p>
            由<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mn>60</mn>
              <mrow>
                <mo>°</mo>
              </mrow>
              <mo>=</mo>
              <msqrt>
                <mn>3</mn>
              </msqrt>
            </math>可知,符合条件的第一象限角是<i>x</i>=60°.
          </p>
          <p>
            又因为<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mn>180</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
                <mo>+</mo>
                <mn>60</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mn>60</mn>
              <mrow>
                <mo>°</mo>
              </mrow>
              <mo>=</mo>
              <msqrt>
                <mn>3</mn>
              </msqrt>
            </math>,
          </p>
          <p>所以符合条件的第三象限角是<i>x</i>=180°+60°=240°.</p>
          <p>所以<i>x</i>=60°或<i>x</i>=240°.</p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              已知三角函数值,求给定范围的角<i>x</i>的值,其基本步骤如下.
            </p>
            <p class="block">
              (1) 根据已知三角函数值的符号,判定角<i>x</i>所在的象限;
            </p>
            <p class="block">(2) 求出满足三角函数值的锐角<i>x</i>′;</p>
            <p class="block">
              (3)
              根据<i>x</i>所在的象限和诱导公式,写出满足题目给定范围的<i>x</i>的值.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例3</b></span> 已知<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>,且<i>x</i>∈[-π,π],求<i>x</i>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
              <mo>></mo>
              <mn>0</mn>
            </math>,所以<i>x</i>是第一或第四象限角.
          </p>
          <p>
            满足<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>的锐角是<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>,所以符合条件的第一象限角是<math display="0">
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            因为<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>,
          </p>
          <p>
            所以符合条件的第四象限角是<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            所以<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>或<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mi>π</mi>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>
              1.已知<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>,且<i>x</i>∈[0,2π],则<i>x</i>的值为____.
            </p>
            <p>
              2.已知<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>,且<i>x</i>∈[0,2π],则<i>x</i>的值为____.
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -677,7 +8778,113 @@
            <p><span>203</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>
              3.已知<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>3</mn>
                </mfrac>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo>≠</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>+</mo>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,且<i>x</i>∈[0,2π],则<i>x</i>的值为____.
            </p>
          </div>
          <h3 id="c065">
            5.8.2 已知任意三角函数值求角<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            我们已经探究了已知特殊的三角函数值求角的方法,而对于不是特殊的三角函数值,又该如何求角呢?
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            根据已知特殊的三角函数值求角的方法,借助计算工具,可以解决已知任意三角函数值求角的问题.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 已知<math display="0">
              <mi>α</mi>
              <mo>∈</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>,求<i>α</i>的值.(结果精确到0.000 1)
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>α</mi>
              <mo>∈</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>,所以<i>α</i>在<i>y</i>=sin <i>α</i>的一个单调区间内,这时使sin
            <i>α</i>=0.943 7的角<i>α</i>的值是唯一的.
          </p>
          <p>
            先将科学计算器的精确度设置为0.000
            1,再将科学计算器设置为弧度计算模式,然后依次按键:
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0214-4.jpg" /></p>
          <p>结果显示:</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0214-5.jpg" /></p>
          <p>所以 <i>α</i>≈1.233 6.</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 已知cos <i>α</i>=0.694
            3,0°≤<i>α</i>≤180°,求<i>α</i>的值.(结果精确到0.000 1)
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为0°≤<i>α</i>≤180°,所以<i>α</i>在<i>y</i>=cos
            <i>α</i>的一个单调区间内,这时使cos <i>α</i>=0.694
            3的角<i>α</i>的值是唯一的.
          </p>
        </div>
      </div>
    </div>
    <!-- 204 -->
@@ -689,7 +8896,85 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            先将科学计算器的精确度设置为0.000
            1,再将科学计算器设置为角度计算模式,然后依次按键:
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0215-1.jpg" /></p>
          <p>结果显示:</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0215-2.jpg" /></p>
          <p>所以<i>α</i>≈46.028 5°.</p>
          <p>
            注意:应当区分所给条件中角的单位是角度还是弧度.如果是角度,计算时应用角度计算模式;
            如果是弧度,计算时应用弧度计算模式.
