zhongshujie
2024-10-16 218a387c6191311ed29b1aa81612e0aa3b4fa9dc
src/books/mathBook/view/components/chapter003.vue
@@ -1,21 +1,43 @@
<template>
  <div class="chapter" num="4">
  <div class="chapter" num="3">
    <!-- 第三单元首页 -->
    <div class="page-box" page="74">
      <div v-if="showPageList.indexOf(74) > -1">
        <div class="padding-116">第三单元首页</div>
        <h1 id="a007"><img class="img-0" alt="" src="../../assets/images/dy3.jpg" /></h1>
        <div class="padding-116">
          <p>
            在客观世界中存在各种各样的运动变化现象.如搭载神舟十四号载人飞船的长征二号运载火箭发射过程中,飞船与发射点距离会随着时间的变化而变化;深海勇士号载人潜水器在下潜实验过程中,其压强随着下潜深度的增加而增大;代表新能源技术的光伏发电和风能发电,我国的装机容量随时间变化而增长;我国快速发展的高速铁路,其总里程是逐年增加的,现已突破4万km
            ,稳居世界第一;每个人的体温随着时间的变化而变化;到商店购买同一种饮料的数量越多,付费越多等.这些动态变化现象都表现为变量之间的对应关系,我们常用函数模型来描述这些变量之间的关系和规律,并通过研究函数来认识客观世界.
          </p>
          <p>函数是描述客观世界变化规律和解决数学问题的重要工具.它与代数式、方程、不等式等知识联系紧密,是进一步学习数学的重要基础.函数的概念及其反映的数学思想和方法已广泛渗透到数学的各个领域,并在现实生活中有着广泛的应用.
          </p>
          <p>
            本单元主要学习函数的概念、函数的表示方法、函数的单调性和奇偶性以及函数的应用.本单元的学习,重在感受用直观想象从具体问题中抽象出数学问题,并用精确的数学符号语言表达概念、性质、推理等;掌握研究函数的基本内容、过程和方法;运用建立分段函数、二次函数等数学模型解决实际问题的方法;积累一定的数学经验和方法,提升直观想象、数学抽象、数学建模、逻辑推理等核心素养.
          </p>
        </div>
      </div>
    </div>
    <!-- 目标 -->
    <div class="page-box" page="75">
      <div v-if="showPageList.indexOf(75) > -1">
        <div class="padding-116">目标</div>
        <div class="padding-116">
          <p class="left"><img class="inline2" alt="" src="../../assets/images/xxmb.jpg" /></p>
          <div class="fieldset">
            <p>1.函数的概念.</p>
            <p>能从具体情境中抽象概括出函数的概念,学习用集合语言和对应关系描述函数概念.</p>
            <p>2.函数的表示方法.</p>
            <p>了解函数的三种表示方法,会恰当地选用这些方法表示函数;</p>
            <p>理解分段函数的概念;</p>
            <p>通过研究函数的变化规律来把握客观世界中事物的变化规律.</p>
            <p>3.函数的单调性和奇偶性.</p>
            <p>学习用精准的数学符号语言描述函数的性质,掌握判断函数单调性和奇偶性的方法.</p>
            <p>4.函数的应用.</p>
            <p>初步掌握建立分段函数、二次函数模型来解决实际问题的方法;</p>
            <p>能运用函数的思想和方法解决实际问题,提升核心素养和思维品质.</p>
      </div>
    </div>
      </div>
    </div>
    <!-- 069 -->
    <div class="page-box" page="76">
      <div v-if="showPageList.indexOf(76) > -1">
@@ -27,7 +49,27 @@
            <p><span>069</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b015">3.1 函数的概念<span class="fontsz1">>>>>>>>></span></h2>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" /></p>
          <p>情境1:职业教育助力乡村振兴,某职业院校电子商务专业学生小莉负责帮助某村农户在电商平台上销售2 000 kg橘子,橘子的售价是6元/kg.考查橘子的销售收入<i>y</i>(元) 与销售量<i>x</i>(kg)
            的关系.
          </p>
          <p>情境2:如表3-1所示,2007年4月至2020年7月,我国共成功发射了55颗北斗导航卫星,全面建成了我国自主建设、独立运行的北斗卫星导航系统.考查每年发射卫星的颗数<i>y</i>与年份<i>x</i>的关系.
          </p>
          <p class="img">表3-1</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0080-1.jpg" /></p>
          <p>情境3:为了建设人与自然和谐共生的美丽家园,气温变化是环境监测的重要内容,某城市某年7月某一天的气温如图3-1所示.描述这一天气温的变化情况,考查温度<i>Q</i>与时间<i>t</i>的关系.</p>
          <p class="center"><img class="img-d" alt="" src="../../assets/images/0080-2.jpg" /></p>
          <p class="img">图3-1</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>情境1中,橘子的销售收入<i>y</i>与销售量<i>x</i>的对应关系是<i>y</i>=6<i>x</i>,其中<i>x</i>的变化范围是数集<i>A</i>={<i>x</i>|0≤<i>x</i>≤2
            000},<i>y</i>的取值都在数集<i>B</i>={<i>y</i>|0≤<i>y</i>≤12
            000}中,对于数集<i>A</i>中的任一销售量<i>x</i>,在数集<i>B</i>中都有唯一确定的收入<i>y</i>与之对应,所以橘子的销售收入<i>y</i>是销售量<i>x</i>的函数.</p>
          <p>
            情境2中,<i>x</i>表示年份,<i>y</i>表示发射卫星颗数,<i>x</i>的变化范围是数集<i>A</i>={2007,
          </p>
        </div>
      </div>
    </div>
    <!-- 070 -->
@@ -38,7 +80,36 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">
            2009,2010,2011,2012,2015,2016,2017,2018,2019,2020},<i>y</i>的变化范围是数集<i>B</i>={1,2,3,4,5,6,10,18},对于数集<i>A</i>中的任一年份<i>x</i>,根据表3-1所给定的对应关系,在数集<i>B</i>中都有唯一确定的卫星颗数<i>y</i>与之对应,因此,每年发射卫星颗数<i>y</i>是年份<i>x</i>的函数.
          </p>
          <p>
            情境3中,<i>t</i>的变化范围是数集<i>A</i>={<i>x</i>|0≤<i>t</i>≤24},<i>Q</i>的取值都在数集<i>B</i>={<i>Q</i>|22≤<i>Q</i>≤32}中,对于数集<i>A</i>中的任一时刻<i>t</i>,按照图3-1中曲线给出的对应关系,在数集<i>B</i>中都有唯一确定的气温<i>Q</i>与之对应,所以气温<i>Q</i>是时间<i>t</i>的函数.
          </p>
          <p>在现实生活中,这样的例子还有很多.比如,每小时往蓄水池里注入2 <i>t</i>水,蓄水池的水位与注水时间的对应关系;火车匀速直线行驶的路程与行驶时间的对应关系等.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>一般地,设<i>A</i>,<i>B</i>是非空数集, 如果存在一个对应关系<i>f</i>,使对于集合 <i>A</i> 中的每一个数<i>x</i>,在集合<i>B</i> 中都有唯一确定的数<i>y</i>
            和它对应,那么就把对应关系<i>f</i>称为定义在集合<i>A</i>上的一个<b>函数</b>,记作</p>
          <p class="center"><i>y</i>=<i>f</i>(<i>x</i>),<i>x</i>∈<i>A</i>.</p>
          <p>
            其中,<i>x</i>叫作<b>自变量</b>,<i>x</i>的取值范围<i>A</i>叫作函数的<b>定义域</b>;与<i>x</i>的值相对应的<i>y</i>值叫作函数值,函数值的集合{<i>f</i>(<i>x</i>)|<i>x</i>∈<i>A</i>}叫作函数的<b>值域</b>.
          </p>
          <p>
            比如,初中学习过的一次函数<i>y</i>=3<i>x</i>-2,就是从实数集<b>R</b>(集合<i>A</i>)按照对应关系<i>f</i>(<i>x</i>)=3<i>x</i>-2到实数集<b>R</b>(集合<i>B</i>)的一个函数;二次函数<i>y</i>=<i>x</i><sup>2</sup>+4<i>x</i>-3,就是从实数集<b>R</b>(集合<i>A</i>)按照对应关系<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+4<i>x</i>-3到实数集{<i>y</i>|<i>y</i>≥-7}(集合<i>B</i>)的一个函数.
          </p>
          <p>
            对于函数<i>y</i>=<i>f</i>(<i>x</i>),当自变量在定义域内取一个确定的值<i>a</i>时,相应的函数值记作<i>f</i>(<i>a</i>).例如,函数<i>y</i>=<i>f</i>(<i>x</i>)=3<i>x</i>,当<i>x</i>=3,其函数值是<i>f</i>(3)=3×3=9.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" /></p>
            </div>
            <p class="block">
              函数符号<i>f</i>(<i>x</i>)中的<i>f</i>表示函数关系,不同的函数中,<i>f</i>的含义不同,函数的符号还常用<i>g</i>(<i>x</i>),<i>h</i>(<i>x</i>),<i>φ</i>(<i>x</i>),<i>F</i>(<i>x</i>)等表示.自变量除用<i>x</i>表示外,也常用<i>t</i>,<i>u</i>,<i>v</i>等表示.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 071 -->
@@ -52,7 +123,39 @@
            <p><span>071</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><span
              class="zt-ls"><b>例1</b></span> 我国要建设现代化产业体系,推动制造业高端化发展.李平制作了6个机械零件,它们的直径如表3-2所示.请用函数的概念描述李平制作这批机械零件的直径<i>y</i>(<i>mm</i>
            )与零件的标号<i>x</i>的函数关系.</p>
          <p class="img">表3-2</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0082-1.jpg" /></p>
          <p><span class="zt-ls"><b>解</b></span>
            设<i>x</i>表示零件的标号,<i>y</i>表示零件的直径,由表3-2,{1,2,3,4,5,6}中的任一数,<i>y</i>都有任一确定的值与它对应,所以表3-2确定了<i>y</i>与<i>x</i>的函数关系,其定义域为{1,2,3,4,5,6},值域为{13.40,13.50,13.55,13.60,13.65,13.70}.
          </p>
          <p><span
              class="zt-ls"><b>例2</b></span> 已知函数<i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>-1.当自变量<i>x</i>为-1,0,1,<i>a</i>时,求它们所对应的函数值.
          </p>
          <p><span class="zt-ls"><b>解</b></span> <i>f</i>(-1)=3×(-1)<sup>2</sup>-1=3-1=2,</p>
          <p>  <i>f</i>(0)=3×0<sup>2</sup>-1=0-1=-1,</p>
          <p>  <i>f</i>(1)=3×1<sup>2</sup>-1=3-1=2,</p>
          <p>  <i>f</i>(<i>a</i>)=3×<i>a</i><sup>2</sup>-1=3<i>a</i><sup>2</sup>-1.</p>
          <div class="fieldset">
            <p><b>相关链接</b></p>
            <p class="block">魔方是由6个不同颜色的面组成的正方体,它可组成约4 325亿亿种不同颜色的组合,其最佳复原魔方颜色组合的方法是用数学方法研究出来的.</p>
          </div>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0082-2.jpg" /></p>
          <p class="img">图3-2</p>
          <p><span class="zt-ls"><b>例3</b></span> 如图3-2所示,一个边长是<i>a</i>的正方体,体积是<i>V</i>,写出体积<i>V</i> 随边长<i>a</i>
            变化的函数关系式,并指出函数的自变量和定义域.</p>
          <p><span class="zt-ls"><b>解</b></span> 体积<i>V</i> 随边长<i>a</i>变化的函数关系式是</p>
          <p class="center"><i>V</i>=<i>a</i><sup>3</sup>(<i>a</i>>0).</p>
          <p>其中<i>a</i>是自变量,定义域为{<i>a</i>|<i>a</i>>0}.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[78]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 072 -->
@@ -63,7 +166,47 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>(3) 若函数<i>f</i>(<i>x</i>)=2<i>x</i>-1,则<i>f</i>(<i>t</i>)=___,<i>f</i>(<i>f</i>(5))=____.</p>
            <p>2.一列动车从A城以每小时200km的速度匀速直线行驶4 h后到达B城.该动车在行驶过程中,行驶的路程是时间的函数吗?如果是,请写出函数的定义域、对应关系和值域;如果不是,请说明理由.</p>
          </div>
          <p>从上面的学习可以知道,一个函数包含定义域、对应关系和值域.函数的值域是由函数的定义域和对应关系决定的.</p>
          <p>通常函数的定义域隐含在函数关系中.例如,我们不能计算当<i>x</i>=0时<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>的函数值<i>f</i>(0),因为<i>f</i>(0)无意义,因此,它的定义域是{<i>x</i>|<i>x</i>≠0}.在实际问题中,函数的定义域通常由问题的实际背景所决定.如例3中的函数<i>V</i>=<i>a</i><sup>3</sup>,由于<i>a</i>是正方体的边长,所以函数的定义域为<i>A</i>={<i>a</i>|<i>a</i>>0}.
          </p>
          <p><span
              class="zt-ls"><b>例4</b></span> 就业是最基本的民生,小凯通过自主创办奶品店实现职业发展.为促销自制酸奶,每瓶酸奶的价格是3.5元,每位顾客最多只能购买50瓶.假设某人购买这种酸奶<i>x</i>瓶,应付款<i>y</i>元.那么<i>y</i>(元)是<i>x</i>(瓶)的函数吗?如果是,请写出函数的定义域、对应关系和值域;如果不是,请说明理由.
          </p>
          <p><span class="zt-ls"><b>解</b></span>
            <i>x</i>的取值范围是数集<i>A</i>={<i>x</i>|<i>x</i>≤50,<i>x</i>∈<b>N</b>},<i>y</i>的取值范围是数集<i>B</i>={<i>y</i>|<i>y</i>=3.5<i>x</i>,<i>x</i>≤50,且<i>x</i>∈<b>N</b>}.对于集合<i>A</i>中的任一个数<i>x</i>,按照对应关系,在集合<i>B</i>中都有唯一确定的值与之对应,所以应付款<i>y</i>是购买数量<i>x</i>的函数.
          </p>
          <p>
            函数的定义域是{<i>x</i>|<i>x</i>≤50,<i>x</i>∈<b>N</b>},对应关系是<i>y</i>=3.5<i>x</i>,值域是{<i>y</i>|<i>y</i>=3.5<i>x</i>,<i>x</i>≤50,且<i>x</i>∈<b>N</b>}.
          </p>
          <p>
            例4中函数的定义域为什么是{<i>x</i>|<i>x</i>≤50,<i>x</i>∈<b>N</b>},而不是{<i>x</i>|<i>x</i>∈<b>R</b>}?这是因为此函数的定义域考虑了函数自变量取值的客观实际背景.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0083-2.jpg" /></p>
          <p class="img">图3-3</p>
          <p><span
              class="zt-ls"><b>例5</b></span> 如图3-3所示,在矩形<i>ABCD</i>中,<i>AB</i>的长度是<i>x</i>(m),<i>BC</i>的长度是(12-<i>x</i>)(m),矩形<i>ABCD</i>的面积是<i>y</i>(<i>m</i><sup>2</sup>),则<i>y</i>与<i>x</i>的对应关系是<i>y</i>=<i>x</i>(12-<i>x</i>),求该函数的定义域.
          </p>
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 因为<i>AB</i>的长度为<i>x</i>(m),<i>BC</i>的长度为(12-<i>x</i>)(m),所以必须满足<i>x</i>>0且12-<i>x</i>>0才有实际意义.
