zhongshujie
2024-10-16 218a387c6191311ed29b1aa81612e0aa3b4fa9dc
src/books/mathBook/view/components/chapter004.vue
@@ -1,25 +1,54 @@
<template>
  <div class="chapter" num="5">
  <div class="chapter" num="4">
    <!-- 第四单元首页 -->
    <div class="page-box" page="120">
      <div v-if="showPageList.indexOf(120) > -1">
        <div class="padding-116">第四单元首页</div>
        <h1 id="a008">
          <img class="img-0" alt="" src="../../assets/images/dy4.jpg" />
        </h1>
        <div class="padding-116">
          <p>
            知识改变命运,技能成就人生,全社会坚持尊重劳动、尊重知识、尊重人才、尊重创造.著名厨师厉恩海曾是一名军人,练就了一身拉面绝活,他能把1
            kg
            的面拉出200多万根细如发丝的面条,4次创造吉尼斯世界纪录,被誉为“中国拉面大王”.拉面从一块面块开始,手握两端,两臂均匀用力加速向外抻拉,然后两头对折后再拉,每对折1次,面条的数量在原有基础上翻一倍,如此继续,每次对折后面条的数量形成下列数字1,2,4,8,16,32,64,…为了更好地体现面条数量与对折次数的关系,也可以表示为2<sup>0</sup>,2<sup>1</sup>,2<sup>2</sup>,2<sup>3</sup>,2<sup>4</sup>,2<sup>5</sup>,2<sup>6</sup>,…若用函数语言刻画这类数量关系和变化规律,就是我们即将学习的指数函数.现实生活中,数据量的爆炸式增长、细胞分裂、碳14考古、储蓄利率(复利)、血液中的酒精含量等问题,都会用到指数函数相关知识.
          </p>
          <p>
            指数函数与对数函数是两类基本初等函数,是提高数学运算能力、培养数形结合思想和数学建模能力的重要内容.它们在人口增长统计、文物考古鉴别、航海卫星定位等方面发挥着重要作用,在财经、金融、公共服务、信息技术等领域有广泛应用.
          </p>
          <p>
            本单元我们将在整数幂的基础上推广幂的概念,学习实数幂的相关定义和运算性质、指数函数的图像与性质、对数定义及运算法则、对数函数的图像与性质、指数函数与对数函数的实际应用等内容,感悟数学与现实的关联,把握事物的本质,形成理性思考问题的品质和精神.
          </p>
        </div>
      </div>
    </div>
    <!-- 目标 -->
    <div class="page-box" page="121">
      <div v-if="showPageList.indexOf(121) > -1">
        <div class="padding-116">目标</div>
        <div class="padding-116">
          <p class="left">
            <img class="inline2" alt="" src="../../assets/images/xxmb.jpg" />
          </p>
          <div class="fieldset">
            <p>1.实数指数幂.</p>
            <p>
              能体会指数从正整数推广到有理数、实数的过程,了解实数指数幂的运算法则.
            </p>
            <p>2.指数函数和对数函数.</p>
            <p>能借助几何直观和代数运算认识指数函数和对数函数;</p>
            <p>
              了解指数函数和对数函数的定义,理解它们的图像及性质,感悟数形结合的数学思想;
            </p>
            <p>会用对数的定义进行指数式与对数式的互化;</p>
            <p>了解对数的性质和运算法则.</p>
            <p>3.指数函数与对数函数的实际应用.</p>
            <p>能从实际情境抽象出指数函数、对数函数模型解决简单问题.</p>
      </div>
    </div>
      </div>
    </div>
    <!-- 115 -->
    <div class="page-box" page="122">
      <div v-if="showPageList.indexOf(122) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -28,25 +57,809 @@
            <p><span>115</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b022">
            4.1 实数指数幂<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c034">
            4.1.1 有理数指数幂<span class="fontsz2">>>></span>
          </h3>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block">
              如果<i>b</i><sup>2</sup>=<i>a</i>,那么<i>b</i>就叫作<i>a</i>
              的平方根(或二次方根).因为<i>b</i><sup>2</sup>≥0,故当<i>a</i><0时,在实数范围内<i>a</i>没有平方根;当<i>a</i>>0时,<i>a</i>的平方根有两个,它们互为相反数,分别为<math
                display="0">
                <msqrt>
                  <mi>a</mi>
                </msqrt>
              </math>和<math display="0">
                <mo>−</mo>
                <msqrt>
                  <mi>a</mi>
                </msqrt>
              </math>;当<i>a</i>=0时,
              <math display="0">
                <msqrt>
                  <mn>0</mn>
                </msqrt>
                <mo>=</mo>
                <mn>0</mn>
              </math>.例如, ±3就是9的平方根.
            </p>
            <p class="block">
              如果<i>b</i><sup>3</sup>=<i>a</i>,那么<i>b</i>就叫作<i>a</i>的立方根(或三次方根).在实数范围内<i>a</i>只有一个立方根,记为<math
                display="0">
                <mroot>
                  <mi>a</mi>
                  <mn>3</mn>
                </mroot>
              </math>.例如,2就是8的立方根.
            </p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,如果<i>b<sup>n</sup></i>=<i>a</i>(<i>n</i>>1,<i>n</i>∈<b>N</b>),那么<i>b</i>就叫作<i>a</i>的<i>n</i>次方根.
          </p>
          <p>
            当<i>n</i>是奇数时,正数<i>a</i>的<i>n</i>次方根是一个正数,负数<i>a</i>的<i>n</i>次方根是一个负数.这时,<i>a</i>的<i>n</i>次方根用符号<math
              display="0">
              <mroot>
                <mi>a</mi>
                <mi>n</mi>
              </mroot>
            </math>表示.例如,
          </p>
          <math display="block">
            <mroot>
              <mn>128</mn>
              <mn>7</mn>
            </mroot>
            <mo>=</mo>
            <mn>2</mn>
            <mo>,</mo>
            <mroot>
              <mrow>
                <mo>−</mo>
                <mn>128</mn>
              </mrow>
              <mn>7</mn>
            </mroot>
            <mo>=</mo>
            <mo>−</mo>
            <mn>2</mn>
            <mo>,</mo>
            <mroot>
              <msup>
                <mi>a</mi>
                <mrow>
                  <mn>6</mn>
                </mrow>
              </msup>
              <mn>3</mn>
            </mroot>
            <mo>=</mo>
            <msup>
              <mi>a</mi>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo>.</mo>
          </math>
          <p>
            当<i>n</i>是偶数时,正数<i>a</i>的<i>n</i>次方根有两个,两数互为相反数.这时,正数<i>a</i>的正的<i>n</i>次方根用符号<math display="0">
              <mroot>
                <mi>a</mi>
                <mi>n</mi>
              </mroot>
            </math>表示,负的<i>n</i>次方根用符号<math display="0">
              <mo>−</mo>
              <mroot>
                <mi>a</mi>
                <mi>n</mi>
              </mroot>
            </math>表示.正的<i>n</i>次方根与负的<i>n</i>次方根可以合并写成<math display="0">
              <mo>±</mo>
              <mroot>
                <mi>a</mi>
                <mi>n</mi>
              </mroot>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>a</mi>
                <mo>></mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.例如,
          </p>
          <math display="block">
            <mroot>
              <mn>64</mn>
              <mn>6</mn>
            </mroot>
            <mo>=</mo>
            <mn>2</mn>
            <mo>,</mo>
            <mo>−</mo>
            <mroot>
              <mn>64</mn>
              <mn>6</mn>
            </mroot>
            <mo>=</mo>
            <mo>−</mo>
            <mn>2</mn>
            <mo>,</mo>
            <mo>±</mo>
            <mroot>
              <mn>64</mn>
              <mn>6</mn>
            </mroot>
            <mo>=</mo>
            <mo>±</mo>
            <mn>2.</mn>
          </math>
          <p>负数没有偶次方根.</p>
          <p>
            0的任何次方根都是0,记作
            <math display="0">
              <mroot>
                <mn>0</mn>
                <mi>n</mi>
              </mroot>
              <mo>=</mo>
              <mn>0</mn>
            </math>.
          </p>
          <p>
            形如
            <math display="0">
              <mroot>
                <mi>a</mi>
                <mi>n</mi>
              </mroot>
              <mo stretchy="false">(</mo>
              <mi>n</mi>
              <mo>></mo>
              <mn>1</mn>
            </math>(<i>n</i>>1,<i>n</i>∈<b>N</b><sub>+</sub>)的式子叫作<b>根式</b>,<i>n</i>叫作<b>根指数</b>,<i>a</i>叫作<b>被开方数</b>.
          </p>
          <p>根据<i>n</i>次方根的定义,根式具有下列性质.</p>
          <p>
            (1)
            <math display="0">
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mroot>
                    <mi>a</mi>
                    <mi>n</mi>
                  </mroot>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mi>n</mi>
                </mrow>
              </msup>
              <mo>=</mo>
              <mi>a</mi>
            </math>.
          </p>
          <p>
            (2) 当<i>n</i>为奇数时,<math display="0">
              <mroot>
                <msup>
                  <mi>a</mi>
                  <mrow>
                    <mi>n</mi>
                  </mrow>
                </msup>
                <mi>n</mi>
              </mroot>
              <mo>=</mo>
              <mi>a</mi>
            </math>;
          </p>
          <p>
            当<i>n</i>为偶数时,<math display="0">
              <mroot>
                <msup>
                  <mi>a</mi>
                  <mrow>
                    <mi>n</mi>
                  </mrow>
                </msup>
                <mi>n</mi>
              </mroot>
              <mo>=</mo>
              <mrow>
                <mo stretchy="false">|</mo>
              </mrow>
              <mi>a</mi>
              <mrow>
                <mo stretchy="false">|</mo>
              </mrow>
              <mo>=</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnalign="left left" columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mi>a</mi>
                      <mo>,</mo>
                    </mtd>
                    <mtd>
                      <mi>a</mi>
                      <mo>⩾</mo>
                      <mn>0</mn>
                      <mo>,</mo>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mo>−</mo>
                      <mi>a</mi>
                      <mo>,</mo>
                    </mtd>
                    <mtd>
                      <mi>a</mi>
                      <mo>.</mo>
                      <mo>&lt;</mo>
                      <mn>0</mn>
                    </mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math>.
          </p>
        </div>
      </div>
    </div>
    <!-- 116 -->
    <div class="page-box" page="123">
      <div v-if="showPageList.indexOf(123) > -1">
        <ul class="page-header-odd fl al-end">
          <li>116</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例1</b></span> 计算.
          </p>
          <p>
            (1)
            <math display="0">
              <mroot>
                <msup>
                  <mn>5</mn>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <mn>3</mn>
              </mroot>
            </math>;(2)
            <math display="0">
              <mroot>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mo>−</mo>
                    <mn>5</mn>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <mn>3</mn>
              </mroot>
            </math>;(3)
            <math display="0">
              <mroot>
                <msup>
                  <mn>7</mn>
                  <mrow>
                    <mn>4</mn>
                  </mrow>
                </msup>
                <mn>4</mn>
              </mroot>
            </math>;
          </p>
          <p>
            (4)
            <math display="0">
              <mroot>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mo>−</mo>
                    <mn>7</mn>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                  </mrow>
                </msup>
                <mn>4</mn>
              </mroot>
            </math>;(5) 81的4次方根.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)<math display="0">
              <mroot>
                <msup>
                  <mn>5</mn>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <mn>3</mn>
              </mroot>
              <mo>=</mo>
              <mn>5</mn>
            </math>;
          </p>
          <p>
            (2)
            <math display="0">
              <mroot>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mo>−</mo>
                    <mn>5</mn>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <mn>3</mn>
              </mroot>
              <mo>=</mo>
              <mo>−</mo>
              <mn>5</mn>
            </math>;
          </p>
          <p>
            (3)
            <math display="0">
              <mroot>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mn>7</mn>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                  </mrow>
                </msup>
                <mn>4</mn>
              </mroot>
              <mo>=</mo>
              <mn>7</mn>
            </math>;
          </p>
          <p>
            (4)
            <math display="0">
              <mroot>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mo>−</mo>
                    <mn>7</mn>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                  </mrow>
                </msup>
                <mn>4</mn>
              </mroot>
              <mo>=</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">|</mo>
                <mo>−</mo>
                <mn>7</mn>
                <mo data-mjx-texclass="CLOSE">|</mo>
              </mrow>
              <mo>=</mo>
              <mn>7</mn>
            </math>;
          </p>
          <p>
            (5) 因为(±3)<sup>4</sup>=81,所以81的4次方根是±3,即<math display="0">
              <mo>±</mo>
              <mroot>
                <mn>81</mn>
                <mn>4</mn>
              </mroot>
              <mo>=</mo>
              <mo>±</mo>
              <mn>3</mn>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 化简.
          </p>
          <p>
            (1)
            <math display="0">
              <mroot>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mn>3</mn>
                    <mo>−</mo>
                    <mi>a</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <mn>3</mn>
              </mroot>
            </math>;(2)
            <math display="0">
              <mroot>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mn>3</mn>
                    <mo>−</mo>
                    <mrow>
                      <mi>π</mi>
                    </mrow>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                  </mrow>
                </msup>
                <mn>4</mn>
              </mroot>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            <math display="0">
              <mroot>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mn>3</mn>
                    <mo>−</mo>
                    <mi>a</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <mn>3</mn>
              </mroot>
              <mo>=</mo>
              <mn>3</mn>
              <mo>−</mo>
              <mi>a</mi>
            </math>;
          </p>
          <p>
            (2)
            <math display="0">
              <mroot>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mn>3</mn>
                    <mo>−</mo>
                    <mrow>
                      <mi>π</mi>
                    </mrow>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                  </mrow>
                </msup>
                <mn>4</mn>
              </mroot>
              <mo>=</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">|</mo>
                <mn>3</mn>
                <mo>−</mo>
                <mrow>
                  <mi>π</mi>
                </mrow>
                <mo data-mjx-texclass="CLOSE">|</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mn>3</mn>
                <mo>−</mo>
                <mrow>
                  <mi>π</mi>
                </mrow>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mrow>
                <mi>π</mi>
              </mrow>
              <mo>−</mo>
              <mn>3</mn>
            </math>.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            在初中,我们曾学习过整数幂的相关知识.<i>a<sup>n</sup></i>(<i>n</i>∈<b>N</b><sub>+</sub>)称为<i>a</i>的<i>n</i>次幂,<i>a</i>叫作底数,<i>n</i>叫作指数.