          </p>
          <p>
            <span class="zt-ls"><b>例3</b></span> 已知tan <i>α</i>=-2.747 0,<math display="0">
              <mi>α</mi>
              <mo>∈</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,求<i>α</i>的值.(结果精确到0.000 1)
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<math display="0">
              <mi>α</mi>
              <mo>∈</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,所以<i>α</i>在<i>y</i>=tan <i>α</i>的一个单调区间内,这时使tan
            <i>α</i>=-2.747 0的角<i>α</i>的值是唯一的.
          </p>
          <p>
            先将科学计算器的精确度设置为0.000
            1,再将科学计算器设置为弧度计算模式,然后依次按键:
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0215-5.jpg" /></p>
          <p>结果显示:</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0215-6.jpg" /></p>
          <p>所以 <i>α</i>≈-1.221 7.</p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 已知sin <i>α</i>=-0.857
            2,<i>α</i>∈[0,2π],求<i>α</i>的值.(结果精确到0.000 1)
          </p>
          <p class="block">
            <span class="zt-ls2"><b>分析</b></span> 因为sin <i>α</i>=-0.857
            2<0,在[0,2π]范围内有两个<i>α</i>值满足条件,它们分别位于第三象限和第四象限,即<i>α</i>在[π,2π]范围内.可用科学计算器先求出sin
            <i>α</i>=0.857 2所对应的锐角,再利用诱导公式求出所求的角.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 先将科学计算器的精确度设置为0.000
            1,再将科学计算器设置为弧度计算模式,然后依次按键:
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0215-7.jpg" /></p>
          <p>结果显示:</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0215-8.jpg" /></p>
        </div>
      </div>
    </div>
@@ -705,7 +8990,132 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>即</p>
          <p class="center">sin 1.029 8≈0.857 2.</p>
          <p>因为</p>
          <p class="center">sin(π+1.029 8)=-sin 1.029 8≈-0.857 2,</p>
          <p>所以符合条件的第三象限角是π+1.029 8≈4.171 4.</p>
          <p>因为</p>
          <p class="center">sin(2π-1.029 8)=-sin 1.029 8≈-0.857 2,</p>
          <p>所以符合条件的第四象限角是2π-1.029 8≈5.253 4.</p>
          <p>
            所以满足sin <i>α</i>=-0.857
            2,<i>α</i>∈[0,2π]的角<i>α</i>的集合为{4.171 4,5.253 4}.
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>借助科学计算器,求出下列指定范围内的角.(结果精确到0.000 1)</p>
            <p>
              1.已知<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>β</mi>
                <mo>−</mo>
                <mfrac>
                  <mn>3</mn>
                  <mn>7</mn>
                </mfrac>
                <mo>=</mo>
                <mn>0</mn>
              </math>,<i>β</i>∈[0,π],则<i>β</i>的值为____.
            </p>
            <p>
              2.已知tan<i>γ</i>=-0.234 5,-90°<<i>γ</i><90°,则<i>γ</i>的值为____.
            </p>
            <p>
              3.已知sin <i>α</i>=0.973 4,0°≤<i>α</i>≤360°,则<i>α</i>的值为____.
            </p>
            <p>
              4.已知cos <i>β</i>=-0.202 8,<i>β</i>∈[-π,π],则<i>β</i>的值为____.
            </p>
          </div>
          <h3 id="c066">习题5.8<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <p>
              <span class="bj-sp"><b>水平一</b></span>
            </p>
            <p>
              1.已知<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>,<math display="0">
                <mi>x</mi>
                <mo>∈</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">[</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">]</mo>
                </mrow>
              </math>,则<i>x</i>的值为____.
            </p>
            <p>
              2.已知<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>,0°≤<i>x</i>≤180°,则<i>x</i>的值为____.
            </p>
            <p>
              3.已知<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <msqrt>
                  <mn>3</mn>
                </msqrt>
              </math>,-90°<<i>x</i><90°,则<i>x</i>的值为____.