          </p>
        </div>
      </div>
    </div>
    <!-- 073 -->
@@ -77,11 +220,192 @@
            <p><span>073</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><span class="zt-ls"><b>解</b></span> 要使函数<i>y</i>=<i>x</i>(12-<i>x</i>)有实际意义,必须满足<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mi>x</mi>
                      <mo>></mo>
                      <mn>0</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mn>12</mn>
                      <mo>−</mo>
                      <mi>x</mi>
                      <mo>></mo>
                      <mn>0</mn>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math>解得0<<i>x</i><12.所以这个函数的定义域是{<i>x</i>|0<<i>x</i><12}.</p>
          <p><span class="zt-ls"><b>例6</b></span> 求下列函数的定义域.</p>
          <p>(1) <math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mrow>
                  <mn>4</mn>
                  <mi>x</mi>
                  <mo>+</mo>
                  <mn>7</mn>
                </mrow>
              </mfrac>
            </math>;(2)<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <msqrt>
                <mi>x</mi>
                <mo>−</mo>
                <mn>3</mn>
              </msqrt>
            </math>;</p>
          <p>(3) <math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <msqrt>
                <mn>4</mn>
                <mi>x</mi>
                <mo>+</mo>
                <mn>8</mn>
              </msqrt>
              <mo>+</mo>
              <mfrac>
                <mn>1</mn>
                <mrow>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>3</mn>
                </mrow>
              </mfrac>
            </math>.</p>
          <p><span class="zt-ls"><b>解</b></span>(1) 要使该函数有意义,必须满足</p>
          <p class="center">4<i>x</i>+7≠0,</p>
          <p>解得</p>
          <math display="block">
            <mi>x</mi>
            <mo>≠</mo>
            <mo>−</mo>
            <mfrac>
              <mn>7</mn>
              <mn>4</mn>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>所以函数<i>f</i>(<i>x</i>)的定义域是<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow>
                  <mo stretchy="false">|</mo>
                </mrow>
                <mi>x</mi>
                <mo>≠</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>7</mn>
                  <mn>4</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>.</p>
          <p>(2) 要使该函数有意义,必须满足</p>
          <p class="center"><i>x</i>-3≥0,</p>
          <p>解得 <i>x</i>≥3.</p>
          <p>所以函数<i>f</i>(<i>x</i>)的定义域是{<i>x</i>|<i>x</i>≥3}.</p>
          <p>(3) 要使该函数有意义,必须满足</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">{</mo>
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mn>4</mn>
                    <mi>x</mi>
                    <mo>+</mo>
                    <mn>8</mn>
                    <mo>≥</mo>
                    <mn>0</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>x</mi>
                    <mo>−</mo>
                    <mn>3</mn>
                    <mo>≠</mo>
                    <mn>0</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                </mtr>
              </mtable>
              <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
            </mrow>
          </math>
          <p>解得</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">{</mo>
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mi>x</mi>
                    <mo>≥</mo>
                    <mo>−</mo>
                    <mn>2</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>x</mi>
                    <mo>≠</mo>
                    <mn>3.</mn>
                  </mtd>
                  <mtd></mtd>
                </mtr>
              </mtable>
              <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
            </mrow>
          </math>
          <p>所以函数<i>f</i>(<i>x</i>)的定义域是{<i>x</i>|<i>x</i>≥-2且<i>x</i>≠3}.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj" >
            <examinations :cardList="questionData[80]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
      </div>
    </div>
      </div>
    </div>
    <!-- 074 -->
    <div class="page-box" page="81">
      <div v-if="showPageList.indexOf(81) > -1">
@@ -90,7 +414,13 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c026">习题3.1<span class="fontsz2">>>></span></h3>
          <div class="bj" >
            <examinations :cardList="questionData[81]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 075 -->
@@ -104,7 +434,200 @@
            <p><span>075</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p class="center"><img class="img-c" alt="" src="../../assets/images/0086-1.jpg" /></p>
            <p class="img">第2(2) 题图</p>
            <p>3.解答题.</p>
            <p>(1) 小梁第一季度和第二季度每月手机费充值如表3-3所示,请用函数的概念描述小梁每月手机费充值金额<i>y</i>(元)与月份<i>x</i>的对应关系.</p>
            <p class="img">表3-3</p>
            <p class="center"><img class="img-a" alt="" src="../../assets/images/0086-2.jpg" /></p>
            <p>(2) 求下列函数的定义域.</p>
            <p>①<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <mi>x</mi>
                  <mrow>
                    <mi>x</mi>
                    <mo>−</mo>
                    <mn>1</mn>
                  </mrow>
                </mfrac>
              </math>;</p>
            <p>②<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <mi>x</mi>
                  <mo>+</mo>
                  <mn>3</mn>
                </msqrt>
                <mo>+</mo>
                <msqrt>
                  <mn>2</mn>
                  <mo>−</mo>
                  <mi>x</mi>
                </msqrt>
              </math>;</p>
            <p>③<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <msup>
                    <mi>x</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo>−</mo>
                  <mn>5</mn>
                  <mi>x</mi>
                  <mo>+</mo>
                  <mn>6</mn>
                </msqrt>
              </math>.</p>
            <p><span class="bj-sp"><b>水平二</b></span></p>
            <p>1.填空题.</p>
            <p>(1) 若函数<i>f</i>(<i>x</i>)=2<i>x</i>+<i>b</i>,且<i>f</i>(-1)=5,则<i>b</i>=____;</p>
            <p>(2) 若函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mn>2</mn>
                        <mo>−</mo>
                        <mi>x</mi>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≤</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <msup>
                          <mi>x</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo>−</mo>
                        <mn>3</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>></mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>,则<i>f</i>(-1)=____,<i>f</i>(<i>f</i>(-1))=</p>
            <p>____;</p>
            <p>(3) 若函数<i>f</i>(<i>t</i>-1)=4<i>t</i>+7,则<i>f</i>(2)=____.</p>
            <p>2.求下列函数的定义域.</p>
            <p>(1) <math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <msup>
                    <mi>x</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo>−</mo>
                  <mn>16</mn>
                </msqrt>
              </math>;</p>
            <p>(2) <math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <mn>1</mn>
                  <msqrt>
                    <msup>
                      <mi>x</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                    <mo>−</mo>
                    <mn>3</mn>
                    <mi>x</mi>
                  </msqrt>
                </mfrac>
              </math>;</p>
            <p>(3) <math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <mn>5</mn>
                  <mo>−</mo>
                  <mrow>
                    <mo stretchy="false">|</mo>
                  </mrow>
                  <mn>3</mn>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>1</mn>
                  <mo stretchy="false">|</mo>
                </msqrt>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <mrow>
                    <mi>x</mi>
                    <mo>−</mo>
                    <mn>2</mn>
                  </mrow>
                </mfrac>
              </math>.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 076 -->
@@ -116,10 +639,52 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>3.已知函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <msqrt>
                  <msup>
                    <mi>x</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                  <mo>−</mo>
                  <mn>4</mn>
                  <mi>x</mi>
                  <mo>+</mo>
                  <mn>3</mn>
                </msqrt>
              </math>.</p>
            <p>(1) 求函数的定义域;</p>
            <p>(2) 比较<i>f</i>(5)与<i>f</i>(3)的大小;</p>
            <p>(3) 求函数的值域.</p>
          </div>
          <h2 id="b016">3.2 函数的表示方法<span class="fontsz1">>>>>>>>></span></h2>
          <h3 id="c027">3.2.1 函数的表示方法<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>我们知道,上一节“观察思考”中的3个情境都涉及变量之间的函数关系.情境1中,销售收入<i>y</i>(元)与销售量<i>x</i>(kg )的函数关系是<i>y</i>=6<i>x</i>,0≤<i>x</i>≤2
            000,这种表示函数关系的方法称为解析法;情境2中,用表格表示了发射卫星的颗数<i>y</i>与年份<i>x</i>的函数关系,这种表示函数关系的方法称为列表法;情境3中,用图像表示了气温<i>Q</i>与时间<i>t</i>的函数关系,这种表示函数关系的方法称为图像法.
          </p>
          <p><span class="zt-ls"><b>例1</b></span> 某辆汽车以30 km/<i>h</i> 的速度匀速直线行驶,用解析法表示汽车行驶的路程<i>s</i>(km
            )与时间<i>t</i>(<i>h</i>)之间的对应关系.</p>
          <p><span class="zt-ls"><b>解</b></span> 这个函数的定义域是{<i>t</i>|<i>t</i>≥0}.</p>
          <p>用解析法可将这个函数表示为<i>s</i>=30<i>t</i>,<i>t</i>≥0.</p>
          <p>用解析法表示函数关系,能够准确、完整地反映两个变量之间的关系.</p>
          <p><span class="zt-ls"><b>例2</b></span> 近年我国快递业务量迅速增长,从2017年至2021年,每年的快递业务量情况如表3-4所示(注:引自国家统计局数据).</p>
          <p class="img">表3-4</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0087-2.jpg" /></p>
          <p>表3-4清晰地反映了年份与当年快递业务量(亿件)之间的对应关系.在实际生活中,用列表法表示变量之间对应关系的例子还有很多.例如,记录某人每天的消费情况、单位职工的每月薪资收入、银行使用的存款“利息表”等.</p>
      </div>
    </div>
    </div>
    <!-- 077 -->
    <div class="page-box" page="84">
      <div v-if="showPageList.indexOf(84) > -1">
@@ -131,7 +696,38 @@
            <p><span>077</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>观察上一节“观察思考”中的情境3,我们发现用图像法表示函数关系时能直观形象地表示出函数的局部变化规律,进而可以预测它的整体变化趋势.但是我们并不能作出所有函数的图像.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0088-1.jpg" /></p>
          <p class="img">图3-4</p>
          <p><span
              class="zt-ls"><b>例3</b></span> 使用环保毛巾替代一次性纸巾,是倡导低碳环保生活的一种方式.某便民超市促销某种小毛巾,每条售价4元,每人限购5条.若顾客购买<i>x</i>条小毛巾需要付款<i>y</i>元,试用图像法表示函数<i>y</i>=<i>f</i>(<i>x</i>).
          </p>
          <p><span class="zt-ls"><b>解</b></span> 函数<i>y</i>=<i>f</i>(<i>x</i>)的定义域是{1,2,3,4,5},用图像法可将这个函数表示为图3-4.</p>
          <p>
            函数的图像既可以是离散的点,也可以是线段、直线、折线、连续的曲线等.在初中,我们用列表、描点、连线的方法画出了正比例函数、反比例函数、一次函数和二次函数的图像.图像法也被大量用于各类数据统计中.例如,GDP(国内生产总值)每年的增长情况、居民消费价格每季度的增长情况、全国人口数量每年的变化情况等.
          </p>
          <p><span class="zt-ls"><b>例4</b></span> 一艘军舰与某海港相距135 n mile(1 n mile ≈1.852 km ),如果军舰以45 n mile/h 的速度向海港前行,则3
            h后可到达海港.假设这艘军舰出发t(h)后,与海港的距离是s(n mile).</p>
          <p>(1) 用解析法表示函数<i>s</i>=<i>f</i>(<i>t</i>);</p>
          <p>(2) 用图像法表示函数<i>s</i>=<i>f</i>(<i>t</i>).</p>
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 计算该军舰从出发地驶入海港所需要的时间,就可得到函数<i>s</i>=<i>f</i>(<i>t</i>)的定义域.用解析法表示函数后,再画出函数的图像.
          </p>
          <p><span class="zt-ls"><b>解</b></span>(1) 因为该军舰从出发地驶入海港需要用时<math display="0">
              <mfrac>
                <mn>135</mn>
                <mn>45</mn>
              </mfrac>
              <mo>=</mo>
              <mn>3</mn>
              <mo>(</mo>
              <mi>h</mi>
              <mo>)</mo>
            </math>,所以函数的定义域为{<i>t</i>|0≤<i>t</i>≤3}.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0088-3.jpg" /></p>
          <p class="img">图3-5</p>
        </div>
      </div>
    </div>
    <!-- 078 -->
@@ -142,7 +738,23 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>又因为该军舰出发<i>t</i>(<i>h</i>)后,行驶的路程为45<i>t n mile</i> ,这时该军舰与海港的距离为(135-45<i>t</i>) <i>n mile</i> .</p>
          <p>所以,用解析法可将函数<i>s</i>=<i>f</i>(<i>t</i>)表示为</p>
          <p class="center"><i>s</i>=-45<i>t</i>+135,0≤<i>t</i>≤3.</p>
          <p>(2) 函数<i>s</i>=<i>f</i>(<i>t</i>)是一次函数,用图像法可将函数表示为图3-5.</p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left"><img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" /></p>
            </div>
            <p class="block">分组探讨,例2中的函数能否用解析法表示?例3中的函数能否用列表法和解析法表示?比较函数的三种表示方法,它们各自的特点是什么?</p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[85]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 079 -->
@@ -156,7 +768,183 @@
            <p><span>079</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c028">3.2.2 分段函数<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" /></p>
          <p>城市轨道交通出行便利,拉近了人们的距离.某城市地铁的票价如表3-6所示.1号线地铁全长21 km .设某位乘客乘坐的地铁行驶的路程为<i>x</i>(km
            ),票价是<i>y</i>(元),则<i>y</i>是<i>x</i>的函数,你能写出这个函数的解析式吗?</p>
          <p class="img">表3-6</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0090-1.jpg" /></p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            从表3-6可以发现,当0<<i>x</i>≤6时,<i>y</i>=2;当6<<i>x</i>≤11时,<i>y</i>=3;当11<<i>x</i>≤16时,<i>y</i>=4;当16<<i>x</i>≤21时,<i>y</i>=5.该函数的解析式如下.
          </p>
          <math display="block">
            <mi>y</mi>
            <mo>=</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">{</mo>
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mn>2</mn>
                    <mo>,</mo>
                    <mn>0</mn>
                    <mo><</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>6</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mn>3</mn>
                    <mo>,</mo>
                    <mn>6</mn>
                    <mo><</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>11</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mn>4</mn>
                    <mo>,</mo>
                    <mn>11</mn>
                    <mo><</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>16</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mn>5</mn>
                    <mo>,</mo>
                    <mn>16</mn>
                    <mo><</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>21</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
              </mtable>
              <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
            </mrow>
          </math>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/gn.jpg" /></p>
            </div>
            <p class="block">分段函数</p>
          </div>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0090-4.jpg" /></p>
          <p class="img">图3-6</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>像上面的函数,在自变量不同的取值范围内,有不同的对应关系,这样的函数叫作<b>分段函数</b>.</p>
          <p>
            例如,函数<i>y</i>=|<i>x</i>|的图像如图3-6所示.根据绝对值的概念,当<i>x</i>≥0时,<i>y</i>=<i>x</i>;当<i>x</i><0时,<i>y</i>=-<i>x</i>.所以这个函数的解析式为
          </p>
          <math display="block">
            <mi>y</mi>
            <mo>=</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">{</mo>
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mi>x</mi>
                    <mo>,</mo>
                    <mi>x</mi>
                    <mo>≥</mo>
                    <mn>0</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mo>−</mo>
                    <mi>x</mi>
                    <mo>,</mo>
                    <mi>x</mi>
                    <mo><</mo>
                    <mn>0.</mn>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
              </mtable>
              <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
            </mrow>
          </math>
          <p>生活中有很多可以用分段函数来描述的实际问题,如出租车计费,每个家庭水、电、燃气的计费,综合所得税纳税额等.</p>
          <p><span class="zt-ls"><b>例1</b></span> 已知函数<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mi>x</mi>
                      <mo>+</mo>
                      <mn>2</mn>
                      <mo>,</mo>
                      <mi>x</mi>
                      <mo>≤</mo>
                      <mn>0</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                    <mtd></mtd>
                    <mtd></mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <msup>
                        <mi>x</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                      <mo>−</mo>
                      <mn>3</mn>
                      <mo>,</mo>
                      <mi>x</mi>
                      <mo>></mo>
                      <mn>0.</mn>
                    </mtd>
                    <mtd></mtd>
                    <mtd></mtd>
                    <mtd></mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math></p>
          <p>(1) 求<i>f</i>(-5),<i>f</i>(4)的值;</p>
        </div>
      </div>
    </div>
    <!-- 080 -->
@@ -167,7 +955,100 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>(2) 求<i>f</i>(<i>f</i>(-1))的值.</p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" /></p>
            </div>
            <p class="block">
              分段函数是一个函数,不能把它看成几个函数,只是在同一个函数的定义域内,不同的取值范围内对应不同的函数关系.它的定义域是各个解析式的自变量取值集合的并集,值域也是各个解析式的函数值集合的并集.它的图像也比较特殊,有时图像是不连续的.