          </p>
          <p>
            (1)
            <math display="0">
              <msup>
                <mi>a</mi>
                <mrow>
                  <mi>n</mi>
                </mrow>
              </msup>
              <mo>=</mo>
              <munder>
                <mrow data-mjx-texclass="OP">
                  <munder>
                    <mrow>
                      <mi>a</mi>
                      <mo>⋅</mo>
                      <mi>a</mi>
                      <mo>⋅</mo>
                      <mi>a</mi>
                      <mo>⋅</mo>
                      <mo>⋯</mo>
                      <mo>⋅</mo>
                      <mi>a</mi>
                    </mrow>
                    <mo>⏟</mo>
                  </munder>
                </mrow>
                <mrow>
                  <mi>n</mi>
                  <mo stretchy="false">↑</mo>
                  <mi>a</mi>
                </mrow>
              </munder>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>n</mi>
                <mo>∈</mo>
                <msub>
                  <mrow>
                    <mi mathvariant="bold">N</mi>
                  </mrow>
                  <mrow>
                    <mo>+</mo>
                  </mrow>
                </msub>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>;
          </p>
          <p>(2) <i>a</i><sup>0</sup>=1(<i>a</i>≠0);</p>
          <p>
            (3)
            <math display="0">
              <msup>
                <mi>a</mi>
                <mrow>
                  <mo>−</mo>
                  <mi>n</mi>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <msup>
                  <mi>a</mi>
                  <mrow>
                    <mi>n</mi>
                  </mrow>
                </msup>
              </mfrac>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>a</mi>
                <mo>≠</mo>
                <mn>0</mn>
                <mo>,</mo>
                <mi>n</mi>
                <mo>∈</mo>
                <msub>
                  <mrow>
                    <mi mathvariant="bold">N</mi>
                  </mrow>
                  <mrow>
                    <mo>+</mo>
                  </mrow>
                </msub>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">分数指数幂</p>
          </div>
          <p>试想,如果幂指数<i>n</i>是分数时,此时的指数幂应该如何表示呢?</p>
          <p>
            为此,我们现将整数指数幂的概念进行推广,利用刚学习过的根式来表示分数指数幂,规定<b>分数指数幂</b>的意义如下(为简化讨论,我们约定底数<i>a</i>>0).
          </p>
          <math display="block">
            <mtable columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mfrac>
                        <mi>m</mi>
                        <mi>n</mi>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>=</mo>
                  <mroot>
                    <msup>
                      <mi>a</mi>
                      <mrow>
                        <mi>m</mi>
                      </mrow>
                    </msup>
                    <mi>n</mi>
                  </mroot>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>a</mi>
                    <mo>&gt;</mo>
                    <mn>0</mn>
                    <mo>,</mo>
                    <mi>m</mi>
                    <mo>,</mo>
                    <mi>n</mi>
                    <mo>∈</mo>
                    <msub>
                      <mrow>
                        <mi mathvariant="bold">N</mi>
                      </mrow>
                      <mrow>
                        <mo>+</mo>
                      </mrow>
                    </msub>
                    <mo>,</mo>
                    <mi>n</mi>
                    <mo>&gt;</mo>
                    <mn>1</mn>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mo>,</mo>
                  <mi>m</mi>
                  <mo>=</mo>
                  <mn>1</mn>
                  <mtext>&nbsp;时, 有&nbsp;</mtext>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mi>n</mi>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>=</mo>
                  <mroot>
                    <mi>a</mi>
                    <mi>n</mi>
                  </mroot>
                  <mo>.</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mo>−</mo>
                      <mfrac>
                        <mi>m</mi>
                        <mi>n</mi>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>=</mo>
                  <mfrac>
                    <mn>1</mn>
                    <msup>
                      <mi>a</mi>
                      <mrow>
                        <mfrac>
                          <mi>m</mi>
                          <mi>n</mi>
                        </mfrac>
                      </mrow>
                    </msup>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mroot>
                      <msup>
                        <mi>a</mi>
                        <mrow>
                          <mi>m</mi>
                        </mrow>
                      </msup>
                      <mi>n</mi>
                    </mroot>
                  </mfrac>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>a</mi>
                    <mo>&gt;</mo>
                    <mn>0</mn>
                    <mo>,</mo>
                    <mi>m</mi>
                    <mo>,</mo>
                    <mi>n</mi>
                    <mo>∈</mo>
                    <msub>
                      <mrow>
                        <mi mathvariant="bold">N</mi>
                      </mrow>
                      <mrow>
                        <mo>+</mo>
                      </mrow>
                    </msub>
                    <mo>,</mo>
                    <mi>n</mi>
                    <mo>&gt;</mo>
                    <mn>1</mn>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p>
            这样,幂指数的概念就从整数指数幂推广到了有理数指数幂.只要每一个有理数指数幂有意义,整数指数幂的运算性质对有理数指数幂就同样适用.因此,我们初中
          </p>
        </div>
      </div>
    </div>
    <!-- 117 -->
    <div class="page-box" page="124">
      <div v-if="showPageList.indexOf(124) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -55,7 +868,355 @@
            <p><span>117</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">
            学习过的整数指数幂的运算性质就可以推广到有理数指数幂.
          </p>
          <p>设<i>a</i>>0,<i>b</i>>0,<i>m</i>,<i>n</i>∈<b>Q</b>,则</p>
          <p>
            (1) <i>a<sup>m</sup> a<sup>n</sup></i>=<i>a<sup>m+n</sup></i>;
          </p>
          <p>
            (2)(<i>a<sup>m</sup></i>)<i><sup>n</sup></i>=<i>a<sup>mn</sup></i>;
          </p>
          <p>
            (3)(<i>ab</i>)<i><sup>n</sup></i>=<i>a<sup>n</sup> b<sup>n</sup></i>.
          </p>
          <p>
            <span class="zt-ls"><b>例3</b></span> 将下列根式用分数指数幂表示(式中字母均为正实数).
          </p>
          <p>
            (1)
            <math display="0">
              <mroot>
                <msup>
                  <mi>a</mi>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <mn>4</mn>
              </mroot>
            </math>;(2)
            <math display="0">
              <mroot>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mn>6</mn>
              </mroot>
            </math>;(3)
            <math display="0">
              <mfrac>
                <mn>1</mn>
                <mroot>
                  <msup>
                    <mn>5</mn>
                    <mrow>
                      <mn>3</mn>
                    </mrow>
                  </msup>
                  <mn>4</mn>
                </mroot>
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            <math display="0">
              <mroot>
                <msup>
                  <mi>a</mi>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <mn>4</mn>
              </mroot>
              <mo>=</mo>
              <msup>
                <mi>a</mi>
                <mrow>
                  <mfrac>
                    <mn>3</mn>
                    <mn>4</mn>
                  </mfrac>
                </mrow>
              </msup>
            </math>;
          </p>
          <p>
            (2)
            <math display="0">
              <mroot>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mn>6</mn>
              </mroot>
              <mo>=</mo>
              <msup>
                <mi>x</mi>
                <mrow>
                  <mfrac>
                    <mn>2</mn>
                    <mn>6</mn>
                  </mfrac>
                </mrow>
              </msup>
            </math>;(注意:此处不能化简为<math display="0">
              <msup>
                <mi>x</mi>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msup>
            </math>)
          </p>
          <p>
            (3)
            <math display="0">
              <mfrac>
                <mn>1</mn>
                <mroot>
                  <msup>
                    <mn>5</mn>
                    <mrow>
                      <mn>3</mn>
                    </mrow>
                  </msup>
                  <mn>4</mn>
                </mroot>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <msup>
                  <mn>5</mn>
                  <mrow>
                    <mfrac>
                      <mn>3</mn>
                      <mn>4</mn>
                    </mfrac>
                  </mrow>
                </msup>
              </mfrac>
              <mo>=</mo>
              <msup>
                <mn>5</mn>
                <mrow>
                  <mo>−</mo>
                  <mfrac>
                    <mn>3</mn>
                    <mn>4</mn>
                  </mfrac>
                </mrow>
              </msup>
            </math>
          </p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 化简(式中字母均为正实数).
          </p>
          <p>
            (1)<math display="0">
              <msup>
                <mn>27</mn>
                <mrow>
                  <mo>−</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msup>
            </math>;(2)
            <math display="0">
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <msup>
                    <mi>b</mi>
                    <mrow>
                      <mo>−</mo>
                      <mfrac>
                        <mn>3</mn>
                        <mn>4</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mn>8</mn>
                </mrow>
              </msup>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)<math display="0">
              <msup>
                <mn>27</mn>
                <mrow>
                  <mo>−</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <msup>
                  <mn>27</mn>
                  <mrow>
                    <mfrac>
                      <mn>1</mn>
                      <mn>3</mn>
                    </mfrac>
                  </mrow>
                </msup>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mroot>
                  <mn>27</mn>
                  <mn>3</mn>
                </mroot>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>3</mn>
              </mfrac>
            </math>;
          </p>
          <p>
            (2)<math display="0">
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <msup>
                    <mi>b</mi>
                    <mrow>
                      <mo>−</mo>
                      <mfrac>
                        <mn>3</mn>
                        <mn>4</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mn>8</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mn>8</mn>
                </mrow>
              </msup>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mi>b</mi>
                    <mrow>
                      <mo>−</mo>
                      <mfrac>
                        <mn>3</mn>
                        <mn>4</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mn>8</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mi>a</mi>
                <mrow>
                  <mn>4</mn>
                </mrow>
              </msup>
              <msup>
                <mi>b</mi>
                <mrow>
                  <mo>−</mo>
                  <mn>6</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <msup>
                  <mi>a</mi>
                  <mrow>
                    <mn>4</mn>
                  </mrow>
                </msup>
                <msup>
                  <mi>b</mi>
                  <mrow>
                    <mn>6</mn>
                  </mrow>
                </msup>
              </mfrac>
            </math>.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[124]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 118 -->
@@ -66,14 +1227,111 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c035">4.1.2 实数指数幂<span class="fontsz2">>>></span></h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            小学我们学习了自然数,初中从自然数拓展到整数、有理数乃至实数.类似地,在学习有理数指数幂的基础上,我们可以将<i>a<sup>x</sup></i>中指数<i>x</i>的取值范围从有理数拓展到全体实数,此时,<i>a<sup>x</sup></i>的意义是什么呢?如<math
              display="0">
              <msup>
                <mn>2</mn>
                <mrow>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                </mrow>
              </msup>
            </math>,<math display="0">
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>4</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                </mrow>
              </msup>
            </math>,它们是一个确定的数吗?能否计算出结果呢?
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            实数指数幂 事实上,我们可以通过科学计算器计算出<math display="0">
              <msup>
                <mn>2</mn>
                <mrow>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                </mrow>
              </msup>
            </math>,<math display="0">
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>4</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                </mrow>
              </msup>
            </math>的值(请同学们自己利用科学计算器或下载计算机软件进行计算).如果精确到0.01时,<math display="0">
              <msup>
                <mn>2</mn>
                <mrow>
                  <msqrt>
                    <mn>3</mn>
                  </msqrt>
                </mrow>
              </msup>
            </math>的近似值为3.32,<math display="0">
              <msup>
                <mfrac>
                  <mn>1</mn>
                  <mn>4</mn>
                </mfrac>
                <mrow>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                </mrow>
              </msup>
            </math>的近似值为0.14,即表明这些无理数指数幂都是一个确定的实数.这样,我们将指数幂<i>a<sup>x</sup></i>(<i>a</i>>0)中指数<i>x</i>的取值范围从整数逐步拓展到有理数、无理数,乃至实数.当<i>x</i>为任意实数时,<b>实数指数幂</b><i>a<sup>x</sup></i>(<i>a</i>>0)表示一个确定实数.现实生活中,我们通过类比、联想、猜想等方式可创新设计出很多不同的事物和模式.
          </p>
          <p>
            有理数指数幂的运算性质同样适用于实数指数幂的运算性质(证明略),即当<i>a</i>>0,<i>b</i>>0,<i>p</i>,<i>q</i>∈<b>R</b>时,有
          </p>
          <p>
            (1) <i>a<sup>p</sup> a<sup>q</sup></i>=<i>a<sup>p+q</sup></i>;
          </p>
          <p>
            (2)(<i>a<sup>p</sup></i>)<i><sup>q</sup></i>=<i>a<sup>pq</sup></i>;
          </p>
          <p>
            (3)(<i>ab</i>)<i><sup>p</sup></i>=<i>a<sup>p</sup> b<sup>p</sup></i>.
          </p>
          <p>注意:运算性质成立的条件是每个实数指数幂都有意义.</p>
        </div>
      </div>
    </div>
    <!-- 119 -->
    <div class="page-box" page="126">
      <div v-if="showPageList.indexOf(126) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -82,25 +1340,1115 @@
            <p><span>119</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              对例1(1)
              题,我们需要将某些底数变形为指数幂的形式,以方便利用实数指数幂的运算法则进行计算或者化简.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例1</b></span> 计算(式中字母均为正实数).