            </p>
            <p>
              4.借助科学计算器,求适合下列各式中的<i>x</i>(0≤<i>x</i><2π)的值的集合.(结果精确到0.000
              1)
            </p>
            <p>(1) sin <i>x</i>=0.318 5;(2) cos <i>x</i>=-0.789 0.</p>
            <p>5.求适合下列各式中的<i>x</i>(-π≤<i>x</i>≤π)的值的集合.</p>
            <p>
              (1)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>;(2) cos <i>x</i>=-0.5;(3) tan <i>x</i>=-1.
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -717,7 +9127,109 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>
              <span class="bj-sp"><b>水平二</b></span>
            </p>
            <p>
              1.借助科学计算器,求适合下列各式中<i>x</i>的值.(结果精确到0.000 1)
            </p>
            <p>
              (1)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>5</mn>
                </mfrac>
              </math>,<math display="0">
                <mfrac>
                  <mi>π</mi>
                  <mn>2</mn>
                </mfrac>
                <mo><</mo>
                <mi>x</mi>
                <mo><</mo>
                <mi>π</mi>
              </math>;(2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>4</mn>
                </mfrac>
              </math>,<math display="0">
                <mi>π</mi>
                <mo><</mo>
                <mi>x</mi>
                <mo><</mo>
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
              </math>;
            </p>
            <p>
              (3)
              <math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>3</mn>
                </mfrac>
              </math>,<math display="0">
                <mfrac>
                  <mrow>
                    <mn>3</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo><</mo>
                <mi>x</mi>
                <mo><</mo>
                <mn>2</mn>
                <mi>π</mi>
              </math>.
            </p>
            <p>
              2.求满足<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mn>2</mn>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
              </math>的角<i>x</i>(0°≤<i>x</i>≤180°)的值的集合.
            </p>
            <p>
              3.借助科学计算器,求出下面指定范围内的角<i>β</i>的值的集合:cos
              2<i>β</i>=-0.690 9,0°≤<i>β</i>≤180°.(结果精确到0.000 1)
            </p>
          </div>
        </div>
      </div>
    </div>
@@ -733,7 +9245,33 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b038">数学园地<span class="fontsz1">>>>>>>>></span></h2>
          <p class="center">三角学在我国的发展</p>
          <p>
            我国很早就开始了对三角知识的研究.我国古老的数学书籍《周髀算经》一书中,记载了古时候人们计算地面上一点到太阳距离的方法.魏晋时期的著名数学家刘徽在古人“重差术”的基础上,编撰了《海岛算经》一书.
          </p>
          <p>
            春秋时期的《考工记》一书,对“角”已有初步认识,并用“倨句”表示角度的多少,其中直角叫作“矩”.
          </p>
          <p>
            唐朝开元六年至十四年(718—726),唐代文学家翟昙悉达修撰《开元占经》一百二十卷,将印度数学家编制的三角函数表载于其中,这是传入我国的最早的三角函数表.
          </p>
          <p>
            由我国著名数学家徐光启(1562—1633)等人共同编译的《大测》二卷序言中说:“大测者,测三角之法也.”我国“三角学”一词即由此而来.该书介绍了三角函数值的造表方法和正弦定理、余弦定理等.
          </p>
          <p>
            明末清初数学家薛凤祚著有《三角算法》一书,这是我国数学家自己撰写的第一部三角学著作.书中所介绍的三角学知识,要比《大测》《测量全义》中的内容更详细与完备.
          </p>
          <p>
            清初著名数学家梅文鼎研究三角学数年,对所传入的三角学知识进行了通俗的解释,并著有《平三角举要》五卷.其内容由浅入深,循序渐进,条理清楚,是当时以及后人学习三角学的主要教科书.
          </p>
          <p>
            如果想知道更多的关于三角学在我国发展历程中所经历的人和事,你可以通过不同的途径(如上网搜索)查找资料,整理出更为丰富的史料来.对此,你不妨与同学合作,试一试.