            </p>
          </div>
          <p><span class="zt-ls"><b>解</b></span>(1) 因为-5<0,所以<i>f</i>(-5)=-5+2=-3.</p>
          <p>因为4>0,所以 <i>f</i>(4)=4<sup>2</sup>-3=13.</p>
          <p>(2) 因为-1<0,所以<i>f</i>(-1)=-1+2=1.</p>
          <p>又因为1>0,所以<i>f</i>(<i>f</i>(-1))=<i>f</i>(1)=1<sup>2</sup>-3=-2.</p>
          <p><span
              class="zt-ls"><b>例2</b></span> 我国是用电量最大的国家,国家发出节能减排的号召,鼓励居民节约用电,2019年国家对居民每月用电量进行划分,电价施行“分档递增”.某城市居民每月用电计费价格如表3-7所示.假设这个城市的某居民某月用电量是<i>x</i>(kW·h),需支付电费<i>y</i>(元).
          </p>
          <p class="img">表3-7 某城市居民每月用电计费价格表</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0091-1.jpg" /></p>
          <p>(1) 用解析法表示<i>y</i>与<i>x</i>的函数关系,并画出函数的图像.</p>
          <p>(2) 如果李某家10月的用电量是180 kW·h ,那么他家应该支付电费多少?</p>
          <p>(3) 如果周某家12月支付电费294.26元,那么他家这个月的用电量是多少?</p>
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 首先需明确这个函数的定义域.由于居民用电量不同,其收费标准也不同,所以这是分段函数.其次要厘清自变量<i>x</i>在不同的取值范围内与因变量<i>y</i>之间的对应关系,并列出相应的解析式来解决相关问题.
          </p>
          <p><span class="zt-ls"><b>解</b></span>(1) 函数<i>y</i>=<i>f</i>(<i>x</i>)的定义域是{<i>x</i>|<i>x</i>≥0}.</p>
          <p>当0≤<i>x</i>≤200时,<i>y</i>与<i>x</i>的对应关系是<i>y</i>=0.52<i>x</i>;</p>
          <p>当200<<i>x</i>≤400时,<i>y</i>与<i>x</i>的对应关系是</p>
          <p class="center"><i>y</i>=0.52×200+0.57(<i>x</i>-200)=0.57<i>x</i>-10;</p>
          <p>当<i>x</i>>400时,<i>y</i>与<i>x</i>的对应关系是</p>
          <p><i>y</i>=0.52×200+0.57×200+0.82(<i>x</i>-400)=0.82<i>x</i>-110.</p>
          <p>用解析法表示<i>y</i>与<i>x</i>的函数关系如下.</p>
          <math display="block">
            <mi>y</mi>
            <mo>=</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">{</mo>
              <mtable columnspacing="1em" rowspacing="4pt">
                <mtr>
                  <mtd>
                    <mn>0.52</mn>
                    <mi>x</mi>
                    <mo>,</mo>
                    <mn>0</mn>
                    <mo>≤</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>200</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mn>0.57</mn>
                    <mi>x</mi>
                    <mo>−</mo>
                    <mn>10</mn>
                    <mo>,</mo>
                    <mn>200</mn>
                    <mo><</mo>
                    <mi>x</mi>
                    <mo>≤</mo>
                    <mn>400</mn>
                    <mo>,</mo>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mn>0.82</mn>
                    <mi>x</mi>
                    <mo>−</mo>
                    <mn>110</mn>
                    <mo>,</mo>
                    <mi>x</mi>
                    <mo>></mo>
                    <mn>400.</mn>
                  </mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                  <mtd></mtd>
                </mtr>
              </mtable>
              <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
            </mrow>
          </math>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0092-1.jpg" /></p>
          <p class="img">图3-7</p>
        </div>
      </div>
    </div>
    <!-- 081 -->
@@ -181,10 +1062,249 @@
            <p><span>081</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>这个函数的图像如图3-7所示.</p>
          <p>(2) 因为<i>x</i>=180<200,<i>y</i>=0.52×180=93.60(元).</p>
          <p>所以,李某家10月应该支付电费93.60元.</p>
          <p>(3) 周某家电费是294.26元,由图3-7可估得<i>x</i>>400,因此</p>
          <p class="center">0.82<i>x</i>-110=294.26,</p>
          <p>解得<i>x</i>=493.</p>
          <p>所以,周某家12月的用电量为493 kW·h .</p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left"><img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" /></p>
            </div>
            <p class="block">依法纳税是每个公民的义务.查找国家征收个人所得税税率表, 并讨论:如果一个公司内两位员工一年的个人综合所得额分别为12万和15万,那么这两位员工所缴纳的个人所得税税额分别是多少?
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>1.填空题.</p>
            <p>(1) 若函数<math display="0">
                <mi>y</mi>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mi>x</mi>
                        <mo>+</mo>
                        <mn>1</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>∈</mo>
                        <mrow data-mjx-texclass="INNER">
                          <mo data-mjx-texclass="OPEN">{</mo>
                          <mn>0</mn>
                          <mo>,</mo>
                          <mn>1</mn>
                          <mo>,</mo>
                          <mn>2</mn>
                          <mo data-mjx-texclass="CLOSE">}</mo>
                        </mrow>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mn>2</mn>
                        <mi>x</mi>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>∈</mo>
                        <mrow data-mjx-texclass="INNER">
                          <mo data-mjx-texclass="OPEN">{</mo>
                          <mn>3</mn>
                          <mo>,</mo>
                          <mn>4</mn>
                          <mo data-mjx-texclass="CLOSE">}</mo>
                        </mrow>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>,则<i>f</i>(0)=____,<i>f</i>(3)=____;</p>
            <p>(2) 若函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mn>3</mn>
                        <mi>x</mi>
                        <mo>−</mo>
                        <mn>1</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo><</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <msqrt>
                          <mi>x</mi>
                        </msqrt>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≥</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>____,</p>
            <p><i>f</i>(4)=____;</p>
            <p>(3) 若函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mn>3</mn>
                        <mi>x</mi>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≤</mo>
                        <mo>−</mo>
                        <mn>2</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mn>2020</mn>
                        <mo>,</mo>
                        <mo>−</mo>
                        <mn>2</mn>
                        <mo><</mo>
                        <mi>x</mi>
                        <mo>≤</mo>
                        <mn>2</mn>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <msup>
                          <mi>x</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo>−</mo>
                        <mn>1</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>></mo>
                        <mn>2</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>,则<i>f</i>(-1)=____,<i>f</i>(0)=____,<i>f</i>(3)=____;</p>
            <p>(4) 若函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <msup>
                          <mi>x</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo>+</mo>
                        <mn>3</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo><</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <msqrt>
                          <mn>2</mn>
                          <mi>x</mi>
                          <mo>+</mo>
                          <mn>1</mn>
                        </msqrt>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≥</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>____.</p>
            <p>2.为了促销某品牌的薯片,某电商平台拟采取如下促销方式:每袋薯片原来的价格是6元,若顾客购买30袋及以上,则每袋的价格为5元.假设某顾客一次性购买这种薯片<i>x</i>袋,电商平台收款是<i>y</i>元.
            </p>
            <p>(1) 当<i>x</i><30,<i>x</i>∈<b>N</b>时,写出<i>y</i>与<i>x</i>的函数关系式;</p>
      </div>
    </div>
      </div>
    </div>
    <!-- 082 -->
    <div class="page-box" page="89">
      <div v-if="showPageList.indexOf(89) > -1">
@@ -194,7 +1314,79 @@
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>(2) 用解析法表示函数<i>y</i>=<i>f</i>(<i>x</i>).</p>
            <p>3.某市居民家庭燃气收费采用分段计费方式,如表3-8所示.</p>
            <p>(1) 小黄家8月使用燃气46 m<sup>3</sup>,他家应付燃气费多少元;</p>
            <p>(2) 用解析法表示每户居民家庭每月缴纳燃气费<i>y</i>(元)与使用燃气量<i>x</i>(<i>m</i><sup>3</sup>)的函数关系,并画出函数的图像.</p>
            <p class="img">表3-8 某市居民家庭每月用燃气计费价格表</p>
            <p class="center"><img class="img-a" alt="" src="../../assets/images/0093-1.jpg" /></p>
          </div>
          <h3 id="c029">习题3.2<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <p><span class="bj-sp"><b>水平一</b></span></p>
            <p>1.选择题.</p>
            <p>(1) 某商场有某品牌的电动车30辆可供出售,每辆售价2 000元,那么该商场出售电动车的营业额<i>y</i>(元)与出售的数量<i>x</i>之间的函数关系用解析法表示正确的是( ).</p>
            <p>A.<i>y</i>=2 000<i>x</i></p>
            <p>B.<i>y</i>=2 000<i>x</i>,<i>x</i>≤30</p>
            <p>C.<i>y</i>=2 000<i>x</i>,<i>x</i>≤30,且<i>x</i>∈<b>N</b></p>
            <p>D.<i>y</i>=30<i>x</i></p>
            <p>(2) 若函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <msup>
                          <mi>x</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≤</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mn>2</mn>
                        <mi>x</mi>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>></mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>,则<i>f</i>(-1)+<i>f</i>(1)=( ).</p>
            <p>A.0</p>
            <p>B.2</p>
            <p>C.3</p>
            <p>D.4</p>
            <p>2.市场上新上市的苹果价格是7.2元/kg,用解析法表示购买苹果应付款<i>y</i>(元)与购买质量<i>x</i>(kg )的函数关系.</p>
            <p>3.某快递公司在<i>A</i>城内的运费价格如表3-9所示,用<i>x</i>(kg )表示物品的质量,<i>y</i>(元)表示快递物品的运费.</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 083 -->
@@ -208,10 +1400,95 @@
            <p><span>083</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p class="img">表3-9</p>
            <p class="center"><img class="img-a" alt="" src="../../assets/images/0094-1.jpg" /></p>
            <p>(1) 某顾客在<i>A</i>城内快递物品,如果质量是2.5 kg,那么他应付快递费多少元?</p>
            <p>(2) 用解析法表示函数<i>y</i>=<i>f</i>(<i>x</i>).</p>
            <p>(3) 画出函数<i>y</i>=<i>f</i>(<i>x</i>)的图像.</p>
            <p>4.某城市公交车2号线路共设置10站,乘车收费标准为:乘客若乘坐不超过6站则收费2元;若乘坐超过6 站则收费4元.用<i>x</i>表示乘车的站数,<i>y</i>表示收费金额.</p>
            <p>(1) 用列表法表示公交车收费<i>y</i>与乘车的站数<i>x</i>之间的函数关系;</p>
            <p>(2) 用解析法表示函数<i>y</i>=<i>f</i>(<i>x</i>);</p>
            <p>(3) 画出函数<i>y</i>=<i>f</i>(<i>x</i>)的图像.</p>
            <p>5.某商户以每千克30元的价格购入100 kg
              某种野生菌,并把野生菌放入冷库中,但最多只能存放15天.据预测,这批野生菌的单价每天将上涨0.2元.在不考虑其他因素的情况下,这批野生菌的售价<i>y</i>(元)是存放天数<i>x</i>的函数.</p>
            <p>(1) 写出函数的定义域;</p>
            <p>(2) 用解析法表示<i>y</i>与<i>x</i>的函数关系;</p>
            <p>(3) 设一次性出售这批野生菌可获利<i>P</i>元,用解析法表示<i>P</i>与<i>x</i>的函数关系.</p>
            <p><span class="bj-sp"><b>水平二</b></span></p>
            <p>1.已知函数<math display="0">
                <mi>f</mi>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mi>x</mi>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mi>x</mi>
                        <mo>+</mo>
                        <mn>2</mn>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≤</mo>
                        <mo>−</mo>
                        <mn>1</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <msup>
                          <mi>x</mi>
                          <mrow>
                            <mn>2</mn>
                          </mrow>
                        </msup>
                        <mo>,</mo>
                        <mo>−</mo>
                        <mn>1</mn>
                        <mo><</mo>
                        <mi>x</mi>
                        <mo><</mo>
                        <mn>2</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mn>3</mn>
                        <mi>x</mi>
                        <mo>,</mo>
                        <mi>x</mi>
                        <mo>≥</mo>
                        <mn>2.</mn>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>.</p>
            <p>(1) 求<i>f</i>(0)+<i>f</i>(4)的值;</p>
            <p>(2) 若<i>f</i>(<i>x</i>)=3,求<i>x</i>的值.</p>
            <p>2.某市出租车的计价标准:按出租车实际行驶路程计费,4 km及以下收费10元,超过4 km的部分按2元/km计费.</p>
      </div>
    </div>
      </div>
    </div>
    <!-- 084 -->
    <div class="page-box" page="91">
      <div v-if="showPageList.indexOf(91) > -1">
@@ -220,7 +1497,25 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <div class="bj">
            <p>(1) 如果某人搭乘出租车行驶了20 km,那么他需要付费多少元?</p>
            <p>(2) 请表示出租车收费<i>y</i>(元)与行驶的路程<i>x</i>(km) 之间的函数关系;</p>
            <p>(3) 画出(2) 中函数的图像.</p>
            <p>3.为鼓励居民节约用水,某自来水公司按表3-10的收费标准收取每户居民家庭每月水费.</p>
            <p class="img">表3-10</p>
            <p class="center"><img class="img-a" alt="" src="../../assets/images/0095-1.jpg" /></p>
            <p>(1) 小明家8月的用水量是13 <i>t</i>,小王家8月的用水量是16 <i>t</i>,小明家和小王家分别应付水费多少元?</p>
            <p>(2) 写出每户家庭居民每月付水费<i>y</i>(元)与用水量<i>x</i>(<i>t</i>)的函数关系,并画出该函数的图像;</p>
            <p>(3) 若小李家9月付水费66元,则他家这个月的用水量是多少?</p>
          </div>
          <h2 id="b017">3.3 函数的单调性和奇偶性<span class="fontsz1">>>>>>>>></span></h2>
          <h3 id="c030">3.3.1 函数的单调性<span class="fontsz2">>>></span></h3>
          <p>函数是描述事物运动变化规律的模型,我们可以通过研究函数的性质来把握客观世界中事物的变化规律.</p>
          <p>
            比如,1970年4月24日我国发射了第一颗人造卫星“东方红一号”.2003年10月15日9:00,我国自行研制的“神舟”五号载人飞船在酒泉卫星发射中心成功发射升空,历时9时9分50秒后进入预定轨道,飞船绕地球飞行14圈,经过21小时23分钟后,于16日6:23载着英雄杨利伟成功着陆.在发射过程中,随着时间的变化,“长征”运载火箭飞行的高度越来越高;“神舟”五号飞船着陆过程中,随着时间的变化,飞船离地面的高度越来越低.发射升空的运载火箭(或着陆的载人飞船)离地面的高度是飞行时间的函数.科技工作者研究这些函数后,才能够把飞船按计划送入预定轨道或确保飞船安全着陆.这是我们认识客观规律的重要方法和途径.
          </p>
        </div>
      </div>
    </div>
    <!-- 085 -->
@@ -234,7 +1529,37 @@
            <p><span>085</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/gcsk.jpg" /></p>
          <p>
            在初中,我们曾经利用函数图像探究函数值<i>y</i>随着自变量<i>x</i>的增大而增大(或减小)的变化规律.仔细观察图3-8的函数图像,随着自变量<i>x</i>的增大,函数值<i>y</i>的变化趋势分别是怎样的?