          </p>
          <p>
            (1)<math display="0">
              <msup>
                <mn>16</mn>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mn>4</mn>
                  </mfrac>
                </mrow>
              </msup>
              <mo>−</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <msup>
                  <mfrac>
                    <mn>1</mn>
                    <mn>27</mn>
                  </mfrac>
                  <mrow>
                    <mo>−</mo>
                    <mfrac>
                      <mn>1</mn>
                      <mn>3</mn>
                    </mfrac>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>+</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mo>−</mo>
                  <mn>1</mn>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mn>0</mn>
                </mrow>
              </msup>
            </math>;(2)
            <math display="0">
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mo>−</mo>
                      <mn>3</mn>
                    </mrow>
                  </msup>
                  <msup>
                    <mi>b</mi>
                    <mrow>
                      <mn>5</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mn>5</mn>
                  </mfrac>
                </mrow>
              </msup>
              <mo>⋅</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mn>5</mn>
                  </mfrac>
                </mrow>
              </msup>
              <mo>÷</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mn>3</mn>
                    </mrow>
                  </msup>
                  <msup>
                    <mi>b</mi>
                    <mrow>
                      <mfrac>
                        <mn>5</mn>
                        <mn>3</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mfrac>
                    <mn>3</mn>
                    <mn>5</mn>
                  </mfrac>
                </mrow>
              </msup>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mtext>(1)</mtext>
                    <msup>
                      <mn>16</mn>
                      <mrow>
                        <mfrac>
                          <mn>1</mn>
                          <mn>4</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo>−</mo>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mfrac>
                          <mn>1</mn>
                          <mn>27</mn>
                        </mfrac>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mrow>
                        <mo>−</mo>
                        <mfrac>
                          <mn>1</mn>
                          <mn>3</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo>+</mo>
                    <mo stretchy="false">(</mo>
                    <msqrt>
                      <mn>2</mn>
                    </msqrt>
                    <mo>−</mo>
                    <mn>1</mn>
                    <msup>
                      <mo stretchy="false">)</mo>
                      <mrow>
                        <mn>0</mn>
                      </mrow>
                    </msup>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>=</mo>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <msup>
                          <mn>2</mn>
                          <mrow>
                            <mn>4</mn>
                          </mrow>
                        </msup>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mrow>
                        <mfrac>
                          <mn>1</mn>
                          <mn>4</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo>−</mo>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">[</mo>
                        <msup>
                          <mrow data-mjx-texclass="INNER">
                            <mo data-mjx-texclass="OPEN">(</mo>
                            <mfrac>
                              <mn>1</mn>
                              <mn>3</mn>
                            </mfrac>
                            <mo data-mjx-texclass="CLOSE">)</mo>
                          </mrow>
                          <mrow>
                            <mn>3</mn>
                          </mrow>
                        </msup>
                        <mo data-mjx-texclass="CLOSE">]</mo>
                      </mrow>
                      <mrow>
                        <mo>−</mo>
                        <mfrac>
                          <mn>1</mn>
                          <mn>3</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo>+</mo>
                    <mn>1</mn>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>=</mo>
                    <msup>
                      <mn>2</mn>
                      <mrow>
                        <mn>4</mn>
                        <mo>×</mo>
                        <mfrac>
                          <mn>1</mn>
                          <mn>4</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo>−</mo>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <mfrac>
                          <mn>1</mn>
                          <mn>3</mn>
                        </mfrac>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mrow>
                        <mn>3</mn>
                        <mo>×</mo>
                        <mrow data-mjx-texclass="INNER">
                          <mo data-mjx-texclass="OPEN">(</mo>
                          <mo>−</mo>
                          <mfrac>
                            <mn>1</mn>
                            <mn>3</mn>
                          </mfrac>
                          <mo data-mjx-texclass="CLOSE">)</mo>
                        </mrow>
                      </mrow>
                    </msup>
                    <mo>+</mo>
                    <mn>1</mn>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>=</mo>
                    <mn>2</mn>
                    <mo>−</mo>
                    <mn>3</mn>
                    <mo>+</mo>
                    <mn>1</mn>
                    <mo>=</mo>
                    <mn>0</mn>
                    <mo>;</mo>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mtext>(2)</mtext>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <msup>
                          <mi>a</mi>
                          <mrow>
                            <mo>−</mo>
                            <mn>3</mn>
                          </mrow>
                        </msup>
                        <msup>
                          <mi>b</mi>
                          <mrow>
                            <mn>5</mn>
                          </mrow>
                        </msup>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mrow>
                        <mfrac>
                          <mn>1</mn>
                          <mn>5</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo>⋅</mo>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <msup>
                          <mi>a</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mrow>
                        <mfrac>
                          <mn>1</mn>
                          <mn>5</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo>÷</mo>
                    <msup>
                      <mrow data-mjx-texclass="INNER">
                        <mo data-mjx-texclass="OPEN">(</mo>
                        <msup>
                          <mi>a</mi>
                          <mrow>
                            <mn>3</mn>
                          </mrow>
                        </msup>
                        <msup>
                          <mi>b</mi>
                          <mrow>
                            <mfrac>
                              <mn>5</mn>
                              <mn>3</mn>
                            </mfrac>
                          </mrow>
                        </msup>
                        <mo data-mjx-texclass="CLOSE">)</mo>
                      </mrow>
                      <mrow>
                        <mfrac>
                          <mn>3</mn>
                          <mn>5</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>=</mo>
                    <msup>
                      <mi>a</mi>
                      <mrow>
                        <mo>−</mo>
                        <mn>3</mn>
                        <mo>×</mo>
                        <mfrac>
                          <mn>1</mn>
                          <mn>5</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mn>5</mn>
                        <mo>×</mo>
                        <mfrac>
                          <mn>1</mn>
                          <mn>5</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <msup>
                      <mi>a</mi>
                      <mrow>
                        <mn>2</mn>
                        <mo>×</mo>
                        <mfrac>
                          <mn>1</mn>
                          <mn>5</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo>÷</mo>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <msup>
                        <mi>a</mi>
                        <mrow>
                          <mn>3</mn>
                          <mo>×</mo>
                          <mfrac>
                            <mn>3</mn>
                            <mn>5</mn>
                          </mfrac>
                        </mrow>
                      </msup>
                      <msup>
                        <mi>b</mi>
                        <mrow>
                          <mfrac>
                            <mn>5</mn>
                            <mn>3</mn>
                          </mfrac>
                          <mo>×</mo>
                          <mfrac>
                            <mn>3</mn>
                            <mn>5</mn>
                          </mfrac>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>=</mo>
                    <msup>
                      <mi>a</mi>
                      <mrow>
                        <mo>−</mo>
                        <mfrac>
                          <mn>3</mn>
                          <mn>5</mn>
                        </mfrac>
                        <mo>+</mo>
                        <mfrac>
                          <mn>2</mn>
                          <mn>5</mn>
                        </mfrac>
                        <mo>−</mo>
                        <mfrac>
                          <mn>9</mn>
                          <mn>5</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mn>1</mn>
                        <mo>−</mo>
                        <mn>1</mn>
                      </mrow>
                    </msup>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>=</mo>
                    <msup>
                      <mi>a</mi>
                      <mrow>
                        <mo>−</mo>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo>=</mo>
                    <mfrac>
                      <mn>1</mn>
                      <msup>
                        <mi>a</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </mfrac>
                    <mo>.</mo>
                  </mtd>
                </mtr>
              </mtable>
            </math>
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 化简(式中字母均为正实数).
          </p>
          <p>
            (1)
            <math display="0">
              <msqrt>
                <mn>2</mn>
              </msqrt>
              <mo>×</mo>
              <mroot>
                <mn>8</mn>
                <mn>4</mn>
              </mroot>
              <mo>×</mo>
              <mroot>
                <mn>64</mn>
                <mn>8</mn>
              </mroot>
            </math>;(2)
            <math display="0">
              <msqrt>
                <msup>
                  <mi>a</mi>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <msup>
                  <mi>b</mi>
                  <mrow>
                    <mo>−</mo>
                    <mn>3</mn>
                  </mrow>
                </msup>
              </msqrt>
              <mo>·</mo>
              <mroot>
                <mrow>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mo>−</mo>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <msup>
                    <mi>b</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                </mrow>
                <mn>3</mn>
              </mroot>
              <mo>·</mo>
              <mroot>
                <mrow>
                  <mi>a</mi>
                  <msup>
                    <mi>b</mi>
                    <mrow>
                      <mn>5</mn>
                    </mrow>
                  </msup>
                </mrow>
                <mn>6</mn>
              </mroot>
            </math>.
          </p>
          <p class="block">
            <span class="zt-ls2"><b>分析</b></span> 运算思路是将根式转化为分数指数幂,然后再化简运算.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <math display="">
            <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mo stretchy="false">(1)</mo>
                  <msqrt>
                    <mn>2</mn>
                  </msqrt>
                  <mo>×</mo>
                  <mroot>
                    <mn>8</mn>
                    <mn>4</mn>
                  </mroot>
                  <mo>×</mo>
                  <mroot>
                    <mn>64</mn>
                    <mn>8</mn>
                  </mroot>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mo>=</mo>
                  <msup>
                    <mn>2</mn>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>×</mo>
                  <msup>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <msup>
                        <mn>2</mn>
                        <mrow>
                          <mn>3</mn>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>4</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>×</mo>
                  <msup>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <msup>
                        <mn>2</mn>
                        <mrow>
                          <mn>6</mn>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>8</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mo>=</mo>
                  <msup>
                    <mn>2</mn>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>×</mo>
                  <msup>
                    <mn>2</mn>
                    <mrow>
                      <mfrac>
                        <mn>3</mn>
                        <mn>4</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>×</mo>
                  <msup>
                    <mn>2</mn>
                    <mrow>
                      <mfrac>
                        <mn>6</mn>
                        <mn>8</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mo>=</mo>
                  <msup>
                    <mn>2</mn>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mfrac>
                        <mn>3</mn>
                        <mn>4</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mfrac>
                        <mn>6</mn>
                        <mn>8</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>=</mo>
                  <msup>
                    <mn>2</mn>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo>=</mo>
                  <mn>4</mn>
                  <mo>;</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mtext>(2)</mtext>
                  <msqrt>
                    <msup>
                      <mi>a</mi>
                      <mrow>
                        <mn>3</mn>
                      </mrow>
                    </msup>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mo>−</mo>
                        <mn>3</mn>
                      </mrow>
                    </msup>
                  </msqrt>
                  <mo>⋅</mo>
                  <mroot>
                    <mrow>
                      <msup>
                        <mi>a</mi>
                        <mrow>
                          <mo>−</mo>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                      <msup>
                        <mi>b</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mn>3</mn>
                  </mroot>
                  <mo>⋅</mo>
                  <mroot>
                    <mrow>
                      <mi>a</mi>
                      <msup>
                        <mi>b</mi>
                        <mrow>
                          <mn>5</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mn>6</mn>
                  </mroot>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mo>=</mo>
                  <msup>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <msup>
                        <mi>a</mi>
                        <mrow>
                          <mn>3</mn>
                        </mrow>
                      </msup>
                      <msup>
                        <mi>b</mi>
                        <mrow>
                          <mo>−</mo>
                          <mn>3</mn>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>2</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>⋅</mo>
                  <msup>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <msup>
                        <mi>a</mi>
                        <mrow>
                          <mo>−</mo>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                      <msup>
                        <mi>b</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>3</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>⋅</mo>
                  <msup>
                    <mrow data-mjx-texclass="INNER">
                      <mo data-mjx-texclass="OPEN">(</mo>
                      <mi>a</mi>
                      <msup>
                        <mi>b</mi>
                        <mrow>
                          <mn>5</mn>
                        </mrow>
                      </msup>
                      <mo data-mjx-texclass="CLOSE">)</mo>
                    </mrow>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>6</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mo>=</mo>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <msup>
                      <mi>a</mi>
                      <mrow>
                        <mfrac>
                          <mn>3</mn>
                          <mn>2</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mo>−</mo>
                        <mfrac>
                          <mn>3</mn>
                          <mn>2</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mo>⋅</mo>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <msup>
                      <mi>a</mi>
                      <mrow>
                        <mo>−</mo>
                        <mfrac>
                          <mn>2</mn>
                          <mn>3</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mfrac>
                          <mn>2</mn>
                          <mn>3</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mo>⋅</mo>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <msup>
                      <mi>a</mi>
                      <mrow>
                        <mfrac>
                          <mn>1</mn>
                          <mn>6</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mfrac>
                          <mn>5</mn>
                          <mn>6</mn>
                        </mfrac>
                      </mrow>
                    </msup>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mo>=</mo>
                  <msup>
                    <mi>a</mi>
                    <mrow>
                      <mfrac>
                        <mn>3</mn>
                        <mn>2</mn>
                      </mfrac>
                      <mo>−</mo>
                      <mfrac>
                        <mn>2</mn>
                        <mn>3</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mfrac>
                        <mn>1</mn>
                        <mn>6</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>⋅</mo>
                  <msup>
                    <mi>b</mi>
                    <mrow>
                      <mo>−</mo>
                      <mfrac>
                        <mn>3</mn>
                        <mn>2</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mfrac>
                        <mn>2</mn>
                        <mn>3</mn>
                      </mfrac>
                      <mo>+</mo>
                      <mfrac>
                        <mn>5</mn>
                        <mn>6</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo>=</mo>
                  <mi>a</mi>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
        </div>
      </div>
    </div>
    <!-- 120 -->
    <div class="page-box" page="127">
      <div v-if="showPageList.indexOf(127) > -1">
        <ul class="page-header-odd fl al-end">
          <li>120</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例3</b></span> 计算
            2<sup>0</sup>+2<sup>1</sup>+2<sup>2</sup>+2<sup>3</sup>+…+2<i><sup>x</sup></i>(<i>x</i>∈<b>N</b>).
          </p>
          <p class="block">
            <span
              class="zt-ls2"><b>分析</b></span> 观察这个式子的特点,每一项都是前面一项的2倍(除第1项外);运算思路可考虑将代数式每项乘2后再与原式相减.数学上把这种运算方法叫作“错位相减”.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 令
          </p>
          <math display="block">
            <mi>S</mi>
            <mo>=</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mn>0</mn>
              </mrow>
            </msup>
            <mo>+</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mn>1</mn>
              </mrow>
            </msup>
            <mo>+</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo>+</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mn>3</mn>
              </mrow>
            </msup>
            <mo>+</mo>
            <mo>…</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mi>x</mi>
                <mo>−</mo>
                <mn>1</mn>
              </mrow>
            </msup>
            <mo>+</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mi>x</mi>
              </mrow>
            </msup>
            <mo>.</mo>
          </math>
          <p class="right">①</p>
          <p>将①式两边同时乘2,得</p>
          <math display="block">
            <mn>2</mn>
            <mi>S</mi>
            <mo>=</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mn>1</mn>
              </mrow>
            </msup>
            <mo>+</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo>+</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mn>3</mn>
              </mrow>
            </msup>
            <mo>+</mo>
            <mo>…</mo>
            <mo>+</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mi>x</mi>
              </mrow>
            </msup>
            <mo>+</mo>
            <msup>
              <mn>2</mn>
              <mrow>
                <mi>x</mi>
                <mo>+</mo>
                <mn>1</mn>
              </mrow>
            </msup>
            <mo>.</mo>
          </math>
          <p class="right">②</p>
          <p>用②式减①式可得</p>
          <p>
            2<i>S</i>-<i>S</i>=(2<sup>1</sup>+2<sup>2</sup>+2<sup>3</sup>+…+2<i><sup>x</sup></i>+2<i><sup>x</sup></i><sup>+1</sup>)-(2<sup>0</sup>+2<sup>1</sup>+2<sup>2</sup>+2<sup>3</sup>+…+2<i><sup>x</sup></i><sup>-1</sup>+2<i><sup>x</sup></i>),
          </p>
          <p>
            即<i>S</i>=2<i><sup>x+1</sup></i>-1,
          </p>
          <p>
            所以, 2<sup>0</sup>+2<sup>1</sup>+2<sup>2</sup>+2<sup>3</sup>+…+2<i><sup>x</sup></i>=2<i><sup>x+1</sup></i>-1.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[127]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 121 -->
    <div class="page-box" page="128">
      <div v-if="showPageList.indexOf(128) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -109,7 +2457,76 @@
            <p><span>121</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c036">习题4.1<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[128]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <h2 id="b023">
            4.2 指数函数<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c037">
            4.2.1 指数函数的定义与图像<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <p>
            情境1:《庄子·天下篇》中有一段脍炙人口的话:“一尺之棰,日取其半,万世不竭.”这里的“一尺之棰”,即一尺(长度单位,1尺约合0.33
            m)长的木棍,“日取其半”即每天取它的一半.若一直“日取其半”,则每天剩下的木棍长度就是下面的一列数字.
          </p>
          <math display="block">
            <mfrac>
              <mn>1</mn>
              <mn>2</mn>
            </mfrac>
            <mo>,</mo>
            <msup>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mrow>
                <mn>2</mn>
              </mrow>
            </msup>
            <mo>,</mo>
            <msup>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mrow>
                <mn>3</mn>
              </mrow>
            </msup>
            <mo>,</mo>
            <msup>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mrow>
                <mn>4</mn>
              </mrow>
            </msup>
            <mo>,</mo>
            <mo>⋯</mo>
          </math>
        </div>
      </div>
    </div>
    <!-- 122 -->
@@ -120,13 +2537,194 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            记取到第<i>x</i>天时剩下的长度为<i>y</i>,那么<i>y</i>与
            <i>x</i>的函数关系是
          </p>
          <math display="block">
            <mi>y</mi>
            <mo>=</mo>
            <msup>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mrow>
                <mi>x</mi>
              </mrow>
            </msup>
            <mo>.</mo>
          </math>
          <p class="right">①</p>
          <p>
            其中指数<i>x</i>是自变量,定义域是<i>x</i>∈<b>N</b><sub>+</sub>.