          </p>
          <p>——摘录自沈文选、杨清桃编著的《数学史话览胜》一书,引用时有改动</p>
        </div>
      </div>
    </div>
@@ -745,7 +9283,178 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b039">单元小结<span class="fontsz1">>>>>>>>></span></h2>
          <p class="bj2"><b>学习导图</b></p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0219-1.jpg" /></p>
          <p class="bj2"><b>学习指导</b></p>
          <p>
            1.与角<i>α</i>终边相同的角的集合:<i>S</i>={<i>β</i>|<i>β</i>=<i>α</i>+<i>k</i>·2π,<i>k</i>∈<b>Z</b>}.
          </p>
          <p>2.弧度与角度的换算.</p>
          <math display="block">
            <mtable columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mi>π</mi>
                  <mo>=</mo>
                  <msup>
                    <mn>180</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>;</mo>
                  <mn>2</mn>
                  <mi>π</mi>
                  <mo>=</mo>
                  <msup>
                    <mn>360</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>.</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mn>1</mn>
                  <mrow>
                    <mi mathvariant="normal">r</mi>
                    <mi mathvariant="normal">a</mi>
                    <mi mathvariant="normal">d</mi>
                  </mrow>
                  <mo>=</mo>
                  <mfrac>
                    <msup>
                      <mn>180</mn>
                      <mrow>
                        <mo>∘</mo>
                      </mrow>
                    </msup>
                    <mi>π</mi>
                  </mfrac>
                  <mo>≈</mo>
                  <msup>
                    <mn>57.30</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>=</mo>
                  <msup>
                    <mn>57</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <msup>
                    <mn>18</mn>
                    <mrow>
                      <mi data-mjx-alternate="1" mathvariant="normal">′</mi>
                    </mrow>
                  </msup>
                  <mo>;</mo>
                  <msup>
                    <mn>1</mn>
                    <mrow>
                      <mo>∘</mo>
                    </mrow>
                  </msup>
                  <mo>=</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>180</mn>
                  </mfrac>
                  <mrow>
                    <mi mathvariant="normal">r</mi>
                    <mi mathvariant="normal">a</mi>
                    <mi mathvariant="normal">d</mi>
                  </mrow>
                  <mo>≈</mo>
                  <mn>0.01745</mn>
                  <mrow>
                    <mi mathvariant="normal">r</mi>
                    <mi mathvariant="normal">a</mi>
                    <mi mathvariant="normal">d</mi>
                  </mrow>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p>
            3.弧长公式为<i>l</i>=<i>αr</i>,扇形的面积公式为<math display="0">
              <mi>S</mi>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
              <mi>r</mi>
              <mi>l</mi>
            </math>.
          </p>
          <p>4.任意角的正弦、余弦和正切.</p>
          <p>
            点<i>P</i>(<i>x</i>,<i>y</i>)是角<i>α</i>的终边上异于原点的任意一点,点<i>P</i>到原点的距离为<math display="0">
              <mi>r</mi>
              <mo>=</mo>
              <msqrt>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mo>+</mo>
                <msup>
                  <mi>y</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </msqrt>
              <mo>&gt;</mo>
              <mn>0</mn>
            </math>,则<math display="0">
              <mi>sin</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>y</mi>
                <mi>r</mi>
              </mfrac>
            </math>,<math display="0">
              <mi>cos</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>x</mi>
                <mi>r</mi>
              </mfrac>
            </math>,<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mi>y</mi>
                <mi>x</mi>
              </mfrac>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo>≠</mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
        </div>
      </div>
    </div>
    <!-- 209 -->
@@ -759,7 +9468,59 @@
            <p><span>209</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>5.任意角的正弦函数、余弦函数和正切函数.</p>
          <p>正弦函数 <i>y</i>=sin <i>x</i>,<i>x</i>∈<b>R</b>;</p>
          <p>余弦函数 <i>y</i>=cos <i>x</i>,<i>x</i>∈<b>R</b>;</p>
          <p>
            正切函数 <i>y</i>=tan <i>x</i>,<math display="0">
              <mi>x</mi>
              <mo>≠</mo>
              <mfrac>
                <mi>π</mi>
                <mn>2</mn>
              </mfrac>
              <mo>+</mo>
              <mi>k</mi>
              <mi>π</mi>
              <mo stretchy="false">(</mo>
              <mi>k</mi>
              <mo>∈</mo>
              <mrow>
                <mi mathvariant="bold">Z</mi>
              </mrow>
              <mo stretchy="false">)</mo>
            </math>.