          </p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0096-1.jpg" /></p>
          <p class="img">图3-8</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>观察图3-8,函数<i>y</i>=<i>x</i>和<i>y</i>=-<i>x</i>的定义域是<b>R</b>.当自变量<i>x</i>的值逐渐增大时,图3-8(1)
            中,函数图像从左到右是上升的,函数值<i>y</i>随着自变量<i>x</i>的增大而增大.图3-8(2) 中,函数图像从左到右是下降的,函数值<i>y</i>随着自变量<i>x</i>的增大而减小.图3-8(3)
            中,函数<i>y</i>=<i>x</i><sup>2</sup>的定义域是<b>R</b>.可以看出,在(-∞,0)内,函数图像从左到右是下降的,函数值<i>y</i>随着自变量<i>x</i>的增大而减小;在(0,+∞)内,函数图像从左到右是上升的,函数值<i>y</i>随着自变量<i>x</i>的增大而增大.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/gn.jpg" /></p>
            </div>
            <p class="block">单调性</p>
            <p class="block">增函数</p>
            <p class="block">减函数</p>
            <p class="block">单调区间</p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>像上述情形,在某个区间内,函数值随自变量的增大而增大(或减小)的性质叫作函数的<b>单调性</b>.</p>
          <p>一般地,设函数的定义域为<i>D</i>,区间<i>A</i>⊆<i>D</i>.</p>
          <p>(1)
            如果对任意<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>∈<i>A</i>,当<i>x</i>1<<i>x</i>2时,都有<i>f</i>(<i>x</i><sub>1</sub>)<<i>f</i>(<i>x</i><sub>2</sub>),那么就称函数<i>f</i>(<i>x</i>)在区间<i>A</i>上<b>单调递增</b>,如图3-9所示.特别地,当函数<i>f</i>(<i>x</i>)在它的定义域上单调递增时,我们就称它是<b>增函数</b>.
          </p>
          <p>(2)
            如果对任意<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>∈<i>A</i>,当<i>x</i><sub>1</sub><<i>x</i><sub>2</sub>时,都有<i>f</i>(<i>x</i><sub>1</sub>)><i>f</i>(<i>x</i><sub>2</sub>),那么就称函数<i>f</i>(<i>x</i>)在区间<i>A</i>上<b>单调递减</b>,如图3-10所示.特别地,当函数<i>f</i>(<i>x</i>)在它的定义域上单调递减时,我们就称它是<b>减函数</b>.
          </p>
        </div>
      </div>
    </div>
    <!-- 086 -->
@@ -245,10 +1570,29 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p>
            如果函数<i>y</i>=<i>f</i>(<i>x</i>)在区间<i>A</i>上单调递增或单调递减,那么就称函数<i>y</i>=<i>f</i>(<i>x</i>)在区间<i>A</i>上具有(严格的)单调性,并且区间<i>A</i>叫作函数<i>y</i>=<i>f</i>(<i>x</i>)的<b>单调区间</b>.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0097-1.jpg" /></p>
          <p class="img">图3-9</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0097-2.jpg" /></p>
          <p class="img">图3-10</p>
          <p>
            例如,图3-8中函数<i>y</i>=<i>x</i>是<b>R</b>上的增函数,区间(-∞,+∞)是函数<i>y</i>=<i>x</i>的增区间;函数<i>y</i>=-<i>x</i>是<b>R</b>上的减函数,区间(-∞,+∞)是函数<i>y</i>=-<i>x</i>的减区间;函数<i>y</i>=<i>x</i><sup>2</sup>在区间(-∞,0)上是减函数,在区间(0,+∞)上是增函数,区间(-∞,0)和(0,+∞)分别是函数<i>y</i>=<i>x</i><sup>2</sup>的减区间、增区间.
          </p>
          <p><span class="zt-ls"><b>例1</b></span> 图3-11是函数<i>y</i>=<i>f</i>(<i>x</i>),<i>x</i>∈[-1,8]的图像,根据图像回答下列问题.</p>
          <p>(1) 当<i>x</i>取何值时,函数值最大,最大值是多少?当<i>x</i>取何值时,函数值最小,最小值是多少?</p>
          <p>(2) 说明该函数的单调区间及在每一个区间上的单调性.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0097-3.jpg" /></p>
          <p class="img">图3-11</p>
          <p><span class="zt-ls"><b>解</b></span>(1) 由图可知,当<i>x</i>=2时,函数值最大,最大值是3;当<i>x</i>=6时,函数值最小,最小值是-3.</p>
          <p>(2)
            函数<i>y</i>=<i>f</i>(<i>x</i>)的单调区间有[-1,2],[2,6],[6,8].函数<i>y</i>=<i>f</i>(<i>x</i>)在区间[-1,2]和[6,8]上都是增函数,在区间[2,6]上是减函数.
          </p>
      </div>
    </div>
    </div>
    <!-- 087 -->
    <div class="page-box" page="94">
      <div v-if="showPageList.indexOf(94) > -1">
@@ -260,7 +1604,171 @@
            <p><span>087</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0098-1.jpg" /></p>
          <p class="img">图3-12</p>
          <p><span class="zt-ls"><b>例2</b></span> 二次函数<i>f</i>(<i>x</i>)=-<i>x</i><sup>2</sup>+2<i>x</i>+3的图像如图3-12所示.
          </p>
          <p>(1) 求函数<i>f</i>(<i>x</i>)的对称轴方程、顶点坐标;</p>
          <p>(2) 找出函数<i>f</i>(<i>x</i>)的单调区间;</p>
          <p>(3) 当<i>x</i>∈[2,5]时,求函数<i>f</i>(<i>x</i>)的最大值和最小值.</p>
          <p><span class="zt-ls"><b>解</b></span>(1) 二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>的对称轴方程是<math
              display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mfrac>
                <mi>b</mi>
                <mrow>
                  <mn>2</mn>
                  <mi>a</mi>
                </mrow>
              </mfrac>
            </math>,顶点坐标是<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>b</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                    <mi>c</mi>
                    <mo>−</mo>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,则</p>
          <math display="block">
            <mtable columnalign="left" columnspacing="1em" rowspacing="4pt">
              <mtr>
                <mtd>
                  <mo>−</mo>
                  <mfrac>
                    <mi>b</mi>
                    <mrow>
                      <mn>2</mn>
                      <mi>a</mi>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mn>2</mn>
                    <mrow>
                      <mn>2</mn>
                      <mo>×</mo>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>1</mn>
                      <mo stretchy="false">)</mo>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mn>1,</mn>
                </mtd>
              </mtr>
              <mtr>
                <mtd>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mi>a</mi>
                      <mi>c</mi>
                      <mo>−</mo>
                      <msup>
                        <mi>b</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mrow>
                      <mn>4</mn>
                      <mi>a</mi>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mo>×</mo>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>1</mn>
                      <mo stretchy="false">)</mo>
                      <mo>×</mo>
                      <mn>3</mn>
                      <mo>−</mo>
                      <msup>
                        <mn>2</mn>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mrow>
                      <mn>4</mn>
                      <mo>×</mo>
                      <mo stretchy="false">(</mo>
                      <mo>−</mo>
                      <mn>1</mn>
                      <mo stretchy="false">)</mo>
                    </mrow>
                  </mfrac>
                  <mo>=</mo>
                  <mn>4</mn>
                  <mo>.</mo>
                </mtd>
              </mtr>
            </mtable>
          </math>
          <p>因此,函数<i>f</i>(<i>x</i>)的对称轴方程是<i>x</i>=1,顶点坐标是(1,4).</p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" /></p>
            </div>
            <p class="block">函数的单调性是对定义域内某个区间而言的.一个函数在其定义域上不一定具有单调性,但是在定义域内的子区间上可能具有单调性,这就是函数单调性的局部性质.</p>
          </div>
          <p>(2) 由图像可知,函数<i>f</i>(<i>x</i>)的增区间是(-∞,1],减区间是[1,+∞).</p>
          <p>(3) 因为[2,5]⫋[1,+∞),且函数在区间[1,+∞)上是减函数,所以当<i>x</i>∈[2,5]时,</p>
          <p>函数<i>f</i>(<i>x</i>)的最大值是<i>f</i>(2)=-2<sup>2</sup>+2×2+3=3,</p>
          <p>函数<i>f</i>(<i>x</i>)的最小值是<i>f</i>(5)=-5<sup>2</sup>+2×5+3=-12.</p>
          <p><span class="zt-ls"><b>例3</b></span> 判断函数<i>f</i>(<i>x</i>)=<i>x</i>+1在(-∞,+∞)上的单调性.</p>
          <p><span class="zt-ls"><b>解</b></span>
            任取<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>∈(-∞,+∞),且<i>x</i><sub>1</sub><<i>x</i><sub>2</sub>,那么</p>
          <p class="center">
            <i>f</i>(<i>x</i><sub>1</sub>)=<i>x</i><sub>1</sub>+1,<i>f</i>(<i>x</i><sub>2</sub>)=<i>x</i><sub>2</sub>+1,
          </p>
          <p>则</p>
          <p class="center">
            <i>f</i>(<i>x</i><sub>1</sub>)-<i>f</i>(<i>x</i><sub>2</sub>)=<i>x</i><sub>1</sub>+1-<i>x</i><sub>2</sub>-1=<i>x</i><sub>1</sub>-<i>x</i><sub>2</sub><0,
          </p>
          <p>
            所以<i>f</i>(<i>x</i><sub>1</sub>)<<i>f</i>(<i>x</i><sub>2</sub>),函数<i>f</i>(<i>x</i>)=<i>x</i>+1在(-∞,+∞)上是增函数.
          </p>
          <p>当<i>k</i>>0时,函数<i>f</i>(<i>x</i>)=<i>kx</i>+<i>b</i>在区间(-∞,+∞)上是增函数,如图3-13(1)
            所示;当<i>k</i><0时,函数<i>f</i>(<i>x</i>)=<i>kx</i>+<i>b</i>在区间(-∞,+∞)上是减函数,如图3-13(2) 所示.</p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0098-5.jpg" /></p>
          <p class="img">图3-13</p>
        </div>
      </div>
    </div>
    <!-- 088 -->
@@ -271,7 +1779,13 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[95]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 089 -->
@@ -285,10 +1799,53 @@
            <p><span>089</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c031">
            3.3.2 函数的奇偶性<span class="fontsz2">>>></span>
          </h3>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/wttc.jpg" />
          </p>
          <p>
            函数<i>f</i>(<i>x</i>)=|<i>x</i>|和<i>g</i>(<i>x</i>)=<i>x</i><sup>2</sup>的图像的对称性如何?
          </p>
          <textarea cols="30" rows="4" v-model="chapterData.txtOne" placeholder="请输入内容" class="w100 ta-br textarea-text"
            @input="handleChapterData"></textarea>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/tjfx.jpg" />
          </p>
          <p>
            列出表3-11和表3-12,画出函数<i>f</i>(<i>x</i>)=|<i>x</i>|
            和<i>g</i>(<i>x</i>)=<i>x</i><sup>2</sup>的图像,如图3-14(1)
            和(2) 所示.
          </p>
          <p class="img">表3-11</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0100-1.jpg" />
          </p>
          <p class="img">表3-12</p>
          <p class="center">
            <img class="img-a" alt="" src="../../assets/images/0100-2.jpg" />
          </p>
          <iframe src="https://www.geogebra.org/calculator" frameborder="0" class="iframe-box"></iframe>
          <p class="center openImgBox">
            <img class="img-b" alt="" src="../../assets/images/0100-3.jpg" />
          </p>
          <p class="img">图3-14</p>
          <p>
            观察图3-14(1)
            发现,函数<i>f</i>(<i>x</i>)=|<i>x</i>|的定义域是(-∞,+∞),函数图像关于<i>y</i>轴对称.从表3-11中还发现,当自变量取一对相反数时,对应的函数值相等,如<i>f</i>(-1)=<i>f</i>(1)=1,<i>f</i>(-2)=<i>f</i>(2)=2,<i>f</i>(-3)=<i>f</i>(3)=3,…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>f</i>(-<i>x</i>)=|-<i>x</i>|=|<i>x</i>|=<i>f</i>(<i>x</i>),即<i>f</i>(-<i>x</i>)=<i>f</i>(<i>x</i>).
          </p>
          <p>
            图3-14(2)
            中,函数<i>g</i>(<i>x</i>)=<i>x</i><sup>2</sup>的定义域是(-∞,+∞),函数图像也关于<i>y</i>轴对称.表3-12中,当自变量取一对相反数时,对应的函数值相等,如<i>g</i>(-1)=<i>g</i>(1)=1,<i>g</i>(-2)=<i>g</i>(2)=4,<i>g</i>(-3)=<i>g</i>(3)=9,…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>g</i>(-<i>x</i>)=(-<i>x</i>)<sup>2</sup>=<i>x</i><sup>2</sup>=<i>g</i>(<i>x</i>),即<i>g</i>(-<i>x</i>)=<i>g</i>(<i>x</i>).
          </p>
          <p>
            这两个函数的图像都关于 <i>y</i> 轴对称;当自变量取定义域中任意一对相
          </p>
      </div>
    </div>
    </div>
    <!-- 090 -->
    <div class="page-box" page="97">
      <div v-if="showPageList.indexOf(97) > -1">
@@ -297,7 +1854,66 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">反数时,对应的函数值都相等,这种函数就是偶函数.</p>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" />
          </p>
          <p>
            一般地,设函数<i>f</i>(<i>x</i>)的定义域为<i>D</i>,如果对于<span class="u">任意</span><i>x</i>∈<i>D</i>,<span
              class="u">都有</span>-<i>x</i>∈<i>D</i>,且<i>f</i>(-<i>x</i>)=<i>f</i>(<i>x</i>),那么函数<i>f</i>(<i>x</i>)就叫作<b>偶函数</b>,如图3-15所示.<b>偶函数的图像关于<i>y</i>轴对称</b>.
          </p>
          <p>
            我们可以由函数的图像是否关于<i>y</i>轴对称来判断函数是不是偶函数.
          </p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/images/0101-1.jpg" style="width: 40%" />
          </p>
          <p class="img fl fl-cn ju-cn">
            <span>图3-15</span>
            <el-tooltip class="item" effect="dark" :content="chapterData.isCollectImg ? '点击取消' : '点击收藏'"
              placement="top-start">
              <img :src="collectResourceList.findIndex(item => item.id == '722FE833') > -1 ? collectCheck : collectImg"
                alt="" class="collect-btn" @click="handleCollect('img')" />
            </el-tooltip>
          </p>
          <video :src="videoPath" webkit-playsinline="true" x-webkit-airplay="true" playsinline="true"
            x5-video-orientation="h5" x5-video-player-fullscreen="true" x5-playsinline="" controls
            controlslist="nodownload" class="video-border w100"></video>
          <p class="img fl fl-cn ju-cn">
            <span>视频:判数函数奇偶性的方法和步骤 </span>
            <el-tooltip class="item" effect="dark" :content="chapterData.isCollectVideo ? '点击取消' : '点击收藏'"
              placement="top-start">
              <img
                :src="collectResourceList.findIndex(item => item.id == 'a28cd862d61b5df2201406b76e9f01b0') > -1 ? collectCheck : collectImg"
                alt="" class="collect-btn" @click="handleCollect('video')" />
            </el-tooltip>
          </p>
          <p class="fl">
            <span>
              <span class="zt-ls"><b>例1</b></span> 根据图3-16中函数的图像,判断哪些函数是偶函数.