          </p>
          <p>
            情境2:细胞每分裂1次其数量变为原来的两倍,则每次分裂后的细胞数量见表4-1.
          </p>
          <p class="img">表4-1</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0133-2.jpg" />
          </p>
          <p>
            如果设细胞分裂的次数为<i>x</i>,对应分裂后的细胞数量为<i>y</i>,那么<i>y</i>与<i>x</i>的函数关系是
          </p>
          <math display="block">
            <mi>y</mi>
            <mo>=</mo>
            <msup>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mn>2</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mrow>
                <mi>x</mi>
              </mrow>
            </msup>
            <mo>.</mo>
          </math>
          <p class="right">②</p>
          <p>
            其中指数<i>x</i>是自变量,定义域是<i>x</i>∈<b>N</b><sub>+</sub>.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">指数函数</p>
          </div>
          <p>
            如果用字母<i>a</i>代替上述①②两式中的底数<math display="0">
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
            </math>和2,那么函数<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mi>x</mi>
                </mrow>
              </msup>
            </math>和 <i>y</i>=2<i><sup>x</sup></i>就可以表示为
          </p>
          <p class="center">
            <i>y</i>=<i>a<sup>x</sup></i>
          </p>
          <p>
            的形式,其中指数<i>x</i>是自变量,底数<i>a</i>是一个大于0且不等于
            1的常量.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,形如<i>y</i>=<i>a<sup>x</sup></i>(<i>a</i>>0,且<i>a</i>≠1)的函数叫作<b>指数函数</b>,其中指数<i>x</i>是自变量,定义域是<b>R</b>.
          </p>
          <p>
            <b>例</b> 已知指数函数<i>f</i>(<i>x</i>)=<i>a<sup>x</sup></i>(<i>a</i>>0,且<i>a</i>≠1),且<i>f</i>(3)=125.
          </p>
          <p>(1) 求函数<i>f</i>(<i>x</i>)的解析式;</p>
          <p>
            (2) 求<i>f</i>(0),<i>f</i>(2),<i>f</i>(-2),<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            因为<i>f</i>(<i>x</i>)=<i>a<sup>x</sup></i>(<i>a</i>>0,且<i>a</i>≠1),且<i>f</i>(3)=125,所以<i>a</i><sup>3</sup>=125,解得<i>a</i>=5,于是<i>f</i>(<i>x</i>)=5<i><sup>x</sup></i>.
          </p>
          <p>
            (2)
            <i>f</i>(0)=5<sup>0</sup>=1,<i>f</i>(2)=5<sup>2</sup>=25,<math display="0">
              <mi>f</mi>
              <mo>−</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mn>2</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <msup>
                <mn>5</mn>
                <mrow>
                  <mo>−</mo>
                  <mn>2</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <msup>
                  <mn>5</mn>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>25</mn>
              </mfrac>
            </math>,<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <msup>
                <mn>5</mn>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                </mrow>
              </msup>
              <mo>=</mo>
              <msqrt>
                <mn>5</mn>
              </msqrt>
            </math>.
          </p>
        </div>
      </div>
    </div>
    <!-- 123 -->
    <div class="page-box" page="130">
      <div v-if="showPageList.indexOf(130) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -135,7 +2733,78 @@
            <p><span>123</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[130]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block">
              初中我们学习了正比例函数、反比例函数和二次函数,通过描点法画出它们的图像分别是直线、双曲线和抛物线(如图4-1所示).我们可类比借鉴学习上述函数的经验,画出指数函数的图像,再利用图像与解析式,研究其单调性、奇偶性等.
            </p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0134-3.jpg" />
            </p>
            <p class="img">图4-1</p>
          </div>
          <p><b>类比归纳</b></p>
          <p>
            与初中画二次函数图像一样,也可用描点法画出指数函数的图像.下面我们以<i>y</i>=2<i><sup>x</sup></i>和<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mi>x</mi>
                </mrow>
              </msup>
            </math>为例,画出其函数图像.
          </p>
          <p>第一步:列表(如表4-2所示).</p>
          <p class="img">表4-2</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0134-5.jpg" />
          </p>
          <p>
            第二步:描点,并且用光滑的曲线连接所描的点,画出它们的图像(如图4-2所示).
          </p>
          <p>
            利用相同方法,我们还可以在同一平面直角坐标系中画出<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mn>2</mn>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mi>x</mi>
                </mrow>
              </msup>
            </math>,
          </p>
        </div>
      </div>
    </div>
    <!-- 124 -->
@@ -146,14 +2815,127 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <math display="0">
            <mi>y</mi>
            <mo>=</mo>
            <msup>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>3</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mrow>
                <mi>x</mi>
              </mrow>
            </msup>
          </math>, <i>y</i>=2.3<i><sup>x</sup></i>,<i>y</i>=3<i><sup>x</sup></i>的图像,如图4-3所示.
          <ul class="fl">
            <li style="margin-top: 30px">
              <p class="center">
                <img class="img-a" alt="" src="../../assets/images/0135-2.jpg" />
              </p>
              <p class="img">图4-2</p>
            </li>
            <li>
              <p class="center">
                <img class="img-b" alt="" src="../../assets/images/0135-3.jpg" />
              </p>
              <p class="img">图4-3</p>
            </li>
          </ul>
          <h3 id="c038">
            4.2.2 指数函数的性质<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <p>
            观察指数函数的图像,描述这些图像在位置、公共点和变化趋势等方面的共性特征.
          </p>
          <p>
            (1) 图中所有指数函数图像均在<i>x</i>轴的上方(<b>位置特征</b>);
          </p>
          <p>
            (2) 图中所有指数函数图像都经过定点(0,1)(<b>公共点特征</b>);
          </p>
          <p>
            (3)
            在定义域内,指数函数<i>y</i>=2<i><sup>x</sup></i>,<i>y</i>=2.3<i><sup>x</sup></i>,<i>y</i>=3<i><sup>x</sup></i>图像从左向右分别逐渐上升,在第二象限内向左与<i>x</i>轴无限接近;指数函数<math
              display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mi>x</mi>
                </mrow>
              </msup>
            </math>,<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mn>2</mn>
                    <mn>5</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mi>x</mi>
                </mrow>
              </msup>
            </math>,<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mi>x</mi>
                </mrow>
              </msup>
            </math>图像从左向右分别逐渐下降,在第一象限内向右与<i>x</i>轴无限接近(<b>变化趋势特征</b>).
          </p>
          <p>
            我们观察分析发现,指数函数<i>y</i>=<i>a<sup>x</sup></i>(<i>a</i>>0,且<i>a</i>≠1)的图像按底数<i>a</i>的取值,可分为0<<i>a</i><1和<i>a</i>>1两种类型.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,指数函数<i>y</i>=<i>a<sup>x</sup></i>(<i>a</i>>0,且<i>a</i>≠1)具有下列性质.
          </p>
          <p>(1) 函数的定义域为<i>R</i>,值域为(0,+∞);</p>
          <p>(2) 当<i>x</i>=0时,函数值<i>y</i>=1;</p>
          <p>
            (3)
            当<i>a</i>>1时,函数在(-∞,+∞)内是增函数;当0<<i>a</i><1时,函数在(-∞,+∞)内是减函数.
          </p>
        </div>
      </div>
    </div>
    <!-- 125 -->
    <div class="page-box" page="132">
      <div v-if="showPageList.indexOf(132) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -162,7 +2944,51 @@
            <p><span>125</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            指数函数<i>y</i>=<i>a<sup>x</sup></i>(<i>a</i>>0,且<i>a</i>≠1)的图像和性质可以总结如表4-3所示.
          </p>
          <p class="img">表4-3</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0136-1.jpg" />
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 判断下列函数哪些是指数函数,并画出函数图像验证.
          </p>
          <p>
            (1) <i>y</i>=0.5<i><sup>x</sup></i>;(2) <i>y</i>=2×3<i><sup>x</sup></i>;(3) <i>y</i>=<i>x</i><sup>2</sup>.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              函数<i>y</i>=2×3<i><sup>x</sup></i>
            </p>
            <p class="block">
              在形式上与指数函数相似,但不符合指数函数的定义,我们从其函数图像可以看到没有过定点(0,1).
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>解</b></span>
            依据指数函数<i>y</i>=<i>a<sup>x</sup></i>的定义,<i>y</i>=0.5<i><sup>x</sup></i>是指数函数,<i>y</i>=2×3<i><sup>x</sup></i>和<i>y</i>=<i>x</i><sup>2</sup>不是指数函数.画出函数图像(如图4-4所示),函数<i>y</i>=0.5<i><sup>x</sup></i>的图像符合指数函数图像的特征;函数<i>y</i>=2×3<i><sup>x</sup></i>的图像虽与指数函数图像很相似,但并没有过定点(0,1);函数<i>y</i>=<i>x</i><sup>2</sup>的图像是二次函数的图像.
          </p>
          <p class="center">
            <img class="img-b" alt="" src="../../assets/images/0136-2.jpg" />
          </p>
          <p class="img">图4-4</p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[131]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 126 -->
@@ -173,13 +2999,214 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例2</b></span> 判断下列函数在(-∞,+∞)内的单调性.
          </p>
          <p>
            (1) <i>y</i>=4<i><sup>x</sup></i>;(2) <i>y</i>=3<i><sup>-x</sup></i>;(3)
            <math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <mfrac>
                    <mi>x</mi>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msup>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为4>1 , 所以<i>y</i>=4<i><sup>x</sup></i>在(-∞,+∞)内是增函数(如图4-5所示).
          </p>
          <p>
            (2)
            <math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msup>
                <mn>3</mn>
                <mrow>
                  <mo>−</mo>
                  <mi>x</mi>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mn>3</mn>
                    <mrow>
                      <mo>−</mo>
                      <mn>1</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mi>x</mi>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mi>x</mi>
                </mrow>
              </msup>
            </math>,因为<math display="0">
              <mn>0</mn>
              <mo><</mo>
              <mfrac>
                <mn>1</mn>
                <mn>3</mn>
              </mfrac>
              <mo><</mo>
              <mn>1</mn>
            </math>,所以<i>y</i>=3<i><sup>-x</sup></i>在(-∞,+∞)内是减函数(如图4-6所示).
          </p>
          <p>
            (3)<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <mfrac>
                    <mi>x</mi>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mn>2</mn>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>3</mn>
                      </mfrac>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mi>x</mi>
                </mrow>
              </msup>
              <mo>=</mo>
              <mo stretchy="false">(</mo>
              <mroot>
                <mn>2</mn>
                <mn>3</mn>
              </mroot>
              <msup>
                <mo stretchy="false">)</mo>
                <mrow>
                  <mi>x</mi>
                </mrow>
              </msup>
            </math>,因为<math display="0">
              <mroot>
                <mn>2</mn>
                <mn>3</mn>
              </mroot>
              <mo>></mo>
              <mn>1</mn>
            </math>,所以<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <mfrac>
                    <mi>x</mi>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msup>
            </math>在(-∞,+∞)内是增函数(如图4-7所示).
          </p>
          <ul class="fl">
            <li>
              <p class="center">
                <img class="img-a" alt="" src="../../assets/images/0137-7.jpg" />
              </p>
              <p class="img">图4-5</p>
            </li>
            <li>
              <p class="center">
                <img class="img-a" alt="" src="../../assets/images/0137-8.jpg" />
              </p>
              <p class="img">图4-6</p>
            </li>
            <li>
              <p class="center">
                <img class="img-a" alt="" src="../../assets/images/0137-9.jpg" />
              </p>
              <p class="img">图4-7</p>
            </li>
          </ul>
          <p>
            <span class="zt-ls"><b>例3</b></span> 比较下列各题中两个值的大小.
          </p>
          <p>
            (1) 1.8<sup>2.5</sup>与1.8<sup>3</sup>;(2)
            0.9<sup>-0.2</sup>与0.9<sup>-0.3</sup>.
          </p>
          <p class="block">
            <span
              class="zt-ls2"><b>分析</b></span> 1.8<sup>2.5</sup>和1.8<sup>3</sup>分别可以看作<i>y</i>=1.8<i><sup>x</sup></i>在<i>x</i>=2.5和<i>x</i>=3处的函数值,这样就可以利用函数的单调性来比较函数值的大小.0.9<sup>-0.2</sup>和0.9<sup>-0.3</sup>分别可以看作<i>y</i>=0.9<i><sup>x</sup></i>在<i>x</i>=-0.2和<i>x</i>=-0.3处的函数值,同样可以利用函数的单调性来比较函数值的大小.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为<i>y</i>=1.8<i><sup>x</sup></i>是<b>R</b>上的增函数,且2.5<3,所以
          </p>
          <p class="center">1.8<sup>2.5</sup><1.8<sup>3</sup>.</p>
          <p>
            (2) 因为<i>y</i>=0.9<i><sup>x</sup></i>是<b>R</b>上的减函数,且-0.2>-0.3,所以
          </p>
          <p class="center">0.9<sup>-0.2</sup><0.9<sup>-0.3</sup>.</p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 求函数<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msqrt>
                <msup>
                  <mn>2</mn>
                  <mrow>
                    <mi>x</mi>
                  </mrow>
                </msup>
                <mo>−</mo>
                <mn>4</mn>
              </msqrt>
            </math>的定义域.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            要使函数有意义,必须满足2<i><sup>x</sup></i>-4≥0,即2<i><sup>x</sup></i>≥4,又因为<i>y</i>=2<i><sup>x</sup></i>是增函数,所以<i>x</i>≥2.
          </p>
          <p>故函数的定义域为2,+∞).</p>
        </div>
      </div>
    </div>
    <!-- 127 -->
    <div class="page-box" page="134">
      <div v-if="showPageList.indexOf(134) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -189,7 +3216,61 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span
              class="zt-ls"><b>例5</b></span> 已知指数函数<i>f</i>(<i>x</i>)=<i>a<sup>x</sup></i>(<i>a</i>>0,且<i>a</i>≠1)的图像过点(3,27).
          </p>
          <p>
            (1) 求<i>f</i>(-1) 的值;(2)
            若<i>f</i>(m)≥9,求<i>m</i>的取值范围.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 图像过点(3,27),即<i>x</i>=3时,<i>f</i>(3)=27.
          </p>
          <p>
            由27=<i>a</i><sup>3</sup>,得<i>a</i>=3, 即<i>f</i>(<i>x</i>)=3<i><sup>x</sup></i>.
          </p>
          <p>
            所以<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mn>1</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <msup>
                <mn>3</mn>
                <mrow>
                  <mo>−</mo>
                  <mn>1</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            (2)
            因为<i>f</i>(<i>m</i>)=3<i><sup>m</sup></i>,所以得到3<i><sup>m</sup></i>≥9,即3<i><sup>m</sup></i>≥3<sup>2</sup>.