          </p>
          <p>6.同角三角函数基本关系式.</p>
          <p>
            (1) 平方关系:sin <sup>2</sup> <i>α</i>+cos <sup>2</sup> <i>α</i>=1;
          </p>
          <p>
            (2) 商数关系:<math display="0">
              <mi>tan</mi>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>α</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>sin</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
                <mrow>
                  <mi>cos</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>α</mi>
                </mrow>
              </mfrac>
            </math>.
          </p>
          <p>7.诱导公式表(<i>k</i>∈<b>Z</b>).</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0220-3.jpg" /></p>
          <p>8.正弦函数、余弦函数的图像和性质.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0220-4.jpg" /></p>
        </div>
      </div>
    </div>
    <!-- 210 -->
@@ -771,7 +9532,267 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b040">单元检测<span class="fontsz1">>>>>>>>></span></h2>
          <div class="bj">
            <p>
              <span class="bj-sp"><b>水平一</b></span>
            </p>
            <p>1.选择题.</p>
            <p>(1) 下列正确的是( ).</p>
            <p>
              A.<math display="0">
                <mn>15</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <mi>π</mi>
                  <mn>11</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mn>1200</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <mrow>
                    <mn>21</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>6</mn>
                </mfrac>
                <mo>=</mo>
                <mn>150</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
              </math>
            </p>
            <p>
              D.<math display="0">
                <mo>−</mo>
                <mfrac>
                  <mrow>
                    <mn>7</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>8</mn>
                </mfrac>
                <mo>=</mo>
                <mo>−</mo>
                <mn>220</mn>
                <mrow>
                  <mo>°</mo>
                </mrow>
              </math>
            </p>
            <p>(2) 下列正确的是( ).</p>
            <p>A.cos(-60°)<0</p>
            <p>B.tan 320°>0</p>
            <p>
              C.<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>5</mn>
                </mfrac>
                <mo>></mo>
                <mn>0</mn>
              </math>
            </p>
            <p>D.cos 330°>0</p>
            <p>(3) 下列正确的是( ).</p>
            <p>
              A.<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>7</mn>
                </mfrac>
                <mo>&lt;</mo>
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>5</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>7</mn>
                </mfrac>
              </math>
            </p>
            <p>
              B.<math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>&gt;</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>
            </p>
            <p>
              C.<math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>9</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>7</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>&gt;</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>9</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>8</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>
            </p>
            <p>D.sin 6>sin 7</p>
            <p>
              2.(1) 在0°~360°范围内,与1
              458°角终边相同的角是____,它是第____象限角;
            </p>
            <p>
              (2) 在0°~360°范围内,与-330°角终边相同的角是____,它是第____象限角.
            </p>
            <p>3.计算.</p>
            <p>
              (1)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mfrac>
                  <mrow>
                    <mn>25</mn>
                    <mi>π</mi>
                  </mrow>
                  <mn>3</mn>
                </mfrac>
                <mo>+</mo>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>17</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>4</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>+</mo>
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mrow>
                      <mn>23</mn>
                      <mi>π</mi>
                    </mrow>
                    <mn>6</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
              </math>______;
            </p>
            <p>
              (2) sin <sup>2</sup>150°+2sin 390°+cos
              <sup>2</sup>(-120°)+tan(-60°)= ;
            </p>
            <p>(3) tan1+cos 2+sin 3=______.(使用科学计算器)</p>
            <p>
              4.已知角<i>α</i>的终边上有一点 <i>P</i>(5,-12),求 sin
              <i>α</i>,cos <i>α</i>,tan <i>α</i>的值.