            </span>
            <span class="btn-box" @click="isShowExampleOne = !isShowExampleOne">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="center openImgBox">
            <img class="img-b" alt="" src="../../assets/images/0101-2.jpg" />
          </p>
          <p class="img">图3-16</p>
          <div v-if="isShowExampleOne">
            <p>
              <span class="zt-ls"><b>解</b></span> 在四个函数图像中,图3-16(1)
              和图3-16(4) 的函数图像关于<i>y</i>轴对称;图3-16(2)
              和图3-16(3)
              的函数图像不关于<i>y</i>轴对称.根据偶函数的图像具有关于<i>y</i>轴对称的特点,图3-16(1)和图3-16(4)的函数是偶函数,图3-16(2)和图3-16(3)的函数不是偶函数.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 091 -->
@@ -311,7 +1927,193 @@
            <p><span>091</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="fl">
            <span>
              <span class="zt-ls"><b>例2</b></span>
               已知<i>f</i>(<i>x</i>)=|<i>x</i>|+1图像在<i>y</i>轴右边的部分如图3-17所示.试画出这个函数图像在<i>y</i>轴左边的部分.
            </span>
            <span class="btn-box" @click="isShowExampleTwo = !isShowExampleTwo">
              <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                <path class="a"
                  d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                  transform="translate(-3327.144 15329)" />
              </svg>
            </span>
          </p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/images/0102-1.jpg" style="width: 40%" />
          </p>
          <p class="img">图3-17</p>
          <p v-if="isShowExampleTwo">
            <span class="zt-ls"><b>解</b></span>
            函数<i>f</i>(<i>x</i>)=|<i>x</i>|+1的定义域是(-∞,+∞),因为它是偶函数,所以根据其图像关于<i>y</i>轴对称的特点,即可画出这个函数在<i>x</i>∈(-∞,0]上的图像.
          </p>
          <p>
            如图3-18所示,在<i>y</i>轴右边的图像上取两点<i>A</i>和<i>B</i>,分别画出它们关于<i>y</i>轴对称的点<i>A</i>′和<i>B</i>′,然后连线<i>A</i>′<i>B</i>′,就得到这个函数的图像在<i>y</i>轴左边的部分.
          </p>
          <p class="center openImgBox">
            <img class="img-c" alt="" src="../../assets/images/0102-2.jpg" style="width: 40%" />
          </p>
          <p class="img">图3-18</p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              一个函数是不是偶函数,可以由函数的图像是否关于<i>y</i>轴对称来判断;当函数用解析法表示时,可以用偶函数的定义来判断.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例3</b></span> 判断下列函数是不是偶函数.
          </p>
          <ul>
            <li class="fl fl-cn">
              <p>(1) <i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>+1;</p>
              <span class="btn-box" @click="isShowExampleThree = !isShowExampleThree">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                </svg>
              </span>
              <span class="btn-box" @click="openThinkingDialog">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.545" height="18.112" viewBox="0 0 20.545 22.112">
                  <path class="a"
                    d="M3771.2-14311.889a2.356,2.356,0,0,1-1.727-.626c-.027-.054-.053-.1-.079-.148l0-.007c-.123-.224-.2-.371-.076-.629a.869.869,0,0,1,.784-.471.205.205,0,0,1,.158.079.205.205,0,0,0,.158.079.187.187,0,0,0,.038.1.143.143,0,0,0,.117.05h.158a.573.573,0,0,0,.471.158,2.2,2.2,0,0,0,.916-.3l.023-.011a.572.572,0,0,1,.471-.158.575.575,0,0,1,.626.626.526.526,0,0,1,.036.409.664.664,0,0,1-.349.375A3.582,3.582,0,0,1,3771.2-14311.889Zm-1.885-1.723h-.155a.718.718,0,0,1-.784-.63.38.38,0,0,1-.021-.3.976.976,0,0,1,.492-.485l4.86-1.252a1.047,1.047,0,0,1,.784.626c.151.3-.128.61-.471.784l-4.705,1.256Zm-.155-1.885H3769a.716.716,0,0,1-.784-.626c-.149-.3.129-.611.471-.784l4.234-1.1v-.158l-.021.007a7.808,7.808,0,0,1-1.861.31,5.3,5.3,0,0,1-3.137-.942,5.789,5.789,0,0,1-2.666-4.076,6.421,6.421,0,0,1,1.256-5.018,7.038,7.038,0,0,1,2.194-1.568,7.848,7.848,0,0,1,2.666-.472,6.43,6.43,0,0,1,2.979.784,4.958,4.958,0,0,1,2.2,2.194,5.522,5.522,0,0,1,.313,5.177,13.113,13.113,0,0,1-1.256,1.882l-.313.313a2.156,2.156,0,0,0-.78,1.244l0,.012a1.731,1.731,0,0,1-1.727,1.723l-.313.158-3.292.939Zm1.256-6.271v1.256h1.41v-1.256Zm.784-4.234c.718,0,1.1.271,1.1.784a.925.925,0,0,1-.316.783l-.468.156a2.235,2.235,0,0,0-.63.471l-.012.024a2.2,2.2,0,0,0-.3.918v.155h1.1v-.155a1.2,1.2,0,0,1,.313-.629.543.543,0,0,0,.315-.153c.007,0,.315,0,.315-.16a1.226,1.226,0,0,0,.626-.626,2.277,2.277,0,0,0,.313-1.1,1.409,1.409,0,0,0-.626-1.252,2.337,2.337,0,0,0-1.569-.471,2.258,2.258,0,0,0-2.507,2.353l1.252.154A1.121,1.121,0,0,1,3771.2-14326Zm-6.51,9.645a.769.769,0,0,1-.549-.237.772.772,0,0,1-.235-.549.772.772,0,0,1,.235-.548l.939-.939a.781.781,0,0,1,.55-.234.772.772,0,0,1,.547.234.772.772,0,0,1,.238.549.772.772,0,0,1-.238.549l-.939.938A.769.769,0,0,1,3764.686-14316.356Zm13.174-.157a.774.774,0,0,1-.549-.234l-.943-.942a.678.678,0,0,1-.233-.47.678.678,0,0,1,.233-.47.774.774,0,0,1,.549-.234.774.774,0,0,1,.549.234l.942.939a.427.427,0,0,1,.228.324.74.74,0,0,1-.228.618A.774.774,0,0,1,3777.859-14316.514Zm2.9-6.351h-1.414c-.469-.158-.784-.474-.784-.784a.743.743,0,0,1,.784-.784h1.414a.743.743,0,0,1,.784.784A.743.743,0,0,1,3780.761-14322.864Zm-17.566-.158h-1.41c-.469-.157-.784-.473-.784-.784a.743.743,0,0,1,.784-.784h1.41a.743.743,0,0,1,.784.784A.743.743,0,0,1,3763.195-14323.022Zm13.861-5.723a.759.759,0,0,1-.529-.237.776.776,0,0,1-.235-.549.772.772,0,0,1,.235-.549l.939-.938a.44.44,0,0,1,.413-.238.759.759,0,0,1,.529.238.772.772,0,0,1,.235.549.772.772,0,0,1-.235.548l-.942.939A.435.435,0,0,1,3777.055-14328.745Zm-11.429,0a.776.776,0,0,1-.55-.237l-.939-1.1a.678.678,0,0,1-.235-.469.678.678,0,0,1,.235-.47.772.772,0,0,1,.549-.238.772.772,0,0,1,.549.238l.939,1.1a.675.675,0,0,1,.238.47.675.675,0,0,1-.238.47A.767.767,0,0,1,3765.626-14328.745Zm5.724-2.273a.743.743,0,0,1-.784-.785v-1.413c.157-.469.473-.784.784-.784a.743.743,0,0,1,.784.784v1.413A.743.743,0,0,1,3771.35-14331.019Z"
                    transform="translate(-3761 14334.001)" />
                </svg>
              </span>
              <span class="btn-box" @click="stepDialog = true">
                <svg xmlns="http://www.w3.org/2000/svg" width="15.28" height="17.563" viewBox="0 0 19.28 20.563">
                  <g transform="translate(-109.056 -82.941)">
                    <path class="a"
                      d="M3439.656-15185.7h-12.643a1.815,1.815,0,0,1-1.816-1.81v-16.944a1.83,1.83,0,0,1,1.816-1.809h15.674a1.8,1.8,0,0,1,1.79,1.809v13.93h-4.217a.6.6,0,0,0-.6.6v4.217h0Zm-9.819-2.764a.5.5,0,0,0-.5.5.5.5,0,0,0,.5.5h4a.5.5,0,0,0,.5-.5.5.5,0,0,0-.5-.5Zm0-2a.5.5,0,0,0-.5.5.5.5,0,0,0,.5.5h4a.5.5,0,0,0,.5-.5.5.5,0,0,0-.5-.5Zm1.393-8.525a2.416,2.416,0,0,0-2.416,2.411,2.421,2.421,0,0,0,2.416,2.42h.111a1.8,1.8,0,0,0,1.1,1.1,1.809,1.809,0,0,0,.6.107,1.808,1.808,0,0,0,1.7-1.206h4.072l-.172.172a.635.635,0,0,0-.179.454.569.569,0,0,0,.179.4.637.637,0,0,0,.435.176.6.6,0,0,0,.424-.176l1.2-1.214a.618.618,0,0,0,0-.858l-1.2-1.187a.619.619,0,0,0-.431-.176.6.6,0,0,0-.427.176.615.615,0,0,0,0,.854l.172.176h-4.072a1.8,1.8,0,0,0-1.1-1.1,1.755,1.755,0,0,0-.6-.1,1.808,1.808,0,0,0-1.7,1.206h-.111a.554.554,0,0,1-.145-.016,1.2,1.2,0,0,1-.84-.4,1.217,1.217,0,0,1-.3-.878,1.2,1.2,0,0,1,1.206-1.137.407.407,0,0,1,.069,0h3.729a1.807,1.807,0,0,0,1.118,1.114,1.816,1.816,0,0,0,.576.091,1.789,1.789,0,0,0,1.7-1.205h.309a2.415,2.415,0,0,0,1.679-.775,2.407,2.407,0,0,0,.637-1.729,2.411,2.411,0,0,0-2.419-2.324h-6.213a1.821,1.821,0,0,0-1.107-1.1,1.8,1.8,0,0,0-.6-.1,1.814,1.814,0,0,0-1.706,1.2,1.8,1.8,0,0,0,.077,1.389,1.787,1.787,0,0,0,1.026.92,1.841,1.841,0,0,0,.6.1,1.807,1.807,0,0,0,1.706-1.2h6.266a1.179,1.179,0,0,1,.836.4,1.22,1.22,0,0,1,.305.874,1.213,1.213,0,0,1-1.214,1.146h-.172a1.8,1.8,0,0,0-1.118-1.118,1.711,1.711,0,0,0-.576-.1,1.8,1.8,0,0,0-1.706,1.214Z"
                      transform="translate(-3316.14 15289.201)" />
                    <path class="a"
                      d="M316.806,239.727a.6.6,0,1,0,.6-.6A.6.6,0,0,0,316.806,239.727Zm-5.421-4.207a.6.6,0,1,0,.6.6A.587.587,0,0,0,311.385,235.52Zm2.4,8.438a.607.607,0,1,0-.6-.613A.621.621,0,0,0,313.789,243.958Z"
                      transform="translate(-196.896 -148.921)" />
                    <path class="a" d="M763.392,793.79l3.262-3.262h-3.262Z" transform="translate(-638.661 -690.634)" />
                  </g>
                </svg>
              </span>
              <span class="btn-box" @click="openMathDiaolog">
                <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="15.323"
                  height="15.939" viewBox="0 0 18.323 15.939">
                  <g transform="translate(-398 -946)">
                    <path class="a"
                      d="M11.985,1.241a.894.894,0,0,1-.242.623.79.79,0,0,1-.6.263.644.644,0,0,1-.547-.229,3.034,3.034,0,0,1-.339-.741A.935.935,0,0,0,10.1.846a.4.4,0,0,0-.291-.1.36.36,0,0,0-.333.18,1.836,1.836,0,0,0-.2.478L8.251,4.753H9.7l-.27.79H8.043l-1.51,4.849a27.9,27.9,0,0,1-1.06,2.93,5.5,5.5,0,0,1-1.316,1.857,3.11,3.11,0,0,1-2.189.755,2.258,2.258,0,0,1-1.455-.409A1.192,1.192,0,0,1,0,14.618a.97.97,0,0,1,.27-.693.894.894,0,0,1,.693-.291.741.741,0,0,1,.693.27,1.815,1.815,0,0,1,.2.693c0,.381.2.575.492.575a.817.817,0,0,0,.693-.478,6.983,6.983,0,0,0,.568-1.469L6,5.543H4.5l.236-.776h1.5l.159-.54a14.548,14.548,0,0,1,.693-2.016A4.544,4.544,0,0,1,8.313.694,2.91,2.91,0,0,1,10.281,0a2.425,2.425,0,0,1,.8.145,1.5,1.5,0,0,1,.693.429.963.963,0,0,1,.236.693Z"
                      transform="translate(398 948)" />
                    <path class="b"
                      d="M18.323,5.668a3.505,3.505,0,0,1-.152,1.046H17.36a3.969,3.969,0,0,0,.166-1.06.5.5,0,0,0-.062-.236.27.27,0,0,0-.249-.132.346.346,0,0,0-.229.076c-.069.055-.222.208-.471.471L14.936,7.489a22.329,22.329,0,0,0-1.552,1.621l-1.815,1.974a2.168,2.168,0,0,1-1.385.859c-.492,0-.741-.333-.741-.991a3.575,3.575,0,0,1,.3-1.385h.914a4.766,4.766,0,0,0-.263,1.1c0,.18.048.263.159.263s.242-.111.464-.333l2.147-2.286c-.006-.033,1.525-1.611,1.524-1.6l1.3-1.385a2.078,2.078,0,0,1,1.385-.8.755.755,0,0,1,.776.388,1.9,1.9,0,0,1,.173.776Z"
                      transform="translate(398 948)" />
                    <path class="a"
                      d="M14.936,7.489l.693,2.251a5.154,5.154,0,0,0,.236.61c.083.159.18.242.3.242a.82.82,0,0,0,.533-.457,4.849,4.849,0,0,0,.339-.817H17.8a4.849,4.849,0,0,1-.693,1.51,2.813,2.813,0,0,1-.873.852,1.766,1.766,0,0,1-.88.27,1.178,1.178,0,0,1-1.018-.464,4.357,4.357,0,0,1-.623-1.309l-.326-1.067a6.4,6.4,0,0,0-.222-.8L12.747,7c-.083-.27-.152-.478-.2-.6a1.136,1.136,0,0,0-.194-.312.4.4,0,0,0-.284-.118c-.326,0-.6.423-.817,1.261h-.769a6.671,6.671,0,0,1,.6-1.5,3.034,3.034,0,0,1,.81-.873,1.663,1.663,0,0,1,.942-.312,1.344,1.344,0,0,1,1.067.471,3.692,3.692,0,0,1,.644,1.268l.139.436C14.672,6.7,14.936,7.489,14.936,7.489Z"
                      transform="translate(398 948)" />
                  </g>
                </svg>
              </span>
            </li>
            <li class="fl fl-cn">
              <p>(2) <i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>;</p>
              <span class="btn-box" @click="isShowExampleFour = !isShowExampleFour">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                </svg>
              </span>
              <span class="btn-box" @click="openMathDiaolog">
                <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="15.323"
                  height="15.939" viewBox="0 0 18.323 15.939">
                  <g transform="translate(-398 -946)">
                    <path class="a"
                      d="M11.985,1.241a.894.894,0,0,1-.242.623.79.79,0,0,1-.6.263.644.644,0,0,1-.547-.229,3.034,3.034,0,0,1-.339-.741A.935.935,0,0,0,10.1.846a.4.4,0,0,0-.291-.1.36.36,0,0,0-.333.18,1.836,1.836,0,0,0-.2.478L8.251,4.753H9.7l-.27.79H8.043l-1.51,4.849a27.9,27.9,0,0,1-1.06,2.93,5.5,5.5,0,0,1-1.316,1.857,3.11,3.11,0,0,1-2.189.755,2.258,2.258,0,0,1-1.455-.409A1.192,1.192,0,0,1,0,14.618a.97.97,0,0,1,.27-.693.894.894,0,0,1,.693-.291.741.741,0,0,1,.693.27,1.815,1.815,0,0,1,.2.693c0,.381.2.575.492.575a.817.817,0,0,0,.693-.478,6.983,6.983,0,0,0,.568-1.469L6,5.543H4.5l.236-.776h1.5l.159-.54a14.548,14.548,0,0,1,.693-2.016A4.544,4.544,0,0,1,8.313.694,2.91,2.91,0,0,1,10.281,0a2.425,2.425,0,0,1,.8.145,1.5,1.5,0,0,1,.693.429.963.963,0,0,1,.236.693Z"