          </p>
          <p>
            函数<i>y</i>=3<i><sup>x</sup></i>在定义域内是增函数.
          </p>
          <p>因此,<i>m</i>≥2,即<i>m</i>的取值范围为[2,+∞).</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[134]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
@@ -201,15 +3282,19 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c039">习题4.2<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[135]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 129 -->
    <div class="page-box" page="136">
      <div v-if="showPageList.indexOf(136) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -218,8 +3303,54 @@
            <p><span>129</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b024">
            4.3 对数<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c040">4.3.1 对数的定义<span class="fontsz2">>>></span></h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            在上一节“观察思考”的情境1中,我们提到了《庄子·天下篇》中的“一尺之棰,日取其半,万世不竭”.现已知“一尺之棰”剩下八分之一尺,请问过去了几天?如果是剩下<i>N</i>尺呢?
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">对数</p>
            <p class="block">底数</p>
            <p class="block">真数</p>
            <p class="block">指数式</p>
            <p class="block">对数式</p>
            <p class="block">常用对数</p>
            <p class="block">自然对数</p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,如果<i>a<sup>x</sup></i>=<i>N</i>(<i>a</i>>0,且<i>a</i>≠1),那么数<i>x</i>叫作以<i>a</i>为底<i>N</i>的<b>对数</b>,记作
          </p>
          <p class="center"><i>x</i>=log<sub>a</sub><i>N</i>.</p>
          <p>
            其中<i>a</i>叫作对数的<b>底数</b>(简称底),<i>N</i>叫作<b>真数</b>.
          </p>
          <p>
            例如,2<sup>3</sup>=8,所以3就是以2为底8的对数,记作3=log
            <sub>2</sub>8;再如,2<i><sup>x</sup></i>=<i>N</i>,所以<i>x</i>是以2为底<i>N</i>的对数,记作<i>x</i>=log
            <sub>2</sub><i>N</i>.
          </p>
          <p>
            式子<i>a<sup>b</sup></i>=<i>N</i>叫作<b>指数式</b>,log
            <i><sub>a</sub>N</i>=<i>b</i>叫作<b>对数式</b>.它们的关系如下.
          </p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0140-3.jpg" />
          </p>
        </div>
      </div>
    </div>
@@ -231,14 +3362,225 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            通常,我们把以10为底的对数叫作<b>常用对数</b>,<i>N</i>的常用对数log
            <sub>10</sub><i>N</i>简记作lg<i>N</i>.例如,log<sub>10</sub>5简记作lg5.
          </p>
          <p>
            另外,在科技、经济以及社会生活中经常使用无理数e,它的值为2.718
            28…,以e为底的对数叫作<b>自然对数</b>.<i>N</i>的自然对数log
            <sub>e</sub><i>N</i>简记作ln<i>N</i>.例如,log<sub>e</sub>8简记作ln8.
          </p>
          <p>根据对数的定义,对数有以下性质.</p>
          <p>(1) 零和负数没有对数;</p>
          <p>
            (2) log<i><sub>a</sub></i>1=0,即1的对数为0;
          </p>
          <p>
            (3) log<i><sub>a</sub>a</i>=1,即底数的对数为1.
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[137]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <p>
            <span class="zt-ls"><b>例1</b></span> 把下列指数式写成对数式.
          </p>
          <p>
            (1) 5<sup>4</sup>=625;(2)
            <math display="0">
              <msup>
                <mn>8</mn>
                <mrow>
                  <mfrac>
                    <mn>4</mn>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>16</mn>
            </math>;(3) 10<sup>-2</sup>=0.01.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) log<sub>5</sub>625=4;(2)
            <math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>8</mn>
                </mrow>
              </msub>
              <mn>16</mn>
              <mo>=</mo>
              <mfrac>
                <mn>4</mn>
                <mn>3</mn>
              </mfrac>
            </math>;(3) lg0.01=-2.
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 把下列对数式写成指数式.
          </p>
          <p>
            (1) log<sub>3</sub>243=5;(2)
            <math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mfrac>
                <mn>1</mn>
                <mn>27</mn>
              </mfrac>
              <mo>=</mo>
              <mn>3</mn>
            </math>;(3) <i>ln</i>1=0.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 3<sup>5</sup>=243;(2)
            <math display="0">
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mn>3</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mn>3</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>27</mn>
              </mfrac>
            </math>;(3) <i>e</i><sup>0</sup>=1.
          </p>
          <p>
            <span class="zt-ls"><b>例3</b></span> 求下列各式中<i>N</i>的值.
          </p>
          <p>
            (1) lg<i>N</i>=-3;(2)
            <math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>8</mn>
                </mrow>
              </msub>
              <mi mathvariant="bold">N</mi>
              <mo>=</mo>
              <mfrac>
                <mn>2</mn>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 由lg<i>N</i>=-3,得<i>N</i>=10<sup>-3</sup>=0.001;
          </p>
          <p>
            (2) 由<math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>8</mn>
                </mrow>
              </msub>
              <mi mathvariant="bold">N</mi>
              <mo>=</mo>
              <mfrac>
                <mn>2</mn>
                <mn>3</mn>
              </mfrac>
            </math>,得<math display="0">
              <mi mathvariant="bold">N</mi>
              <mo>=</mo>
              <msup>
                <mn>8</mn>
                <mrow>
                  <mfrac>
                    <mn>2</mn>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mn>2</mn>
                    <mrow>
                      <mn>3</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <mfrac>
                    <mn>2</mn>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>4</mn>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 求下列各式中<i>x</i>的值.
          </p>
          <p>
            (1) log <sub>2</sub>8=<i>x</i>;(2) log
            <sub>4</sub>4<sup>5</sup>=<i>x</i>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 由log
            <sub>2</sub>8=<i>x</i>,得2<i><sup>x</sup></i>=8,即2<i><sup>x</sup></i>=2<sup>3</sup>,所以<i>x</i>=3;
          </p>
          <p>
            (2) 由log <sub>4</sub>4<sup>5</sup>=<i>x</i>,得4<i><sup>x</sup></i>=4<sup>5</sup>,所以<i>x</i>=5.
          </p>
          <p>
            <span class="zt-ls"><b>例5</b></span> 求下列各式的值.
          </p>
          <p>
            (1) log<sub>5</sub>1;(2) log<sub>7</sub>7;(3) lg 10;(4)
            ln e.
          </p>
          <p>
            <span class="zt-ls2"><b>分析</b></span> 利用性质“1的对数为0”和“底数的对数为1” 直接得答案,不必转化成指
          </p>
        </div>
      </div>
    </div>
    <!-- 131 -->
    <div class="page-box" page="138">
      <div v-if="showPageList.indexOf(138) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -247,26 +3589,512 @@
            <p><span>131</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>数式.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) log<sub>5</sub>1=0;(2) log<sub>7</sub>7=1;
          </p>
          <p>(3) lg10=log<sub>10</sub>10=1;(4) ln e=log<sub>e</sub>e=1.</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[138]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <h3 id="c041">
            4.3.2 对数的运算性质<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <p>
            利用对数式与指数式的关系,填写表4-4,猜想对数的运算性质,并与同学交流.
          </p>
          <p class="img">表4-4</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0142-8.jpg" />
          </p>
        </div>
      </div>
    </div>
    <!-- 132 -->
    <div class="page-box" page="139">
      <div v-if="showPageList.indexOf(139) > -1">
        <ul class="page-header-odd fl al-end">
          <li>132</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>我们可以得到两个正数的积、商、幂的对数运算性质.</p>
          <p>
            (1)
            积的对数:<b>两个正数积的对数,等于同一底数的这两个数的对数的和</b>,即
          </p>
          <p class="center">
            log<i><sub>a</sub></i>(<i>MN</i>)=log<i><sub>a</sub>M</i>+log
            <i><sub>a</sub>N</i>(<i>a</i>>0,且<i>a</i>≠1).
          </p>
          <p>
            <b>证明</b> 设log<i><sub>a</sub>M</i>=<i>p</i>,log<i><sub>a</sub>N</i>=<i>q</i>,
          </p>
          <p>
            根据对数的定义,得<i>M</i>=<i>a<sup>p</sup></i>,<i>N</i>=<i>a<sup>q</sup></i>,
          </p>
          <p>
            所以 <i>MN</i>=<i>a<sup>p</sup> a<sup>q</sup></i>=<i>a<sup>p+q</sup></i>.
          </p>
          <p>把指数式化为对数式,得</p>
          <p class="center">
            log<i><sub>a</sub></i>(<i>MN</i>)=<i>p</i>+<i>q</i>=log<i><sub>a</sub>M</i>+log<i><sub>a</sub>N</i>.
          </p>
          <p>
            (2)
            商的对数:<b>两个正数商的对数,等于同一底数的被除数的对数减去除数的对数,</b>即
          </p>
          <math display="block">
            <msub>
              <mi>log</mi>
              <mrow>
                <mi>a</mi>
              </mrow>
            </msub>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mfrac>
              <mi>M</mi>
              <mi mathvariant="bold">N</mi>
            </mfrac>
            <mo>=</mo>
            <msub>
              <mi>log</mi>
              <mrow>
                <mi>a</mi>
              </mrow>
            </msub>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>M</mi>
            <mo>−</mo>
            <msub>
              <mi>log</mi>
              <mrow>
                <mi>a</mi>
              </mrow>
            </msub>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi mathvariant="bold">N</mi>
            <mo stretchy="false">(</mo>
            <mi>a</mi>
            <mo>&gt;</mo>
            <mn>0</mn>
            <mtext>, 且&nbsp;</mtext>
            <mi>a</mi>
            <mo>≠</mo>
            <mn>1</mn>
            <mo stretchy="false">)</mo>
            <mtext>.&nbsp;</mtext>
          </math>
          <p>
            (3)
            幂的对数:<b>一个正数幂的对数,等于幂指数乘这个数的对数,</b>即
          </p>
          <p class="center">
            log<i><sub>a</sub>M<sup>q</sup></i>=<i>q</i>log
            <i><sub>a</sub>M</i>(<i>a</i>>0,且<i>a</i>≠1,<i>q</i>∈<b>R</b>).
          </p>
          <p>
            特别地,log<i><sub>a</sub>a<sup>b</sup></i>=<i>b</i>(<i>a</i>>0,且<i>a</i>≠1).
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[139]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <p>
            <span
              class="zt-ls"><b>例1</b></span> 用log<i><sub>a</sub>x</i>,log<i><sub>a</sub>y</i>,log<i><sub>a</sub>z</i>表示下列各式(式中字母均为正实数且<i>a</i>≠1).
          </p>
          <p>
            (1) log<i><sub>a</sub></i>(<i>x</i><sup>2</sup><i>yz</i><sup>3</sup>);(2)<math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mrow>
                  <mi>y</mi>
                  <mi>z</mi>
                </mrow>
              </mfrac>
            </math>;(3)
            <math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <msqrt>
                  <mi>x</mi>
                </msqrt>
                <mrow>
                  <msup>
                    <mi>y</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mi>z</mi>
                </mrow>
              </mfrac>
            </math>.
          </p>
          <p class="block">
            <span class="zt-ls2"><b>分析</b></span> 利用对数运算性质进行化简运算.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mi>y</mi>
                <msup>
                  <mi>z</mi>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mi>x</mi>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
              <mo>+</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>y</mi>
              <mo>+</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mi>z</mi>
                <mrow>
                  <mn>3</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>2</mn>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>+</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>y</mi>
              <mo>+</mo>
              <mn>3</mn>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>z</mi>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <msup>
                  <mi>x</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mrow>
                  <mi>y</mi>
                  <mi>z</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mi>x</mi>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msup>
              <mo>−</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mo stretchy="false">(</mo>
              <mi>y</mi>
              <mi>z</mi>
              <mo stretchy="false">)</mo>
              <mo>=</mo>
              <mn>2</mn>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <msub>
                  <mi>log</mi>
                  <mrow>
                    <mi>a</mi>
                  </mrow>
                </msub>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>y</mi>
                <mo>+</mo>
                <msub>
                  <mi>log</mi>
                  <mrow>
                    <mi>a</mi>
                  </mrow>
                </msub>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>z</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mn>2</mn>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>−</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>y</mi>
              <mo>−</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>z</mi>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(3)</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <msqrt>
                  <mi>x</mi>
                </msqrt>
                <mrow>
                  <msup>
                    <mi>y</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mi>z</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msqrt>
                <mi>x</mi>
              </msqrt>
              <mo>−</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <msup>
                  <mi>y</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mi>z</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mn>2</mn>
              </mfrac>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mn>2</mn>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>y</mi>
              <mo>−</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>z</mi>
              <mo>.</mo>
            </math>
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 计算.
          </p>
          <p>
            (1)
            <math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>5</mn>
                </mrow>
              </msub>
              <mroot>
                <mn>25</mn>
                <mn>3</mn>
              </mroot>
            </math>;(2) log <sub>3</sub>(9<sup>3</sup>×3<sup>5</sup>);(3) log
            <sub>7</sub>56-log<sub>7</sub>8.
          </p>
        </div>
      </div>
    </div>
    <!-- 133 -->
    <div class="page-box" page="140">
      <div v-if="showPageList.indexOf(140) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -276,7 +4104,422 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>5</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mroot>
                <mn>25</mn>
                <mn>3</mn>
              </mroot>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>5</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mroot>
                <msup>
                  <mn>5</mn>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
                <mn>3</mn>
              </mroot>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>5</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>5</mn>
                <mrow>
                  <mfrac>
                    <mn>2</mn>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <mn>2</mn>
                <mn>3</mn>
              </mfrac>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>5</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mn>5</mn>
              <mo>=</mo>
              <mfrac>
                <mn>2</mn>
                <mn>3</mn>
              </mfrac>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>3</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <msup>
                  <mn>9</mn>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msup>
                <mo>×</mo>
                <msup>
                  <mn>3</mn>
                  <mrow>
                    <mn>5</mn>
                  </mrow>
                </msup>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>3</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>9</mn>
                <mrow>
                  <mn>3</mn>
                </mrow>
              </msup>
              <mo>+</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>3</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>3</mn>
                <mrow>
                  <mn>5</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>3</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>3</mn>
                <mrow>
                  <mn>6</mn>
                </mrow>
              </msup>
              <mo>+</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>3</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>3</mn>
                <mrow>
                  <mn>5</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>6</mn>
              <mo>+</mo>
              <mn>5</mn>
              <mo>=</mo>
              <mn>11</mn>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(3)</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>7</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mn>56</mn>
              <mo>−</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>7</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mn>8</mn>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>7</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mn>56</mn>
                <mn>8</mn>
              </mfrac>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>7</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mn>7</mn>
              <mo>=</mo>
              <mn>1</mn>
              <mo>.</mo>
            </math>
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[140]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <h3 id="c042">
            4.3.3(选学)换底公式、对数恒等式<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            设log<i><sub>a</sub>N</i>=<i>x</i>,则<i>a<sup>x</sup></i>=<i>N</i>,两边取以<i>c</i>为底的对数,得log<i><sub>c</sub>a<sup>x</sup></i>=log<i><sub>c</sub>N</i>,于是<i>x</i>log<i><sub>c</sub>a</i>=log<i><sub>c</sub>N</i>,即<math
              display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mi>c</mi>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi mathvariant="bold">N</mi>
                </mrow>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mi>c</mi>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>a</mi>
                </mrow>
              </mfrac>
            </math>,所以<math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi mathvariant="bold">N</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mi>c</mi>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi mathvariant="bold">N</mi>
                </mrow>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mi>c</mi>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>a</mi>
                </mrow>
              </mfrac>
            </math>.