            </p>
            <p>
              5.已知<i>α</i>为锐角,且<math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>α</mi>
                <mo>=</mo>
                <mfrac>
                  <mn>3</mn>
                  <mn>5</mn>
                </mfrac>
              </math>,求cos <i>α</i>,tan <i>α</i>的值.
            </p>
            <p>
              6.已知 <i>tanθ</i>=3,且<i>θ</i>为第三象限角,求sin <i>θ</i>,cos
              <i>θ</i>的值.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 211 -->
@@ -785,7 +9806,244 @@
            <p><span>211</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>7.已知tan <i>α</i>=2,求下列各式的值.</p>
            <p>
              (1)
              <math display="0">
                <mfrac>
                  <mrow>
                    <mn>2</mn>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>+</mo>
                    <mn>3</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                  </mrow>
                  <mrow>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>+</mo>
                    <mn>2</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                  </mrow>
                </mfrac>
              </math>;
            </p>
            <p>
              (2)
              <math display="0">
                <mfrac>
                  <mrow>
                    <msup>
                      <mi>sin</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>+</mo>
                    <mn>3</mn>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                  </mrow>
                  <mrow>
                    <mn>3</mn>
                    <msup>
                      <mi>sin</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                  </mrow>
                </mfrac>
              </math>.
            </p>
            <p>8.求使下列函数取得最大值、最小值时<i>x</i>的集合.</p>
            <p>(1) <i>y</i>=-1+2sin <i>x</i>;</p>
            <p>
              (2)
              <math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <mn>1</mn>
                <mo>+</mo>
                <msqrt>
                  <mn>2</mn>
                </msqrt>
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
              </math>.
            </p>
            <p>
              <span class="bj-sp"><b>水平二</b></span>
            </p>
            <p>
              1.在半径为10 cm
              的圆中,60°的圆心角所对的弧长是____,对应的扇形面积是____.
            </p>
            <p>2.求下列指定范围内的角<i>x</i>的集合.</p>
            <p>
              (1)
              <math display="0">
                <mi>sin</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>,<i>x</i>∈-π,π,则<i>x</i>=____;
            </p>
            <p>
              (2)
              <math display="0">
                <mi>cos</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mn>2</mn>
                </mfrac>
              </math>, <i>x</i>∈0,2π,则<i>x</i>=____;
            </p>
            <p>
              (3)
              <math display="0">
                <mi>tan</mi>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
                <mo>=</mo>
                <mfrac>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                  <mn>3</mn>
                </mfrac>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo>≠</mo>
                  <mfrac>
                    <mi>π</mi>
                    <mn>2</mn>
                  </mfrac>
                  <mo>+</mo>
                  <mi>k</mi>
                  <mi>π</mi>
                  <mo>,</mo>
                  <mi>k</mi>
                  <mo>∈</mo>
                  <mrow>
                    <mi mathvariant="bold">Z</mi>
                  </mrow>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>, <i>x</i>∈-π,π,则<i>x</i>=____.
            </p>
            <p>
              3.已知<i>m</i><0,角<i>α</i>的终边经过点<i>P</i>(-3<i>m</i>,4<i>m</i>),求sin
              <i>α</i>+2cos <i>α</i>的值.
            </p>
            <p>4.已知tan(π-<i>α</i>)=3,求下列各式的值.</p>
            <p>(1) 2sin <i>α</i>·cos <i>α</i>;</p>
            <p>
              (2)
              <math display="0">
                <mfrac>
                  <mrow>
                    <msup>
                      <mi>sin</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                    <mi>sin</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>⋅</mo>
                    <mi>cos</mi>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>−</mo>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                    <msup>
                      <mi>cos</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>−</mo>
                    <mn>3</mn>
                    <msup>
                      <mi>sin</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>α</mi>
                    <mo>+</mo>
                    <mn>1</mn>
                  </mrow>
                </mfrac>
              </math>.
            </p>
            <p>5.用“五点法”画出下列函数的图像,并写出它们的周期.</p>
            <p>(1) <i>y</i>=-5+2sin <i>x</i>;</p>
            <p>(2) <i>y</i>=5-cos <i>x</i>.</p>
          </div>
        </div>
      </div>
    </div>