                      transform="translate(398 948)" />
                    <path class="b"
                      d="M18.323,5.668a3.505,3.505,0,0,1-.152,1.046H17.36a3.969,3.969,0,0,0,.166-1.06.5.5,0,0,0-.062-.236.27.27,0,0,0-.249-.132.346.346,0,0,0-.229.076c-.069.055-.222.208-.471.471L14.936,7.489a22.329,22.329,0,0,0-1.552,1.621l-1.815,1.974a2.168,2.168,0,0,1-1.385.859c-.492,0-.741-.333-.741-.991a3.575,3.575,0,0,1,.3-1.385h.914a4.766,4.766,0,0,0-.263,1.1c0,.18.048.263.159.263s.242-.111.464-.333l2.147-2.286c-.006-.033,1.525-1.611,1.524-1.6l1.3-1.385a2.078,2.078,0,0,1,1.385-.8.755.755,0,0,1,.776.388,1.9,1.9,0,0,1,.173.776Z"
                      transform="translate(398 948)" />
                    <path class="a"
                      d="M14.936,7.489l.693,2.251a5.154,5.154,0,0,0,.236.61c.083.159.18.242.3.242a.82.82,0,0,0,.533-.457,4.849,4.849,0,0,0,.339-.817H17.8a4.849,4.849,0,0,1-.693,1.51,2.813,2.813,0,0,1-.873.852,1.766,1.766,0,0,1-.88.27,1.178,1.178,0,0,1-1.018-.464,4.357,4.357,0,0,1-.623-1.309l-.326-1.067a6.4,6.4,0,0,0-.222-.8L12.747,7c-.083-.27-.152-.478-.2-.6a1.136,1.136,0,0,0-.194-.312.4.4,0,0,0-.284-.118c-.326,0-.6.423-.817,1.261h-.769a6.671,6.671,0,0,1,.6-1.5,3.034,3.034,0,0,1,.81-.873,1.663,1.663,0,0,1,.942-.312,1.344,1.344,0,0,1,1.067.471,3.692,3.692,0,0,1,.644,1.268l.139.436C14.672,6.7,14.936,7.489,14.936,7.489Z"
                      transform="translate(398 948)" />
                  </g>
                </svg>
              </span>
            </li>
            <li class="fl fl-cn">
              <p>(3) <i>f</i>(<i>x</i>)=5<i>x</i>+2.</p>
              <span class="btn-box" @click="isShowExampleFive = !isShowExampleFive">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                </svg>
              </span>
              <span class="btn-box" @click="openMathDiaolog">
                <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="15.323"
                  height="15.939" viewBox="0 0 18.323 15.939">
                  <g transform="translate(-398 -946)">
                    <path class="a"
                      d="M11.985,1.241a.894.894,0,0,1-.242.623.79.79,0,0,1-.6.263.644.644,0,0,1-.547-.229,3.034,3.034,0,0,1-.339-.741A.935.935,0,0,0,10.1.846a.4.4,0,0,0-.291-.1.36.36,0,0,0-.333.18,1.836,1.836,0,0,0-.2.478L8.251,4.753H9.7l-.27.79H8.043l-1.51,4.849a27.9,27.9,0,0,1-1.06,2.93,5.5,5.5,0,0,1-1.316,1.857,3.11,3.11,0,0,1-2.189.755,2.258,2.258,0,0,1-1.455-.409A1.192,1.192,0,0,1,0,14.618a.97.97,0,0,1,.27-.693.894.894,0,0,1,.693-.291.741.741,0,0,1,.693.27,1.815,1.815,0,0,1,.2.693c0,.381.2.575.492.575a.817.817,0,0,0,.693-.478,6.983,6.983,0,0,0,.568-1.469L6,5.543H4.5l.236-.776h1.5l.159-.54a14.548,14.548,0,0,1,.693-2.016A4.544,4.544,0,0,1,8.313.694,2.91,2.91,0,0,1,10.281,0a2.425,2.425,0,0,1,.8.145,1.5,1.5,0,0,1,.693.429.963.963,0,0,1,.236.693Z"
                      transform="translate(398 948)" />
                    <path class="b"
                      d="M18.323,5.668a3.505,3.505,0,0,1-.152,1.046H17.36a3.969,3.969,0,0,0,.166-1.06.5.5,0,0,0-.062-.236.27.27,0,0,0-.249-.132.346.346,0,0,0-.229.076c-.069.055-.222.208-.471.471L14.936,7.489a22.329,22.329,0,0,0-1.552,1.621l-1.815,1.974a2.168,2.168,0,0,1-1.385.859c-.492,0-.741-.333-.741-.991a3.575,3.575,0,0,1,.3-1.385h.914a4.766,4.766,0,0,0-.263,1.1c0,.18.048.263.159.263s.242-.111.464-.333l2.147-2.286c-.006-.033,1.525-1.611,1.524-1.6l1.3-1.385a2.078,2.078,0,0,1,1.385-.8.755.755,0,0,1,.776.388,1.9,1.9,0,0,1,.173.776Z"
                      transform="translate(398 948)" />
                    <path class="a"
                      d="M14.936,7.489l.693,2.251a5.154,5.154,0,0,0,.236.61c.083.159.18.242.3.242a.82.82,0,0,0,.533-.457,4.849,4.849,0,0,0,.339-.817H17.8a4.849,4.849,0,0,1-.693,1.51,2.813,2.813,0,0,1-.873.852,1.766,1.766,0,0,1-.88.27,1.178,1.178,0,0,1-1.018-.464,4.357,4.357,0,0,1-.623-1.309l-.326-1.067a6.4,6.4,0,0,0-.222-.8L12.747,7c-.083-.27-.152-.478-.2-.6a1.136,1.136,0,0,0-.194-.312.4.4,0,0,0-.284-.118c-.326,0-.6.423-.817,1.261h-.769a6.671,6.671,0,0,1,.6-1.5,3.034,3.034,0,0,1,.81-.873,1.663,1.663,0,0,1,.942-.312,1.344,1.344,0,0,1,1.067.471,3.692,3.692,0,0,1,.644,1.268l.139.436C14.672,6.7,14.936,7.489,14.936,7.489Z"
                      transform="translate(398 948)" />
                  </g>
                </svg>
              </span>
            </li>
          </ul>
          <div v-if="isShowExampleThree">
            <p>
              <span class="zt-ls"><b>解</b></span>(1)
              函数<i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>+1的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,
            </p>
            <p>而</p>
            <p class="center">
              <i>f</i>(-<i>x</i>)=3(-<i>x</i>)<sup>2</sup>+1=3<i>x</i><sup>2</sup>+1=<i>f</i>(<i>x</i>),
            </p>
            <p>
              所以,函数<i>f</i>(<i>x</i>)=3<i>x</i><sup>2</sup>+1是偶函数.
            </p>
          </div>
          <div v-if="isShowExampleFour">
            <p>
              (2)
              函数<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,而
            </p>
            <p class="center">
              <i>f</i>(-<i>x</i>)=(-<i>x</i>)<sup>2</sup>+(-<i>x</i>)=<i>x</i><sup>2</sup>-<i>x</i>≠<i>f</i>(<i>x</i>),
            </p>
            <p>
              所以,函数<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>不是偶函数.
            </p>
          </div>
          <div v-if="isShowExampleFive">
            <p>
              (3)
              函数<i>f</i>(<i>x</i>)=5<i>x</i>+2的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<i>R</i>,而
            </p>
            <p class="center">
              <i>f</i>(-<i>x</i>)=5(-<i>x</i>)+2=-5<i>x</i>+2≠<i>f</i>(<i>x</i>),
            </p>
            <p>所以,函数<i>f</i>(<i>x</i>)=5<i>x</i>+2不是偶函数.</p>
          </div>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[98]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 092 -->
@@ -322,7 +2124,25 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj" >
            <examinations :cardList="questionData[99]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
            <p class="gr-title">
              四、函数 f(x)=x’-3 的图像在
              轴左边的部分如图所示,请你画出这个函数图像在 y轴右边的部分.
            </p>
            <div>
              <paint
                :page="99"
                :imgUrl="
                  this.config.activeBook.resourceUrl + '/images/0103-2.jpg'
                "
              />
            </div>
          </div>
        </div>
      </div>
    </div>
    <!-- 093 -->
@@ -336,7 +2156,24 @@
            <p><span>093</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>函数<i>f</i>(<i>x</i>)=2<i>x</i>和<i>g</i>(<i>x</i>)=<i>x</i><sup>3</sup>的图像有何对称性呢?</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/tjfx.jpg" /></p>
          <p>列出表3-13和表3-14,画出函数<i>f</i>(<i>x</i>)=2<i>x</i>和<i>g</i>(<i>x</i>)=<i>x</i><sup>3</sup>的图像,如图3-19所示.</p>
          <p class="img">表3-13</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0104-1.jpg" /></p>
          <p class="img">表3-14</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0104-2.jpg" /></p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0104-3.jpg" /></p>
          <p class="img">图3-19</p>
          <p>图3-19(1)
            中,函数<i>f</i>(<i>x</i>)=2<i>x</i>的定义域是(-∞,+∞),函数图像关于原点中心对称.表3-13中,当自变量取一对相反数时,对应的函数值是一对相反数,如<i>f</i>(-1)=-2=-<i>f</i>(1),<i>f</i>(-2)=-4=-<i>f</i>(2),<i>f</i>(-3)=-6=-<i>f</i>(3),…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>f</i>(-<i>x</i>)=2×(-<i>x</i>)=-2<i>x</i>=-<i>f</i>(<i>x</i>),即<i>f</i>(-<i>x</i>)=-<i>f</i>(<i>x</i>).
          </p>
          <p>图3-19(2)
            中,函数<i>g</i>(<i>x</i>)=<i>x</i><sup>3</sup>的定义域是(-∞,+∞),函数图像也关于原点中心对称.表3-14中,当自变量取一对相反数时,对应的函数值也是一对相反数,如
          </p>
        </div>
      </div>
    </div>
    <!-- 094 -->
@@ -347,7 +2184,24 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">
            <i>g</i>(-1)=-1=-<i>g</i>(1),<i>g</i>(-2)=-8=-<i>g</i>(2),<i>g</i>(-3)=-27=-<i>g</i>(3),…实际上,对任意<i>x</i>∈(-∞,+∞),都有<i>g</i>(-<i>x</i>)=(-<i>x</i>)<sup>3</sup>=-<i>x</i><sup>3</sup>=-<i>g</i>(<i>x</i>),即<i>g</i>(-<i>x</i>)=-<i>g</i>(<i>x</i>).
          </p>
          <p>这两个函数的图像分别关于原点中心对称;当自变量取定义域中任意一对相反数时,对应的函数值也是一对相反数,这种函数就是奇函数.</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>一般地,设函数<i>f</i>(<i>x</i>)的定义域为<i>D</i>,如果对于<span class="u">任意</span><i>x</i>∈<i>D</i>,<span
              class="u">都有</span>-<i>x</i>∈<i>D</i>,且<i>f</i>(-<i>x</i>)=-<i>f</i>(<i>x</i>),那么函数<i>f</i>(<i>x</i>)就叫作<b>奇函数</b>,如图3-20所示.<b>奇函数的图像关于原点中心对称</b>.
          </p>
          <p>我们也可以由函数图像是否关于原点中心对称来判断函数是不是奇函数.</p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0105-1.jpg" /></p>
          <p class="img">图3-20</p>
          <p><span class="zt-ls"><b>例4</b></span> 根据图3-21中函数的图像,判断哪些函数是奇函数.</p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0105-2.jpg" /></p>
          <p class="img">图3-21</p>
          <p><span class="zt-ls"><b>解</b></span> 在四个函数图像中,图3-21(1) 、图3-21(2) 和图3-21(3) 的函数图像关于原点中心对称;图3-21(4)
            的函数图像不是关于原点中心对称的.根据奇函数的图像具有关于原点中心对称的特点,图3-21(1) 、图3-21(2) 和图3-21(3) 的函数是奇函数,图3-21(4) 的函数不是奇函数.</p>
        </div>
      </div>
    </div>
    <!-- 095 -->
@@ -361,10 +2215,128 @@
            <p><span>095</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><span class="zt-ls"><b>例5</b></span> 已知函数<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>图像在<i>y</i>轴右边的部分如图3-22所示.试画出这个函数图像在<i>y</i>轴左边的部分.</p>
          <p><span class="zt-ls"><b>解</b></span> 函数<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>的定义域是(-∞,0)∪(0+∞),因为它是奇函数,所以根据其图像关于原点中心对称的特点,即可画出这个函数在<i>x</i>∈(-∞,0)上的图像.</p>
          <p>
            如图3-23所示,在<i>y</i>轴右边的图像上取三个不同点<i>A</i>,<i>B</i>和<i>C</i>,并画出它们分别关于原点对称的点<i>A</i>′,<i>B</i>′和<i>C</i>′,然后按相同方式用光滑的曲线连线,就得到这个函数的图像在<i>y</i>轴左边的部分.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0106-3.jpg" /></p>
          <p class="img">图3-22</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0106-4.jpg" /></p>
          <p class="img">图3-23</p>
          <p>与偶函数的判定方法类似,除了借助函数的图像来判断函数是不是奇函数,也可用定义判断函数是不是奇函数.</p>
          <p><span class="zt-ls"><b>例6</b></span> 判断下列函数是不是奇函数.</p>
          <p>(1) <i>f</i>(<i>x</i>)=<i>x</i><sup>3</sup>+<i>x</i>;(2) <math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>;(3) <i>f</i>(<i>x</i>)=<i>x</i>+|<i>x</i>|.</p>
          <p><span class="zt-ls"><b>解</b></span>(1)
            函数<i>f</i>(<i>x</i>)=<i>x</i><sup>3</sup>+<i>x</i>的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,且
          </p>
          <p class="center">
            <i>f</i>(-<i>x</i>)=(-<i>x</i>)<sup>3</sup>+(-<i>x</i>)=-<i>x</i><sup>3</sup>-<i>x</i>=-(<i>x</i><sup>3</sup>+<i>x</i>)=-<i>f</i>(<i>x</i>).
          </p>
          <p>所以,函数<i>f</i>(<i>x</i>)=<i>x</i><sup>3</sup>+<i>x</i>是奇函数.</p>
          <p>(2)
            要使函数<i>f</i>(<i>x</i>)有意义,必须满足<i>x</i>≠0,所以函数<i>f</i>(<i>x</i>)的定义域是<i>D</i>={<i>x</i>|<i>x</i>≠0},对任意<i>x</i>∈<i>D</i>,都有-<i>x</i>∈<i>D</i>,且
          </p>
          <math display="block">
            <mi>f</mi>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mo>−</mo>
              <mi>x</mi>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>=</mo>
            <mo>−</mo>
            <mi>x</mi>
            <mo>+</mo>
            <mfrac>
              <mn>1</mn>
              <mrow>
                <mo>−</mo>
                <mi>x</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>=</mo>
            <mo>−</mo>
            <mi>f</mi>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>.</mo>
          </math>
          <p>所以,函数<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>是奇函数.</p>
          <p>(3) 函数<i>f</i>(<i>x</i>)=<i>x</i>+|<i>x</i>|的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,但是</p>
      </div>
    </div>
    </div>
    <!-- 096 -->
    <div class="page-box" page="103">
      <div v-if="showPageList.indexOf(103) > -1">
@@ -373,7 +2345,148 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="center">
            <i>f</i>(-<i>x</i>)=(-<i>x</i>)+|-<i>x</i>|=-<i>x</i>+|<i>x</i>|=-(<i>x</i>-|<i>x</i>|)≠-<i>f</i>(<i>x</i>).