          </p>
          <p>于是,我们有<b>对数的换底公式:</b></p>
          <math display="block">
            <msub>
              <mi>log</mi>
              <mrow>
                <mi>a</mi>
              </mrow>
            </msub>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>b</mi>
            <mo>=</mo>
            <mfrac>
              <mrow>
                <msub>
                  <mi>log</mi>
                  <mrow>
                    <mi>c</mi>
                  </mrow>
                </msub>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>b</mi>
              </mrow>
              <mrow>
                <msub>
                  <mi>log</mi>
                  <mrow>
                    <mi>c</mi>
                  </mrow>
                </msub>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>a</mi>
              </mrow>
            </mfrac>
            <mo stretchy="false">(</mo>
            <mi>a</mi>
            <mo>&gt;</mo>
            <mn>0</mn>
            <mo>,</mo>
            <mtext>&nbsp;且&nbsp;</mtext>
            <mi>a</mi>
            <mo>≠</mo>
            <mn>1</mn>
            <mo>;</mo>
            <mi>c</mi>
            <mo>&gt;</mo>
            <mn>0</mn>
            <mtext>, 且&nbsp;</mtext>
            <mi>c</mi>
            <mo>≠</mo>
            <mn>1</mn>
            <mo stretchy="false">)</mo>
            <mtext>.&nbsp;</mtext>
          </math>
          <p>特别地,</p>
          <math display="block">
            <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mi>a</mi>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>b</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>b</mi>
                    </mrow>
                    <mrow>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>a</mi>
                    </mrow>
                  </mfrac>
                  <mo stretchy="false">(</mo>
                  <mi>a</mi>
                  <mo>&gt;</mo>
                  <mn>0</mn>
                  <mo>,</mo>
                  <mtext>&nbsp;且&nbsp;</mtext>
                  <mi>a</mi>
                  <mo>≠</mo>
                  <mn>1</mn>
                  <mo stretchy="false">)</mo>
                  <mo>;</mo>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mi>a</mi>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>b</mi>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mi>ln</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>b</mi>
                    </mrow>
                    <mrow>
                      <mi>ln</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mi>a</mi>
                    </mrow>
                  </mfrac>
                  <mo stretchy="false">(</mo>
                  <mi>a</mi>
                  <mo>&gt;</mo>
                  <mn>0</mn>
                  <mo>,</mo>
                  <mtext>&nbsp;且&nbsp;</mtext>
                  <mi>a</mi>
                  <mo>≠</mo>
                  <mn>1</mn>
                  <mo stretchy="false">)</mo>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
        </div>
      </div>
    </div>
@@ -288,14 +4531,525 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例1</b></span> 求log<sub>27</sub>8·log <sub>32</sub>9的值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <math display="block">
            <mtable displaystyle="true" columnalign="right left right left right left right left right left right left"
              columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" rowspacing="3pt">
              <mtr>
                <mtd>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>27</mn>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mn>8</mn>
                  <mo>⋅</mo>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>32</mn>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mn>9</mn>
                </mtd>
                <mtd>
                  <mi></mi>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mn>8</mn>
                    </mrow>
                    <mrow>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mn>27</mn>
                    </mrow>
                  </mfrac>
                  <mo>⋅</mo>
                  <mfrac>
                    <mrow>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mn>9</mn>
                    </mrow>
                    <mrow>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mn>32</mn>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <msup>
                        <mn>2</mn>
                        <mrow>
                          <mn>3</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mrow>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <msup>
                        <mn>3</mn>
                        <mrow>
                          <mn>3</mn>
                        </mrow>
                      </msup>
                    </mrow>
                  </mfrac>
                  <mo>⋅</mo>
                  <mfrac>
                    <mrow>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <msup>
                        <mn>3</mn>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mrow>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <msup>
                        <mn>2</mn>
                        <mrow>
                          <mn>5</mn>
                        </mrow>
                      </msup>
                    </mrow>
                  </mfrac>
                </mtd>
              </mtr>
              <mtr>
                <mtd></mtd>
                <mtd>
                  <mi></mi>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mn>3</mn>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mn>2</mn>
                    </mrow>
                    <mrow>
                      <mn>3</mn>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mn>3</mn>
                    </mrow>
                  </mfrac>
                  <mo>⋅</mo>
                  <mfrac>
                    <mrow>
                      <mn>2</mn>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mn>3</mn>
                    </mrow>
                    <mrow>
                      <mn>5</mn>
                      <mi>lg</mi>
                      <mo data-mjx-texclass="NONE">⁡</mo>
                      <mn>2</mn>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mn>2</mn>
                    <mn>5</mn>
                  </mfrac>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p>
            <span
              class="zt-ls"><b>例2</b></span> 求证:log<i><sub>a</sub>b</i>·log<i><sub>b</sub>c</i>·log<i><sub>c</sub>a</i>=1(<i>a</i>,<i>b</i>,<i>c</i>均为正实数,且均不等于1).
          </p>
          <p>
            <b>证明</b>
            <math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>b</mi>
              <mo>⋅</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>b</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>c</mi>
              <mo>⋅</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>c</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>a</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>lg</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>b</mi>
                </mrow>
                <mrow>
                  <mi>lg</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>a</mi>
                </mrow>
              </mfrac>
              <mo>⋅</mo>
              <mfrac>
                <mrow>
                  <mi>lg</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mi>lg</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>b</mi>
                </mrow>
              </mfrac>
              <mo>⋅</mo>
              <mfrac>
                <mrow>
                  <mi>lg</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>a</mi>
                </mrow>
                <mrow>
                  <mi>lg</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>c</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mn>1</mn>
            </math>.
          </p>
          <p>设</p>
          <math display="block">
            <msup>
              <mi>a</mi>
              <mrow>
                <mi>b</mi>
              </mrow>
            </msup>
            <mo>=</mo>
            <mi mathvariant="bold">N</mi>
            <mo stretchy="false">(</mo>
            <mi>a</mi>
            <mo>&gt;</mo>
            <mn>0</mn>
            <mtext>, 且&nbsp;</mtext>
            <mi>a</mi>
            <mo>≠</mo>
            <mn>1</mn>
            <mo stretchy="false">)</mo>
            <mtext>,&nbsp;</mtext>
          </math>
          <p class="right">①</p>
          <p>由对数定义得</p>
          <math display="block">
            <mi>b</mi>
            <mo>=</mo>
            <msub>
              <mi>log</mi>
              <mrow>
                <mi>a</mi>
              </mrow>
            </msub>
            <mi mathvariant="bold">N</mi>
            <mo>,</mo>
          </math>
          <p class="right">②</p>
          <p>把②代入①中,得</p>
          <math display="block">
            <msup>
              <mi>a</mi>
              <mrow>
                <msub>
                  <mi>log</mi>
                  <mrow>
                    <mi>a</mi>
                  </mrow>
                </msub>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi mathvariant="bold">N</mi>
              </mrow>
            </msup>
            <mo>=</mo>
            <mi mathvariant="bold">N</mi>
            <mo stretchy="false">(</mo>
            <mi>a</mi>
            <mo>&gt;</mo>
            <mn>0</mn>
            <mtext>, 且&nbsp;</mtext>
            <mi>a</mi>
            <mo>≠</mo>
            <mn>1</mn>
            <mo stretchy="false">)</mo>
            <mtext>.&nbsp;</mtext>
          </math>
          <p>这个式子叫<b>对数恒等式</b>.</p>
          <p>
            <span class="zt-ls"><b>例3</b></span> 求下列各式的值.
          </p>
          <p>
            (1)
            <math display="0">
              <msup>
                <mn>2</mn>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mn>7</mn>
                </mrow>
              </msup>
            </math>;(2)
            <math display="0">
              <msup>
                <mn>4</mn>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mn>7</mn>
                </mrow>
              </msup>
            </math>;(3)
            <math display="0">
              <msup>
                <mn>2</mn>
                <mrow>
                  <mn>1</mn>
                  <mo>+</mo>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mn>7</mn>
                </mrow>
              </msup>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(1)</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mn>7</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>7</mn>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(2)</mo>
              <msup>
                <mn>4</mn>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mn>7</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <msup>
                    <mn>2</mn>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mn>7</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <mn>2</mn>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mn>7</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <msup>
                    <mn>7</mn>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mn>49</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>49</mn>
              <mo>;</mo>
            </math>
          </p>
          <p class="left1">
            <math display="">
              <mo stretchy="false">(3)</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <mn>1</mn>
                  <mo>+</mo>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mn>7</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <mn>1</mn>
                </mrow>
              </msup>
              <mo>×</mo>
              <msup>
                <mn>2</mn>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mn>7</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mn>2</mn>
              <mo>×</mo>
              <mn>7</mn>
              <mo>=</mo>
              <mn>14</mn>
              <mo>.</mo>
            </math>
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[141]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 135 -->
    <div class="page-box" page="142">
      <div v-if="showPageList.indexOf(142) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -304,7 +5058,26 @@
            <p><span>135</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c043">习题4.3<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[142]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <h2 id="b025">
            4.4 对数函数<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c044">
            4.4.1 对数函数的定义<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            在第二节“观察思考”的情境2中,细胞由1个分裂为2个,2个分裂为4个……如果已知分裂<i>x</i>次后对应细胞数量是1
            024个,那么如何求分裂的次数<i>x</i>呢?
          </p>
        </div>
      </div>
    </div>
@@ -317,14 +5090,160 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            设1个细胞经过<i>y</i>次分裂后得到<i>x</i>个细胞,则<i>x</i>与<i>y</i>的函数关系式为<i>x</i>=2<i><sup>y</sup></i>,将此指数式写为对数式,得到
          </p>
          <p class="center"><i>y</i>=log<sub>2</sub><i>x</i>.</p>
          <p>这个式子就是用分裂后的细胞数量<i>x</i>来表示分裂的次数<i>y</i>.</p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/gn.jpg" />
              </p>
            </div>
            <p class="block">对数函数</p>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            通过指数与对数的关系我们观察到:<i>y</i>=log<sub>2</sub><i>x</i>是一个函数,其自变量<i>x</i>位于真数位置,底数是常数.类比指数函数定义的学习过程,我们可以用字母<i>a</i>代替底数2,即有<i>y</i>=log<sub>a</sub><i>x</i>(<i>a</i>>0,且<i>a</i>≠1)这类特征的函数.
          </p>
          <p>
            一般地,形如<i>y</i>=log<i><sub>a</sub>x</i>(<i>a</i>>0,且<i>a</i>≠1)的函数叫作<b>对数函数</b>,其中<i>x</i>是自变量,函数的定义域为(0,+∞).
          </p>
          <p>
            例如,<i>y</i>=log<sub>2</sub><i>x</i>,<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mn>3</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
            </math>,<i>y</i>=lg <i>x</i>,<i>y</i>=ln <i>x</i>都是对数函数.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              1.对数函数与指数函数的底数<i>a</i>的取值范围保持一致.
            </p>
            <p class="block">2.由于对数的</p>
            <p class="block">
              真数的取值范围为(0,+∞),所以对数函数自变量<i>x</i>的取值范围为(0,+∞).
            </p>
          </div>
          <p>
            <span
              class="zt-ls"><b>例1</b></span> 已知对数函数<i>f</i>(<i>x</i>)=log<i><sub>a</sub>x</i>(<i>a</i>>0,且<i>a</i>≠1),且<i>f</i>(9)=
            2,求<i>f</i>(3),<i>f</i>(1),<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>27</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>的值.
          </p>
          <p class="block">
            <span class="zt-ls2"><b>分析</b></span> 首先根据条件确定底数<i>a</i>,然后再计算对应函数值.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<i>f</i>(9)=2,得2=log<i><sub>a</sub></i>9.
          </p>
          <p>于是<i>a</i><sup>2</sup>=9,得<i>a</i>=3,</p>
          <p>函数解析式为<i>f</i>(<i>x</i>)=log<sub>3</sub><i>x</i>.</p>
          <p>
            所以<i>f</i>(3)=log<sub>3</sub>3=1,
            <i>f</i>(1)=log<sub>3</sub>1=0,
          </p>
          <p>
            <math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>27</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>3</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mn>1</mn>
                <mn>27</mn>
              </mfrac>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mn>3</mn>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <msup>
                <mn>3</mn>
                <mrow>
                  <mo>−</mo>
                  <mn>3</mn>
                </mrow>
              </msup>
              <mo>=</mo>
              <mo>−</mo>
              <mn>3</mn>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 求下列函数的定义域.
          </p>
          <p>
            (1) <i>y</i>=log <sub>0.5</sub>(<i>x</i>-3);(2)
            <i>y</i>=log<sub>3</sub>(4-<i>x</i><sup>2</sup>).
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 要使函数有意义,必须满足<i>x</i>-3>0,解得<i>x</i>>3.
          </p>
          <p>
            所以,<i>y</i>=log <sub>0.5</sub>(<i>x</i>-3)的定义域是(3,+∞).
          </p>
          <p>
            (2) 要使函数有意义,必须满足4-<i>x</i><sup>2</sup>>0,解得
            -2<<i>x</i><2.
          </p>
          <p>
            所以,<i>y</i>=log<sub>3</sub>(4-<i>x</i><sup>2</sup>)的定义域是(-2,2).
          </p>
        </div>
      </div>
    </div>
    <!-- 137 -->
    <div class="page-box" page="144">
      <div v-if="showPageList.indexOf(144) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -334,27 +5253,167 @@
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[144]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <h3 id="c045">
            4.4.2 对数函数的图像与性质<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" />
          </p>
          <p>
            与研究指数函数的图像和性质一样,我们首先通过描点法画出对数函数的图像,然后归纳总结函数的相关性质.下面我们以<i>y</i>=log<sub>2</sub><i>x</i>和<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
            </math>为例画出对数函数的图像,通过观察其图像特征,归纳出对数函数的性质.
          </p>
          <p>第一步:计算部分数值并列表(如表4-5所示).</p>
          <p class="img">表4-5</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0148-3.jpg" />
          </p>
          <p>
            第二步:描点,并用光滑的曲线连接所描的点,画出它们的图像,如图4-8所示.