          </p>
          <p>所以,函数<i>f</i>(<i>x</i>)=<i>x</i>+|<i>x</i>|不是奇函数.</p>
          <p>如果一个函数是奇函数或偶函数,那么就称这个函数具有<b>奇偶性</b>.否则,函数不具有奇偶性.</p>
          <p><span class="zt-ls"><b>例7</b></span> 判断下列函数的奇偶性.</p>
          <p>(1) <i>f</i>(<i>x</i>)=<i>x</i><sup>4</sup>;(2) <math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mo>−</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>;</p>
          <p>(3) <i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>;(4)<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mrow>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>1</mn>
                </mrow>
              </mfrac>
            </math>.</p>
          <p><span class="zt-ls"><b>解</b></span>(1)
            <i>f</i>(<i>x</i>)的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,且
          </p>
          <p class="center"><i>f</i>(-<i>x</i>)=(-<i>x</i>)<sup>4</sup>=<i>x</i><sup>4</sup>=<i>f</i>(<i>x</i>),</p>
          <p>所以,函数<i>f</i>(<i>x</i>)=<i>x</i><sup>4</sup>是偶函数.</p>
          <p>(2)
            要使函数<i>f</i>(<i>x</i>)有意义,必须满足<i>x</i>≠0,所以函数<i>f</i>(<i>x</i>)的定义域是<i>D</i>={<i>x</i>|<i>x</i>≠0},对任意<i>x</i>∈<i>D</i>,都有-<i>x</i>∈<i>D</i>,
            且</p>
          <math display="block">
            <mi>f</mi>
            <mo stretchy="false">(</mo>
            <mo>−</mo>
            <mi>x</mi>
            <mo stretchy="false">)</mo>
            <mo>=</mo>
            <mo>−</mo>
            <mi>x</mi>
            <mo>−</mo>
            <mfrac>
              <mn>1</mn>
              <mrow>
                <mo>−</mo>
                <mi>x</mi>
              </mrow>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mi>x</mi>
            <mo>+</mo>
            <mfrac>
              <mn>1</mn>
              <mi>x</mi>
            </mfrac>
            <mo>=</mo>
            <mo>−</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>=</mo>
            <mo>−</mo>
            <mi>f</mi>
            <mo stretchy="false">(</mo>
            <mi>x</mi>
            <mo stretchy="false">)</mo>
            <mo>,</mo>
          </math>
          <p>所以,函数<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mfrac>
                <mn>1</mn>
                <mi>x</mi>
              </mfrac>
            </math>是奇函数.</p>
          <p>(3)
            函数<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>的定义域是<b>R</b>,对任意<i>x</i>∈<b>R</b>,都有-<i>x</i>∈<b>R</b>,且
          </p>
          <p class="center"><i>f</i>(-<i>x</i>)=(-<i>x</i>)<sup>2</sup>+(-<i>x</i>)=<i>x</i><sup>2</sup>-<i>x</i>,</p>
          <p>但 <i>f</i>(-<i>x</i>)≠<i>f</i>(<i>x</i>),且<i>f</i>(-<i>x</i>)≠-<i>f</i>(<i>x</i>),</p>
          <p>所以,函数<i>f</i>(<i>x</i>)=<i>x</i><sup>2</sup>+<i>x</i>既不是奇函数,也不是偶函数.</p>
          <p>(4)
            要使函数<i>f</i>(<i>x</i>)有意义,必须满足<i>x</i>-1≠0,所以函数<i>f</i>(<i>x</i>)的定义域是<i>D</i>={<i>x</i>|<i>x</i>≠1},对任意<i>x</i>∈<i>D</i>,不都有-<i>x</i>∈<i>D</i>成立.
          </p>
          <p>所以,函数<math display="0">
              <mi>f</mi>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
              <mo>=</mo>
              <mfrac>
                <mn>1</mn>
                <mrow>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>1</mn>
                </mrow>
              </mfrac>
            </math>不具有奇偶性,它既不是奇函数也不是偶函数.</p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left"><img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" /></p>
            </div>
            <examinations :cardList="questionData[103]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 097 -->
@@ -387,19 +2500,18 @@
            <p><span>097</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[104]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 098 -->
    <div class="page-box" page="105">
      <div v-if="showPageList.indexOf(105) > -1">
        <ul class="page-header-odd fl al-end">
          <li>098</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="105">
    </div>
    <!-- 099 -->
    <div class="page-box" page="106">
@@ -409,10 +2521,21 @@
            <p>第三单元 函数</p>
          </li>
          <li>
            <p><span>099</span></p>
            <p><span>098-099</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c032">习题3.3<span class="fontsz2">>>></span></h3>
          <div class="bj" >
            <examinations :cardList="questionData[105]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
          <h2 id="b018">3.4 函数的应用<span class="fontsz1">>>>>>>>></span></h2>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/tjfx.jpg" /></p>
          <p>
            函数是刻画变量之间对应关系的数学模型和工具,在社会生活、生产中,函数关系随处可见,函数的应用也非常广泛.例如,物体运动的路程是时间的函数,购买物品费用是物品数量的函数,圆的面积是半径的函数,居民生活用水(电、燃气)费用是用水(电、燃气)量的函数等.
          </p>
        </div>
      </div>
    </div>
    <!-- 100 -->
@@ -423,7 +2546,103 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><span class="zt-ls"><b>例1</b></span> 住在A城的小李早晨8:00出发,驾驶小轿车从A城以80 km/h 的速度到200 km处的B城,他在B城停留了3 h 后,再以100
            km/h的速度返回A城.在不考虑堵车等其他因素的情况下,设小李从A城出发<i>x</i>(h)后,小李与A城的距离是<i>y</i>(km).</p>
          <p>(1) 用解析法表示函数<i>y</i>=<i>f</i>(<i>x</i>);</p>
          <p>(2) 画出函数<i>y</i>=<i>f</i>(<i>x</i>)的图像;</p>
          <p>(3) 小李在返回A城途中,15:00刚好接到家人的电话,这时他距离A城多少千米?</p>
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 首先求出小李从A城到B城和从B城返回A城共花费的时间,明确函数的定义域.小李去B城和返回A城的过程中,<i>y</i>与<i>x</i>分别对应的解析式不相同,所以该函数需用分段函数表示.
          </p>
          <p><span class="zt-ls"><b>解</b></span>(1) 小李从A城出发到B 城用时<math display="0">
              <mfrac>
                <mn>200</mn>
                <mn>80</mn>
              </mfrac>
              <mo>=</mo>
              <mn>2.5</mn>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>h</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,<i>x</i>的取值范围是{<i>x</i>|0<<i>x</i>≤2.5},<i>y</i>与<i>x</i>的对应关系是<i>y</i>=80<i>x</i>;</p>
          <p>小李到B城后停留3 h,x的取值范围是{<i>x</i>|2.5<<i>x</i>≤5.5},对应关系是<i>y</i>=200;</p>
          <p>小李从<i>B</i>城返回<i>A</i>城用时<math display="0">
              <mfrac>
                <mn>200</mn>
                <mn>100</mn>
              </mfrac>
              <mo>=</mo>
              <mn>2</mn>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mi>h</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,<i>x</i>的取值范围是{<i>x</i>|5.5<<i>x</i>≤7.5},<i>y</i>与<i>x</i>的对应关系是<i>y</i>=200-100(<i>x</i>-5.5),即<i>y</i>=-100<i>x</i>+750.
          </p>
          <p>因此,用解析法将函数<i>f</i>(<i>x</i>)表示为<math display="0">
              <mi>y</mi>
              <mo>=</mo>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnalign="left left" columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mn>80</mn>
                      <mi>x</mi>
                      <mo>,</mo>
                    </mtd>
                    <mtd>
                      <mn>0</mn>
                      <mo>&lt;</mo>
                      <mi>x</mi>
                      <mo>⩽</mo>
                      <mn>2.5</mn>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mn>200</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd>
                      <mn>2.5</mn>
                      <mo>&lt;</mo>
                      <mi>x</mi>
                      <mo>⩽</mo>
                      <mn>5.5</mn>
                      <mo>,</mo>
                    </mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mo>−</mo>
                      <mn>100</mn>
                      <mi>x</mi>
                      <mo>+</mo>
                      <mn>750</mn>
                      <mo>,</mo>
                      <mn>5.5</mn>
                      <mo>&lt;</mo>
                      <mi>x</mi>
                      <mo>⩽</mo>
                      <mn>7.5</mn>
                    </mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math>.</p>
          <p>(2) 函数<i>y</i>=<i>f</i>(<i>x</i>)的图像如图3-24所示.</p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0111-4.jpg" /></p>
          <p class="img">图3-24</p>
          <p>(3) 小李从早晨8:00出发到15:00,共经过了7h,所以<i>x</i>=7,由(1) 中解析式得小李与<i>A</i>城的距离为</p>
          <p class="center">-100×7+750=50(km).</p>
          <p>所以,小李返回A城途中接到家人电话时,距离A城刚好50 km.</p>
        </div>
      </div>
    </div>
    <!-- 101 -->
@@ -437,11 +2656,61 @@
            <p><span>101</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p><span class="zt-ls"><b>例2</b></span> 某农户要用6 000块砖建造三间面积相等的饲养室,如图3-25所示,其中<i>AB</i>,<i>AD</i>两面靠墙,每修筑长度1
            m的新墙需要砖200块.当<i>AB</i>为多少米时,修建的三间饲养室的总面积最大?最大面积是多少?</p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0112-1.jpg" /></p>
          <p class="img">图3-25</p>
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 首先需要计算备用材料可修建饲养室新墙的总长;因每间饲养室的周长是定值,所以设<i>AB</i>的长为<i>x</i>(m),就可以用含<i>x</i>的代数式表示<i>BC</i>的长;再用解析法表示总面积<i>y</i>(m<sup>2</sup>)与<i>x</i>(m)的函数关系;然后利用函数的性质来解决问题.
          </p>
          <p><span class="zt-ls"><b>解</b></span> 因为每修筑长度1 m的新墙需要砖200块,所以6 000块砖可以修筑新墙的总长度是6
            000÷200=30(m).设<i>AB</i>为<i>x</i>(m),则<i>BC</i>为(30-3<i>x</i>)(m),三间饲养室的总面积为<i>y</i>(m<sup>2</sup>).</p>
          <p>于是<i>y</i>=(30-3<i>x</i>)<i>x</i>,要有实际意义,必须满足<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mi>x</mi>
                      <mo>></mo>
                      <mn>0</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mn>30</mn>
                      <mo>−</mo>
                      <mn>3</mn>
                      <mi>x</mi>
                      <mo>></mo>
                      <mn>0</mn>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math>.</p>
          <p>所以,<i>y</i>与<i>x</i>的函数关系是<i>y</i>=-3<i>x</i><sup>2</sup>+30<i>x</i>,0<<i>x</i><10.</p>
          <p>整理得<i>y</i>=-3(<i>x</i>-5)<sup>2</sup>+75.</p>
          <p>所以,当<i>x</i>=5时,<i>y</i>值最大,最大值为75.</p>
          <p>即当<i>AB</i>为5 m时,三间饲养室的总面积最大,最大面积是75 m<sup>2</sup>.</p>
          <p>在实际生活中,很多与二次函数有关的最值问题都可通过分析、研究后,建立相应二次函数的数学模型,并运用二次函数的图像性质求最值.</p>
          <p><span class="zt-ls"><b>例3</b></span> 某批发商购入一批30元/kg的绿色食品,若以40元/kg销售,则每月可批发销售400
            kg.由批发销售经验知道,每月销售量<i>y</i>(kg
            )是销售单价<i>x</i>(元)的一次函数,其图像如图3-26所示.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0112-3.jpg" /></p>
          <p class="img"> 图3-26</p>
          <p>(1) 用解析法表示函数<i>y</i>=<i>f</i>(<i>x</i>);</p>
          <p>(2) 该批发商不低于购入价进行销售,设该批发商每月销售这批绿色食品可获得利润为<i>w</i>元,用解析法表示函数<i>w</i>=<i>g</i>(<i>x</i>);</p>
          <p>(3) 当销售单价为多少时,该批发商每月可获得最大利润?最大利润是多少?</p>
        </div>
      </div>
    </div>
    <!-- 102 -->
    <div class="page-box" page="109">
      <div v-if="showPageList.indexOf(109) > -1">
        <ul class="page-header-odd fl al-end">
@@ -449,7 +2718,82 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="block"><span
              class="zt-ls2"><b>分析</b></span> 先由图像求出一次函数的解析式,再根据每月所获利润=(销售单价-进价)×每月销售量,列出每月所获利润<i>w</i>与销售单价<i>x</i>的函数关系.
          </p>
          <p><span class="zt-ls"><b>解</b></span>(1) 设函数<i>y</i>=<i>f</i>(<i>x</i>)的解析式是<i>y</i>=<i>kx</i>+<i>b</i>,则</p>
          <p><math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mn>40</mn>
                      <mi>k</mi>
                      <mo>+</mo>
                      <mi>b</mi>
                      <mo>=</mo>
                      <mn>400</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mn>50</mn>
                      <mi>k</mi>
                      <mo>+</mo>
                      <mi>b</mi>
                      <mo>=</mo>
                      <mn>200</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math>,解得<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mtable columnspacing="1em" rowspacing="4pt">
                  <mtr>
                    <mtd>
                      <mi>k</mi>
                      <mo>=</mo>
                      <mo>−</mo>
                      <mn>20</mn>
                      <mo>,</mo>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                  <mtr>
                    <mtd>
                      <mi>b</mi>
                      <mo>=</mo>
                      <mn>1200.</mn>
                    </mtd>
                    <mtd></mtd>
                  </mtr>
                </mtable>
                <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
              </mrow>
            </math></p>
          <p>即<i>y</i>=-20<i>x</i>+1 200.</p>
          <p>根据题意,当30≤<i>x</i>≤60时,函数<i>y</i>=-20<i>x</i>+1 200才有实际意义.</p>
          <p>所以,函数<i>y</i>=<i>f</i>(<i>x</i>)的解析式可表示为</p>
          <p class="center"><i>y</i>=-20<i>x</i>+1 200,30≤<i>x</i>≤60.</p>
          <p>(2) 由题意得,<i>w</i>=(<i>x</i>-30)<i>y</i></p>
          <p>        =(<i>x</i>-30)(-20<i>x</i>+1 200)</p>
          <p>        =-20<i>x</i><sup>2</sup>+1 800<i>x</i>-36 000,</p>
          <p>所以,函数<i>w</i>=<i>g</i>(<i>x</i>)的解析式可表示为</p>
          <p class="center"><i>w</i>=-20<i>x</i><sup>2</sup>+1 800<i>x</i>-36 000,30≤<i>x</i>≤60.</p>
          <p>(3) 由(2) 知,<i>w</i>=-20<i>x</i><sup>2</sup>+1 800<i>x</i>-36 000,30≤<i>x</i>≤60,配方得</p>
          <p class="center"><i>w</i>=-20(<i>x</i>-45)<sup>2</sup>+4 500.</p>
          <p>所以,当<i>x</i>=45时,<i>w</i>的值最大,最大值是4 500.</p>
          <p>答:当销售单价为45元时,该批发商每月可获得最大利润,最大利润是4 500元.</p>
        </div>
      </div>
    </div>
    <!-- 103 -->
@@ -463,47 +2807,38 @@
            <p><span>103</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[110]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 104 -->
    <div class="page-box" page="111">
      <div v-if="showPageList.indexOf(111) > -1">
        <ul class="page-header-odd fl al-end">
          <li>104</li>
          <li>104-106</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h3 id="c033">习题3.4<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[111]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 105 -->
    <div class="page-box" page="112">
      <div v-if="showPageList.indexOf(112) > -1">
        <ul class="page-header-box">
          <li>
            <p>第三单元 函数</p>
          </li>
          <li>
            <p><span>105</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="112">
    </div>
    <!-- 106 -->
    <div class="page-box" page="113">
      <div v-if="showPageList.indexOf(113) > -1">
        <ul class="page-header-odd fl al-end">
          <li>106</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="113">
    </div>
    <!-- 107 -->
    <div class="page-box" page="114">
@@ -516,10 +2851,28 @@
            <p><span>107</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b019">数学园地<span class="fontsz1">>>>>>>>></span></h2>
          <p class="center">函数概念及符号的形成与发展</p>
          <p>我们已经系统学习了函数的概念、表示方法、性质等,现在我们一起来了解函数概念的形成与发展过程.</p>
          <p>17世纪,意大利科学家伽利略在《关于两门新科学的对话》一书中,提出了函数或变量关系的概念,借助文字和比例关系表达函数的关系.法国数学家笛卡儿在他的解析几何中注意到了一个变量对于另一个变量的依赖关系.</p>
          <p>1673年,德国数学家莱布尼茨首次使用“函数”表示“幂”,同时牛顿在微积分的讨论中,使用“流量”来表示变量间的关系,这时的函数概念还较为模糊.</p>
          <p>
            1718年,瑞士数学家伯努利在莱布尼茨函数概念的基础上,从解析的角度提出了函数的概念:“由变量<i>x</i>和常数所构成的式子叫作<i>x</i>的函数”,记作<i>Χ</i>或ξ,后来他又改用<i>Φx</i>表示<i>x</i>的函数.