          </p>
          <p>
            利用相同方法,我们还可以在同一平面直角坐标系中画出<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>3</mn>
                    <mn>2</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
            </math>,<i>y</i>=log <sub>2</sub><i>x</i>,<i>y</i>=log <sub>0.08</sub><i>x</i>,<i>y</i>=log
            <sub>4.5</sub><i>x</i>,<i>y</i>=log
            <sub>0.6</sub><i>x</i>,<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
            </math>的图像,如图4-9所示.
          </p>
        </div>
      </div>
    </div>
    <!-- 138 -->
    <div class="page-box" page="145">
      <div v-if="showPageList.indexOf(145) > -1">
        <ul class="page-header-odd fl al-end">
          <li>138</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0149-1.jpg" />
          </p>
          <p class="img">图4-8</p>
          <p class="center">
            <img class="img-c" alt="" src="../../assets/images/0149-2.jpg" />
          </p>
          <p class="img">图4-9</p>
          <p><b>类比归纳</b></p>
          <p>
            类比指数函数图像特征的观察方法,观察对数函数的图像,描述它们的图像在位置、公共点和变化趋势等方面的共性特征.
          </p>
          <p>
            (1)
            图中所有对数函数的图像均在<i>y</i>轴的右侧(<b>位置特征</b>);
          </p>
          <p>
            (2)
            图中所有对数函数的图像都经过定点(1,0)(<b>公共点特征</b>);
          </p>
          <p>
            (3) 在定义域内,对数函数<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>3</mn>
                    <mn>2</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
            </math>,<i>y</i>=log <sub>2</sub><i>x</i>,<i>y</i>=log
            <sub>4.5</sub><i>x</i>图像从左到右分别逐渐上升,在第四象限内向下与<i>y</i>轴无限接近;对数函数<i>y</i>=log
            <sub>0.08</sub><i>x</i>,<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mn>2</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
            </math>,<i>y</i>=log <sub>0.6</sub><i>x</i>图像从左到右分别逐渐下降,在第一象限内向上与<i>y</i>轴无限接近(<b>变化趋势特征</b>).
          </p>
          <p>
            类比指数函数的图像,对数函数<i>y</i>=log<i><sub>a</sub>x</i>(<i>a</i>>0,且<i>a</i>≠1)的图像按底数<i>a</i>的取值,可分为0<<i>a</i><1和<i>a</i>>1两种类型,我们从指数式与对数式的关系也可发现.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,对数函数<i>y</i>=log<i><sub>a</sub>x</i>(<i>a</i>>0,且<i>a</i>≠1)具有下列性质.
          </p>
          <p>(1) 函数的定义域为(0,+∞),值域为<b>R</b>;</p>
          <p>(2) 当<i>x</i>=1时,函数值<i>y</i>=0;</p>
          <p>
            (3)
            当<i>a</i>>1时,函数在(0,+∞)内是增函数;当0<<i>a</i><1时,函数在(0,+∞)内是减函数.
          </p>
          <p>对数函数的图像和性质可以总结如表4-6所示.</p>
        </div>
      </div>
    </div>
    <!-- 139 -->
    <div class="page-box" page="146">
      <div v-if="showPageList.indexOf(146) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -363,7 +5422,63 @@
            <p><span>139</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="img">表4-6</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0150-1.jpg" />
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <p class="block">
              1.你还能从图4-10中观察发现其他共性特征吗?比如,对数函数<i>y</i>=log
              2<i>x</i>和<math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <msub>
                  <mi>log</mi>
                  <mrow>
                    <mfrac>
                      <mn>1</mn>
                      <mn>2</mn>
                    </mfrac>
                  </mrow>
                </msub>
                <mo data-mjx-texclass="NONE">⁡</mo>
                <mi>x</mi>
              </math>的图像有什么关系?
            </p>
            <p class="block">
              2.两人一组,一人用表格呈现指数函数的图像与性质,另一人用表格呈现对数函数的图像与性质,然后对比两个函数的图像与性质,归纳总结为一个表格,并与同学交流分享.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例1</b></span> 比较下列各组数中两个值的大小.
          </p>
          <p>
            (1) log<sub>2</sub>5.3 与log<sub>2</sub>4.7;(2) log
            <sub>0.2</sub>7与log <sub>0.2</sub>9;
          </p>
          <p>
            (3) log<sub>5</sub>4与1;(4)log<sub>3</sub>4与log
            <sub>0.3</sub>4.
          </p>
          <p class="block">
            <span class="zt-ls2"><b>分析</b></span> 若两个对数的底数相同,可利用对数函数的单调性直接比较;若底数不同,可采用先与中间量(通常是0或1)进行比较,再利用不等式传递性得出结论.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            因为底数2>1,所以<i>y</i>=log<sub>2</sub><i>x</i>在区间(0,+∞)上是增函数,函数图像如图4-10所示.
          </p>
          <p>又因为5.3>4.7,所以log<sub>2</sub>5.3>log<sub>2</sub>4.7.</p>
          <p>
            (2) 因为底数0<0.2<1,所以<i>y</i>=log <sub>0.2</sub><i>x</i>在区间(0,+∞)上是减函数,函数图像如图4-11所示.
          </p>
          <p>又因为7<9,所以log <sub>0.2</sub>7>log <sub>0.2</sub>9.</p>
        </div>
      </div>
    </div>
@@ -375,14 +5490,165 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            (3) log<sub>5</sub>4<log<sub>5</sub>5=1,即log<sub>5</sub>4<1.
          </p>
          <ul class="fl">
            <li>
              <p class="center">
                <img class="img-a" alt="" src="../../assets/images/0151-1.jpg" />
              </p>
              <p class="img">图4-10</p>
            </li>
            <li>
              <p class="center">
                <img class="img-a" alt="" src="../../assets/images/0151-2.jpg" />
              </p>
              <p class="img">图4-11</p>
            </li>
          </ul>
          <p>
            (4) 因为 log<sub>3</sub>4>log<sub>3</sub>1=0,log
            <sub>0.3</sub>4<log <sub>0.3</sub>1=0,所以 log<sub>3</sub>4>log
            <sub>0.3</sub>4.
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 解下列不等式.
          </p>
          <p>
            (1)log <sub>4</sub><i>x</i><log<sub>4</sub>5;(2)
            <math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>4</mn>
                    <mn>5</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>></mo>
              <mn>1</mn>
            </math>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为<i>y</i>=log
            4<i>x</i>在(0,+∞)上是增函数,所以<i>x</i><5.
          </p>
          <p>又因为<i>x</i>>0,所以0<<i>x</i><5.</p>
          <p>所以不等式的解集为(0,5).</p>
          <p>
            (2)
            <math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>4</mn>
                    <mn>5</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>></mo>
              <mn>1</mn>
            </math>,即<math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>4</mn>
                    <mn>5</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
              <mo>&gt;</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>4</mn>
                    <mn>5</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mn>4</mn>
                <mn>5</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            因为<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mfrac>
                    <mn>4</mn>
                    <mn>5</mn>
                  </mfrac>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>x</mi>
            </math>在(0,+∞)上是减函数,所以<math display="0">
              <mi>x</mi>
              <mo><</mo>
              <mfrac>
                <mn>4</mn>
                <mn>5</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            又因为<i>x</i>>0,所以<math display="0">
              <mn>0</mn>
              <mo><</mo>
              <mi>x</mi>
              <mo><</mo>
              <mfrac>
                <mn>4</mn>
                <mn>5</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            所以不等式的解集为(0,<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mn>0</mn>
                <mo>,</mo>
                <mfrac>
                  <mn>4</mn>
                  <mn>5</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>).
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[147]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 141 -->
    <div class="page-box" page="148">
      <div v-if="showPageList.indexOf(148) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -391,7 +5657,13 @@
            <p><span>141</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c046">习题4.4<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[148]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
@@ -403,15 +5675,105 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>A.(0,1)</p>
            <p>B.(1,2)</p>
            <p>C.(1,+∞)</p>
            <p>D.(0,2)</p>
            <p>
              (3) 函数<i>y</i>=3+log<i><sub>a</sub>x</i>(<i>a</i>>0,且<i>a</i>≠1)的图像过定点( ).
            </p>
            <p>A.(0,1)</p>
            <p>B.(1,0)</p>
            <p>C.(1,3)</p>
            <p>D.(1,4)</p>
            <p>
              (4) 已知log<sub>0.5</sub><i>x</i>>log<sub>0.5</sub>3,则<i>x</i>的取值范围是( ).
            </p>
            <p>A.(3,+∞)</p>
            <p>B.(0,+∞)</p>
            <p>C.(-∞,3)</p>
            <p>D.(0,3)</p>
            <p>
              (5)
              已知<i>a</i>=log<sub>0.7</sub>0.8,<i>b</i>=log<sub>0.7</sub>1.9,<i>c</i>=log<sub>5</sub>1,则<i>a</i>,<i>b</i>,<i>c</i>的大小关系是( ).
            </p>
            <p>A.<i>a</i><<i>b</i><<i>c</i></p>
            <p>B.<i>a</i><<i>c</i><<i>b</i></p>
            <p>C.<i>b</i><<i>a</i><<i>c</i></p>
            <p>D.<i>b</i><<i>c</i><<i>a</i></p>
            <p>2.求下列函数的定义域.</p>
            <p>
              (1)
              <math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <mfrac>
                  <mi>x</mi>
                  <msqrt>
                    <mn>1</mn>
                    <mo>−</mo>
                    <msub>
                      <mi>log</mi>
                      <mrow>
                        <mn>3</mn>
                      </mrow>
                    </msub>
                    <mo data-mjx-texclass="NONE">⁡</mo>
                    <mi>x</mi>
                  </msqrt>
                </mfrac>
              </math>;(2)
              <math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <msqrt>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mfrac>
                        <mn>1</mn>
                        <mn>4</mn>
                      </mfrac>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>x</mi>
                </msqrt>
              </math>.
            </p>
            <p>
              3.已知函数<i>f</i>(<i>x</i>)=log<i><sub>a</sub>x</i>(<i>a</i>>0,且<i>a</i>≠1)的图像过点(9,-2),求<i>f</i>(3)的值.
            </p>
            <p>
              4.我国经济总量占世界经济的比重达18.5%,居世界第二位.2020年我国全年<i>GDP</i>为1
              015
              986亿元,取得了超过100万亿的历史性成就.2021年我国<i>GDP</i>预期目标是增长率超过6.0%.假设我国每年<i>GDP</i>的增长率均为6.0%,从2021年开始,大约经过多少年,我国能实现全年<i>GDP</i>比2021年翻一番?
            </p>
          </div>
          <h2 id="b026">
            4.5 指数函数与对数函数的实际应用<span class="fontsz1">>>>>>>>></span>
          </h2>
          <p>
            我们学习的基本初等函数,可以描述、刻画客观世界中某一类事物运动变化的规律.例如,用一次函数模型可以描述生活中的“线性增长”(直线增长)现象.利用指数函数与对数函数的相关知识建立函数模型,可以描述、刻画科学与技术、经济与社会、生产与生活中的“指数增长”和“对数增长”现象.
          </p>
          <p>
            <span
              class="zt-ls"><b>例1</b></span> 开展人口普查,对于调整、完善人口政策,推动人口结构优化,促进人口素质提升具有重要意义.第七次全国人口普查结果显示,2020年年末全国大陆总人口为141
            178万人,其中城镇常住人口90
            199万人,占总人口的比例(常住人口城镇化率)为63.89%,与2010年相比,提高了14.21个百分点.
          </p>
          <p>
            (1) 假设此后每年都增加700万人口,20年后我国大陆人口总数是多少?
          </p>
        </div>
      </div>
    </div>
    <!-- 143 -->
    <div class="page-box" page="150">
      <div v-if="showPageList.indexOf(150) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -420,7 +5782,59 @@
            <p><span>143</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            (2)
            假设此后每年人口的平均增长率是1%(每年都在前一年基础上增加1%),20年后我国大陆人口总数约为多少?(单位:万,结果精确到0.01)
          </p>
          <p class="block">
            <b>分析</b>(1)
            这是经济社会中的“线性增长”现象,即每年增加量保持不变,每年增加700万人口,20年共增加14
            000万人口,因此总共人口为155 178万.
          </p>
          <p class="block">
            (2)
            这是经济社会中的“指数增长”现象,即每年按照一定的增长率(成倍数)增长.我们首先考查逐年增长的情况,从中发现每一年都是前一年的(1+1%)倍(也可采用后一年与前一年的比值发现规律),即呈指数增长,最后利用指数函数知识解决问题.
          </p>
          <p class="block">2020年年末 人口约为141 178万;</p>
          <p class="block">经过1年 人口约为141 178(1+1%)万;</p>
          <p class="block">
            经过2年 人口约为141 178(1+1%)(1+1%)=141
            178(1+1%)<sup>2</sup>万;
          </p>
          <p class="block">
            经过3年 人口约为141 178(1+1%)<sup>2</sup>(1+1%)=141
            178(1+1%)<sup>3</sup>万;
          </p>
          <p class="block">……</p>
          <p class="block">
            经过<i>x</i>年 人口约为141 178(1+1%)<i><sup>x</sup></i>万.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为每年增加700万人口,20年共增加20×700万=14
            000万人口,因此20年后我国大陆人口为155 178万(15.517 8亿).
          </p>
          <p>(2) 设经过<i>x</i>年,我国人口为<i>y</i>万,由题意得</p>
          <p class="center">
            <i>y</i>=141 178(1+1%)<i><sup>x</sup></i>.
          </p>
          <p>当<i>x</i>=20时,<i>y</i>=141 178(1+1%)<sup>20</sup>.</p>
          <p>利用科学计算器可求得<i>y</i>≈172 263.99万.</p>
          <p>
            所以,假设每年都增加700万人口,20年后我国大陆人口为155
            178万;假设每年人口的平均增长率是1%,经过20年后我国大陆人口约为172
            263.99万.
          </p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" />
          </p>
          <p>
            比较两种增长方式,随着时间推移,“指数增长”方式更具有爆发性.探究两种增长方式的特点,并分别列举社会生活中的“线性增长”和“指数增长”现象.
          </p>
          <p>
            一般地,形如<i>y</i>=<i>ka<sup>x</sup></i>(<i>a</i>>0,且<i>a</i>≠1,<i>k</i>≠0)的函数称为<b>指数型函数</b>,这是生活实际中常见的和实用的函数模型.其中,当<i>a</i>>1时,该函数叫作指数增长模型,如我们常说的“指数爆炸”现象所蕴含的就是这种模型;当0<<i>a</i><1时,该函数叫作指数衰减模型,如考古工作中的碳14衰减现象所蕴含的就是这种模型.
          </p>
        </div>
      </div>
    </div>
    <!-- 144 -->
@@ -431,42 +5845,103 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            <span class="zt-ls"><b>例2</b></span> 2020年12月8日,中国、尼泊尔两国共同向全世界正式宣布,世界第一高峰珠穆朗玛峰的最新海拔高程为8
            848.86
            m.由于珠穆朗玛峰气候多变、高寒缺氧、环境复杂,对测量装备、测绘技术和测绘人员有很高的要求,因此精确测量珠穆朗玛峰高程是一个国家测绘技术水平和能力的综合体现.已知海拔高程<i>y</i>(m)
            与大气压强<i>x</i>(Pa)之间的关系可用函数 <i>y</i>=<i>k</i> ln
            <i>x</i>+<i>c</i>
            来近似描述,其中<i>c</i>,<i>k</i>可看成常量.又知登顶过程中,海平面的大气压强为1.013×10<sup>5</sup>
            Pa,北坳营地海拔7 028 m,大气压强约为4.21×10<sup>4</sup>Pa.
          </p>
          <p>
            (1) 当大气压强为3.81×10<sup>4</sup> <i>Pa</i> 时,海拔高程是多少?
          </p>
          <p>
            (2) 当测绘人员在登顶过程中测得其所在位置的海拔高程为8 844.43
            m时,大气压强为多少?
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 海平面的海拔高程为0 m.将
          </p>
          <p class="center">
            <i>x</i><sub>1</sub>=1.013×10<sup>5</sup>,<i>y</i><sub>1</sub>=0,
          </p>
          <p class="center">
            <i>x</i><sub>2</sub>=4.21×10<sup>4</sup>,<i>y</i><sub>2</sub>=7
            028,
          </p>
          <p>分别代入函数关系式 <i>y</i>=<i>k</i> ln <i>x</i>+<i>c</i>,</p>
          <p>解得 <i>k</i>≈-8 004.203,<i>c</i>≈92 255.180.</p>
          <p>于是,大气压强与海拔高程的关系式近似为</p>
          <math display="block">
            <mi>y</mi>
            <mo>=</mo>
            <mo>−</mo>
            <mn>8004.203</mn>
            <mi>ln</mi>
            <mo data-mjx-texclass="NONE">⁡</mo>
            <mi>x</mi>
            <mo>+</mo>
            <mn>92255.180</mn>
            <mo>.</mo>
          </math>
          <p class="right">①</p>
          <p>(1) 当<i>x</i>=3.81×10<sup>4</sup>时,</p>
          <p><i>y</i>=-8 004.203×ln(3.81×10<sup>4</sup>)+92 255.180</p>
          <p>≈7 827.090.</p>
          <p>
            所以,当大气压强为3.81×10<sup>4</sup> <i>Pa</i>时,海拔高程约为7
            827.090 m.
          </p>
          <p>(2) 把<i>y</i>=8 844.43代入①式,</p>
          <p class="center">8 844.43=-8 004.203 ln <i>x</i>+92 255.180,</p>
          <p class="center">
            ln <i>x</i>=10.421⇒<i>x</i>=<i>e</i><sup>10.421</sup>≈33
            556.974≈3.36×10<sup>4</sup>.
          </p>
          <p>
            所以,当测绘人员在登顶过程中测得其所在位置的海拔高程为8 844.43
            m时,大气压强约为3.36×10<sup>4</sup>
            <i>Pa</i>,约为海平面大气压强的<math display="0">
              <mfrac>
                <mn>1</mn>
                <mn>3</mn>
              </mfrac>
            </math>.
          </p>
        </div>
      </div>
    </div>
    <!-- 145   -->
    <div class="page-box" page="152">
      <div v-if="showPageList.indexOf(152) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
          </li>
          <li>
            <p><span>145</span></p>
            <p><span>145-146</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c047">习题4.5<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[152]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 146  -->
    <div class="page-box" page="153">
      <div v-if="showPageList.indexOf(153) > -1">
        <ul class="page-header-odd fl al-end">
          <li>146</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    </div>
    <div class="page-box hidePage" page="153"></div>
    <!-- 147 -->
    <div class="page-box" page="154">
      <div v-if="showPageList.indexOf(154) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -475,7 +5950,31 @@
            <p><span>147</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b027">
            数学园地<span class="fontsz1">>>>>>>>></span>
          </h2>
          <p class="center">我们身边的“指数爆炸”</p>
          <p>
            “指数爆炸”不是真正的爆炸,是事物数量的变化呈现爆炸式急剧增长时的现象.用数学语言描述该现象时,可用指数函数模型<i>f</i>(<i>x</i>)=<i>ka<sup>x</sup></i>(<i>a</i>>1)来刻画这种变化规律,这种增长方式也叫作“指数增长”.
          </p>
          <p>
            在幼儿园、小学阶段,同学们经常玩的折纸游戏也蕴含着“指数爆炸”的道理.一张足够大、足够柔软的纸片每对折一次,纸片的厚度就会翻一番,如果持续对折下去,其厚度增长是“爆炸式”的.一张足够大的1
            mm厚的纸片如果连续对折42次,其厚度大约为4.4×10<sup>5</sup>
            km,可以直接从地球连到月球了(地球与月球之间的距离约为3.8×10<sup>5</sup>
            km).
          </p>
          <p>
            在卫生健康方面,我们几乎每天都在和细菌打交道,因为很多细菌的繁殖速度都是呈“指数爆炸”式的.有研究显示,一双未洗过的手上大约有80万个细菌,假设某种细菌以二分裂法繁殖(每分裂一次,数量是原来的两倍),每5秒分裂一次,很快,这双未洗过的手上的细菌就会增长到5
            000多万个,庞大的细菌群体经常会导致我们“病从手入”.所以,保持饭前便后洗手的良好卫生习惯,对我们身体健康有着至关重要的作用.
          </p>
          <p>
            在旅游服务领域,一些消费性政策可能会导致游客人数的“爆炸式”增长.例如,某一景区为吸引更多游客,从2001年开始,施行门票免费活动,游客人数从30万人次增加到2020年的220万人次,平均每年增加1.11倍,这也蕴含着“指数增长”.如果游客人数增长过度,会出现景区人满为患、服务跟不上等问题,因此需要利用函数模型预测未来变化趋势,合理施行旅游活动.
          </p>
          <p>
            从细如发丝的拉面、折纸游戏、细菌繁殖,到景区旅游、银行储蓄等,都与“指数爆炸”有着千丝万缕的联系.在客观世界中,数学早已悄悄潜入我们生活、工作的方方面面.
          </p>
        </div>
      </div>
    </div>
@@ -487,14 +5986,174 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b028">
            单元小结<span class="fontsz1">>>>>>>>></span>
          </h2>
          <p class="bj2"><b>学习导图</b></p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0159-1.jpg" />
          </p>
          <p class="bj2"><b>学习指导</b></p>
          <p>1.实数指数幂.</p>
          <p>(1) 正整数、负整数、分数、指数幂的意义.</p>
          <p>
            ①<math display="0">
              <msup>
                <mi>a</mi>
                <mrow>
                  <mi>n</mi>
                </mrow>
              </msup>
              <mo>=</mo>
              <munder>
                <mrow data-mjx-texclass="OP">
                  <munder>
                    <mrow>
                      <mi>a</mi>
                      <mo>⋅</mo>
                      <mi>a</mi>
                      <mo>⋅</mo>
                      <mi>a</mi>
                      <mo>⋅</mo>
                      <mo>⋯</mo>
                      <mo>⋅</mo>
                      <mi>a</mi>
                    </mrow>
                    <mo>⏟</mo>
                  </munder>
                </mrow>
                <mrow>
                  <mi>n</mi>
                  <mo stretchy="false">↑</mo>
                  <mi>a</mi>
                </mrow>
              </munder>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>n</mi>
                <mo>∈</mo>
                <msub>
                  <mrow>
                    <mi mathvariant="bold">N</mi>
                  </mrow>
                  <mrow>
                    <mo>+</mo>
                  </mrow>
                </msub>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>; ②<math display="0">
              <msup>
                <mi>a</mi>
                <mrow>
                  <mo>−</mo>
                  <mi>n</mi>
                </mrow>
              </msup>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <msup>
                  <mi>a</mi>
                  <mrow>
                    <mi>n</mi>
                  </mrow>
                </msup>
              </mfrac>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>a</mi>
                <mo>≠</mo>
                <mn>0</mn>
                <mo>,</mo>
                <mi>n</mi>
                <mo>∈</mo>
                <msub>
                  <mrow>
                    <mi mathvariant="bold">N</mi>
                  </mrow>
                  <mrow>
                    <mo>+</mo>
                  </mrow>
                </msub>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>;
          </p>
          <p>
            ③<math display="0">
              <msup>
                <mi>a</mi>
                <mrow>
                  <mfrac>
                    <mi>m</mi>
                    <mi>n</mi>
                  </mfrac>
                </mrow>
              </msup>
              <mo>=</mo>
              <mroot>
                <msup>
                  <mi>a</mi>
                  <mrow>
                    <mi>m</mi>
                  </mrow>
                </msup>
                <mi>n</mi>
              </mroot>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>a</mi>
                <mo>&gt;</mo>
                <mn>0</mn>
                <mo>,</mo>
                <mi>m</mi>
                <mo>,</mo>
                <mi>n</mi>
                <mo>∈</mo>
                <msub>
                  <mrow>
                    <mi mathvariant="bold">N</mi>
                  </mrow>
                  <mrow>
                    <mo>+</mo>
                  </mrow>
                </msub>
                <mo>,</mo>
                <mi>n</mi>
                <mo>&gt;</mo>
                <mn>1</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
          <p>(2) 运算性质.</p>
          <p>设<i>a</i>>0,<i>b</i>>0,<i>m</i>,<i>n</i>∈<b>R</b>,则</p>
          <p>
            ①<i>a<sup>m</sup>
              a<sup>n</sup></i>=<i>a<sup>m+n</sup></i>; ②(<i>a<sup>m</sup></i>)<i><sup>n</sup></i>=<i>a<sup>mn</sup></i>; ③(<i>ab</i>)<i><sup>n</sup></i>=<i>a<sup>n</sup>
              b<sup>n</sup></i>.
          </p>
          <p>2.对数.</p>
          <p>
            (1)
            定义:如果<i>a<sup>x</sup></i>=<i>N</i>(<i>a</i>>0,且<i>a</i>≠1),那么数<i>x</i>叫作以<i>a</i>为底<i>N</i>的<b>对数</b>,记作<i>x</i>=log<i><sub>a</sub>N</i>,其中<i>a</i>叫作对数的<b>底数</b>(简称底),<i>N</i>叫作<b>真数</b>.
          </p>
          <p>
            通常我们把log <sub>10</sub><i>N</i>叫作常用对数,简记作lg <i>N</i>;
            把log<sub>e</sub><i>N</i>叫作自然对数,简记作ln <i>N</i>.
          </p>
          <p>
            (2) 性质:①零和负数没有对数;②log<i><sub>a</sub></i>1=0,即1的对数为0;③log<i><sub>a</sub>a</i>=1,即底数的对数为1.
          </p>
        </div>
      </div>
    </div>
    <!-- 149 -->
    <div class="page-box" page="156">
      <div v-if="showPageList.indexOf(156) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
@@ -503,7 +6162,140 @@
            <p><span>149</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>(3) 运算法则.</p>
          <p>
            ①log<i><sub>a</sub></i>(<i>MN</i>)=log<i><sub>a</sub>M</i>+log<i><sub>a</sub>N</i>; ②<math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mfrac>
                <mi>M</mi>
                <mi>N</mi>
              </mfrac>
              <mo>=</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>M</mi>
              <mo>−</mo>
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>N</mi>
            </math>;
          </p>
          <p>
            ③log<i><sub>a</sub>N<sup>n</sup></i>=<i>n</i>log
            <i><sub>a</sub>N</i>(<i>a</i>>0,且<i>a</i>≠1,<i>n</i>∈<b>R</b>).
          </p>
          <p>(4)(选学)换底公式.</p>
          <p>
            <math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>b</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mi>c</mi>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>b</mi>
                </mrow>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mi>c</mi>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>a</mi>
                </mrow>
              </mfrac>
            </math>(<i>a</i>>0,且<i>a</i>≠1;<i>c</i>>0,且<i>c</i>≠1).
          </p>
          <p>
            特别地,<math display="0">
              <msub>
                <mi>log</mi>
                <mrow>
                  <mi>a</mi>
                </mrow>
              </msub>
              <mo data-mjx-texclass="NONE">⁡</mo>
              <mi>b</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mi>lg</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>b</mi>
                </mrow>
                <mrow>
                  <mi>lg</mi>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>a</mi>
                </mrow>
              </mfrac>
            </math>(<i>a</i>>0,且<i>a</i>≠1).
          </p>
          <p>
            对数恒等式:<math display="0">
              <msup>
                <mi>a</mi>
                <mrow>
                  <msub>
                    <mi>log</mi>
                    <mrow>
                      <mi>a</mi>
                    </mrow>
                  </msub>
                  <mo data-mjx-texclass="NONE">⁡</mo>
                  <mi>N</mi>
                </mrow>
              </msup>
              <mo>=</mo>
              <mi>N</mi>
            </math>(<i>a</i>>0,且<i>a</i>≠1).
          </p>
          <p>3.指数函数与对数函数.</p>
          <p>(1) 定义.</p>
          <p>
            形如<i>y</i>=<i>a<sup>x</sup></i>(<i>a</i>>0,且<i>a</i>≠1)的函数叫指数函数;形如<i>y</i>=log<i>
              ax</i>(<i>a</i>>0,且<i>a</i>≠1)的函数叫对数函数.
          </p>
          <p>(2) 图像和性质.</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0160-5.jpg" />
          </p>
          <p>4.指数函数与对数函数的实际应用.</p>
          <p>
            分析实例背景,建立指数函数或对数函数模型,并利用指数函数、对数函数的图像及基本性质解决简单的实际问题.体会“指数爆炸”与“指数衰减”的特点.
          </p>
        </div>
      </div>
    </div>
@@ -511,61 +6303,48 @@
    <div class="page-box" page="157">
      <div v-if="showPageList.indexOf(157) > -1">
        <ul class="page-header-odd fl al-end">
          <li>150</li>
          <li>150-152</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b029">
            单元检测<span class="fontsz1">>>>>>>>></span>
          </h2>
          <div class="bj">
            <examinations :cardList="questionData[157]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 151 -->
    <div class="page-box" page="158">
      <div v-if="showPageList.indexOf(158) > -1">
        <ul class="page-header-box">
          <li>
            <p>第四单元 指数函数与对数函数</p>
          </li>
          <li>
            <p><span>151</span></p>
          </li>
        </ul>
        <div class="padding-116">158</div>
      </div>
    </div>
    <div class="page-box hidePage" page="158"></div>
    <!-- 152 -->
    <div class="page-box" page="159">
      <div v-if="showPageList.indexOf(159) > -1">
        <ul class="page-header-odd fl al-end">
          <li>152</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">159</div>
      </div>
    </div>
    <div class="page-box hidePage" page="159"></div>
  </div>
</template>
<script>
import examinations from "@/components/examinations/index.vue";
export default {
  name: '',
  name: "",
  props: {
    showPageList: {
      type: Array,
      default: [],
    },
    questionData: {
      type: Object,
  },
  components: {},
  },
  components: { examinations },
  data() {
    return {}
    return {};
  },
  computed: {},
  watch: {},
  created() { },
  mounted() { },
  methods: {},
}
};
</script>
<style lang="less" scoped></style>