          </p>
          <p>1734 年,瑞士数学家欧拉以<i>f</i>()
            表示函数,这是数学史上函数首次以“<i>f</i>”符号表示!他把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随之变化,我们把前面的变量称为后面变量的函数.”并采用大写希腊字母<i>Πx</i>,<i>Φx</i>及<i>Δx</i>表示<i>x</i>的函数.
          </p>
          <p>1797年,法国数学家拉格朗日大力推动以<i>f</i>,<i>F</i>,<i>Φ</i>及<i>y</i>表示函数,并且沿用至今!</p>
          <p>1821年,法国数学家柯西给出函数的定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随之而确定时,则将最初的变数叫自变量,其他各变数叫函数.”</p>
          <p>1822年,法国数学家傅立叶发现某些函数可用曲线表示,也可以用一个式子表示,或用多个式子表示,他把对函数的认识又推进到了一个新的层次.</p>
          <p>1893年,意大利数学家皮亚诺开始采用符号<i>y</i>=<i>f</i>(<i>x</i>)表示函数,这就是我们今天见到的函数符号!</p>
          <p>
            后来,数学家们用“集合”和“对应”给出了近代函数的概念,把函数的对应关系、定义域及值域进一步具体化:“若对集合<i>M</i>的任意元素<i>x</i>,总有集合<i>N</i>中确定的元素<i>y</i>与之对应,则称在集合<i>M</i>上定义一个函数,记为<i>y</i>=<i>f</i>(<i>x</i>).”
          </p>
      </div>
    </div>
    </div>
    <!-- 108 -->
    <div class="page-box" page="115">
      <div v-if="showPageList.indexOf(115) > -1">
@@ -528,10 +2881,27 @@
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b020">单元小结<span class="fontsz1">>>>>>>>></span></h2>
          <p class="bj2"><b>学习导图</b></p>
          <p class="center"><img class="img-b" alt="" src="../../assets/images/0119-1.jpg" /></p>
          <p class="bj2"><b>学习指导</b></p>
          <p>1.函数的概念.</p>
          <p>(1) 函数的定义:一般地, 设<i>A</i>,<i>B</i>是非空数集, 如果存在一个对应关系<i>f</i>,使对于集合 <i>A</i> 中的每一个数<i>x</i>,在集合<i>B</i>
            中都有唯一确定的数<i>y</i>
            和它对应,那么就把对应关系<i>f</i>称为定义在集合<i>A</i>上的一个<b>函数</b>,记作<i>y</i>=<i>f</i>(<i>x</i>),<i>x</i>∈<i>A</i>.其中,<i>x</i>叫作自变量,<i>x</i>的取值范围<i>A</i>叫作函数的<b>定义域</b>;与<i>x</i>的值相对应的<i>y</i>值叫作函数值,函数值的集合{<i>f</i>(<i>x</i>)|<i>x</i>∈<i>A</i>}叫作函数的<b>值域</b>.
          </p>
          <p>定义域和对应关系是函数的两个要素,值域是由定义域与函数关系所决定的.</p>
          <p>(2) 求函数定义域时,首先要考虑问题的实际意义.</p>
          <p>2.函数的表示方法.</p>
          <p>(1) 函数有三种表示方法:列表法、图像法和解析法.在解决问题时,应根据需要选择恰当的表示方法.</p>
          <p>(2) 分段函数:分段函数是在自变量不同的取值范围内,采用不同的对应关系的一种函数,分段函数仍然是一个函数.</p>
          <p>3.函数的单调性和奇偶性.</p>
          <p>函数的单调性和奇偶性是函数的两个基本性质.</p>
          <p>(1) 函数的单调性反映了函数值变化的趋势.单调性是相对于函数定义域的某个区间(区间是定义域的子集)而言的,所以研究函数的单调性时,必须指明单调</p>
      </div>
    </div>
    </div>
    <!-- 109 -->
    <div class="page-box" page="116">
      <div v-if="showPageList.indexOf(116) > -1">
@@ -543,50 +2913,160 @@
            <p><span>109</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <p class="t0">区间.</p>
          <p>(2)
            函数的奇偶性反映函数图像的对称性.奇函数、偶函数的定义域一定是关于原点对称的.若函数图像关于<i>y</i>轴对称,则该函数是偶函数;若函数图像关于原点对称,则该函数是奇函数.反之,偶函数一定关于<i>y</i>轴对称;奇函数一定关于原点对称.
          </p>
          <p>4.函数的实际应用.</p>
          <p>函数的实际应用问题主要抓住以下几个步骤:一是读懂题意;二是正确建立函数关系(分段函数、二次函数等);三是转化为函数问题;四是做好最后的解答.</p>
      </div>
    </div>
    </div>
    <!-- 110 -->
    <div class="page-box" page="117">
      <div v-if="showPageList.indexOf(117) > -1">
        <ul class="page-header-odd fl al-end">
          <li>110</li>
          <li>110-112</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116"></div>
        <div class="padding-116">
          <h2 id="b021">单元检测<span class="fontsz1">>>>>>>>></span></h2>
          <div class="bj" >
            <examinations :cardList="questionData[117]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 111 -->
    <div class="page-box" page="118">
      <div v-if="showPageList.indexOf(118) > -1">
        <ul class="page-header-box">
          <li>
            <p>第三单元 函数</p>
          </li>
          <li>
            <p><span>111</span></p>
          </li>
        </ul>
        <div class="padding-116"></div>
      </div>
    <div class="page-box hidePage" page="118">
    </div>
    <!-- 112 -->
    <div class="page-box" page="119">
      <div v-if="showPageList.indexOf(119) > -1">
        <ul class="page-header-odd fl al-end">
          <li>112</li>
          <li>数学.基础模块</li>
          <li>上册</li>
    <div class="page-box hidePage" page="119">
    </div>
        <!-- 函数控件弹窗 -->
    <el-dialog :visible.sync="dialogVisible" width="60%" :append-to-body="true" :show-close="false">
      <div slot="title" style="padding: 0 0 15px 0;position: relative;">
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="dialogVisible = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
        </svg>
      </div>
      <iframe src="https://www.geogebra.org/calculator" frameborder="0" style="width: 100%; min-height: 800px"></iframe>
    </el-dialog>
    <!-- 解题思路弹窗 -->
    <el-dialog :visible.sync="thinkingDialog" width="40%" :append-to-body="true" :show-close="false">
      <div slot="title" style="padding: 0; text-align: center; color: #333;display:flex;justify-content: center;">
        <span style=""> 解题思路 </span>
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="thinkingDialog = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
        </svg>
      </div>
      <ul>
        <li v-for="(item, index) in thinkOne" :key="index">
          <div v-if="item.isShow" style="display: flex">
            <span style="position: relative">
              <span style="position: absolute; top: 16px; left: 13px; color: #fff">{{ index + 1 }}</span>
              <img src="../../assets/images/icon/blue-group.png" alt="" style="margin-right: 10px"
                v-if="index < thinkOne.length - 1" />
              <img src="../../assets/images/icon/blue.png" alt="" v-if="index == thinkOne.length - 1"
                style="margin-right: 10px" />
            </span>
            <p class="txt-p">{{ item.txt }}</p>
          </div>
        </li>
        </ul>
        <div class="padding-116"></div>
      <div @click="showNext(thinkIndex)" style="
          display: flex;
          flex-direction: column;
          align-items: center;
          justify-content: center;
        ">
        <img src="../../assets/images/icon/mouse.png" alt="" v-if="thinkIndex != 3" />
        <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" t="1710234570135"
          class="icon" viewBox="0 0 1024 1024" version="1.1" p-id="5067" width="15" height="15">
          <path
            d="M2.257993 493.371555 415.470783 906.584344 512 1003.113561 608.529217 906.584344 1021.742007 493.371555 925.212789 396.842337 512 810.055127 98.787211 396.842337Z"
            fill="#1296db" p-id="5068" />
          <path
            d="M2.257993 117.980154 415.470783 531.192944 512 627.722161 608.529217 531.192944 1021.742007 117.980154 925.212789 21.450937 512 434.663727 98.787211 21.450937Z"
            fill="#1296db" p-id="5069" />
        </svg>
      </div>
    </el-dialog>
    <!-- 解题步骤弹窗 -->
    <el-dialog class="stepDialog" title="解题步骤" :visible.sync="stepDialog" width="40%" :append-to-body="true"
      :show-close="false">
      <div slot="title" style="padding: 0; text-align: center; color: #333;display:flex;justify-content: center;">
        <span>
          解题步骤
        </span>
        <svg style="position: absolute; right:10px;cursor: pointer;" @click="stepDialog = false" t="1718596022986"
          class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="4252" width="20"
          height="20" xmlns:xlink="http://www.w3.org/1999/xlink">
          <path
            d="M176.661601 817.172881C168.472798 825.644055 168.701706 839.149636 177.172881 847.338438 185.644056 855.527241 199.149636 855.298332 207.338438 846.827157L826.005105 206.827157C834.193907 198.355983 833.964998 184.850403 825.493824 176.661601 817.02265 168.472798 803.517069 168.701706 795.328267 177.172881L176.661601 817.172881Z"
            fill="#979797" p-id="4253"></path>
          <path
            d="M795.328267 846.827157C803.517069 855.298332 817.02265 855.527241 825.493824 847.338438 833.964998 839.149636 834.193907 825.644055 826.005105 817.172881L207.338438 177.172881C199.149636 168.701706 185.644056 168.472798 177.172881 176.661601 168.701706 184.850403 168.472798 198.355983 176.661601 206.827157L795.328267 846.827157Z"
            fill="#979797" p-id="4254"></path>
        </svg>
    </div>
      <ul>
        <li v-for="(item, index) in stepOne" :key="index">
          <div v-if="item.isShow" style="display: flex">
            <span style="position: relative">
              <span style="position: absolute; top: 16px; left: 13px; color: #fff">{{ index + 1 }}</span>
              <img src="../../assets/images/icon/blue-group.png" alt="" style="margin-right: 10px"
                v-if="index < stepOne.length - 1" />
              <img src="../../assets/images/icon/blue.png" alt="" v-if="index == stepOne.length - 1"
                style="margin-right: 10px" />
            </span>
            <p class="txt-p">{{ item.txt }}</p>
          </div>
        </li>
      </ul>
      <div @click="showNextChange(stepIndex)" style="
          display: flex;
          flex-direction: column;
          align-items: center;
          justify-content: center;
        ">
        <img src="../../assets/images/icon/mouse.png" alt="" v-if="stepIndex != 2" />
        <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" t="1710234570135"
          class="icon" viewBox="0 0 1024 1024" version="1.1" p-id="5067" width="15" height="15">
          <path
            d="M2.257993 493.371555 415.470783 906.584344 512 1003.113561 608.529217 906.584344 1021.742007 493.371555 925.212789 396.842337 512 810.055127 98.787211 396.842337Z"
            fill="#1296db" p-id="5068" />
          <path
            d="M2.257993 117.980154 415.470783 531.192944 512 627.722161 608.529217 531.192944 1021.742007 117.980154 925.212789 21.450937 512 434.663727 98.787211 21.450937Z"
            fill="#1296db" p-id="5069" />
        </svg>
      </div>
    </el-dialog>
  </div>
</template>
<script>
import paint from '@/components/paint/index.vue'
import examinations from '@/components/examinations/index.vue'
import { getResourcePath } from "@/assets/methods/resources";
import { getCollectResource, setCollectResource } from "@/assets/methods/resources";
export default {
  name: '',
  props: {
@@ -594,17 +3074,239 @@
      type: Array,
      default: [],
    },
    questionData: {
      type: Object,
  },
  components: {},
  },
  components: {examinations,paint},
  data() {
    return {}
    return {
      collectImg: require("../../assets/images/icon/heart.png"),
      collectCheck: require("../../assets/images/icon/heart-check.png"),
      isShowExampleOne: false,
      isShowExampleTwo: false,
      isShowExampleThree: false,
      isShowExampleFour: false,
      isShowExampleFive: false,
      dialogVisible: false,
      thinkingDialog: false,
      stepDialog: false,
      videoPath: "",
      stepIndex: 1,
      thinkIndex: 1,
      collectResourceList: [],
      chapterData: {
        isCollectImg: false,
        isCollectVideo: false,
        txtOne: "",
        txtTwo: "",
      },
      thinkOne: [
        {
          txt: "1:一个函数是不 是偶函数,可以由 函数的图像是否关 于y 轴 对 称 来 判 断;当函数用解析 法表示时,可以用 偶 函 数 的 定 义 来 判断。 偶函数:一般地,设函数f(x)的定义域为D,如果对于任意xED,都有XED,且f(-x)=f(x),那么函数f(x)就叫作偶函数",
          isShow: true,
        },
        {
          txt: "2:计算f(-x)",
          isShow: false,
        },
        {
          txt: "3:判断f(-x)是否等于f(x)",
          isShow: false,
        },
      ],
      stepOne: [
        {
          txt: "1:(1)函数f(x)=3x2+1的定义域是R,对任意XER,都有-XER",
          isShow: true,
        },
        {
          txt: "2:f(-x)=3(-x)2+1=3x2+1=f(x)",
          isShow: false,
        },
      ],
      dragQuestion: [
        {
          analysisCon: null,
          answer: ['A', 'B', 'C'],
          difficulty: 0,
          id: "7BC7B760",
          isCollect: false,
          isComplete: false,
          isRight: null,
          isUnfold: "",
          isUserAnswer: false,
          number: 1,
          option: [
            {
              img: "",
              index: "010311",
              txt: "胆小的",
              value: "A",
              isShow: true
            },
            {
              img: "",
              index: "010312",
              txt: "善良的",
              value: "B",
              isShow: true
            },
            {
              img: "",
              index: "010313",
              txt: "沉稳的",
              value: "C",
              isShow: true
            },
          ],
          optionStyle: "Txt",
          questionType: "drag",
          score: 2,
          stem: {
            0: "蚂蚁队长走路昂首挺胸、步伐坚定,它是一只(",
            1: {
              data: "span",
              num: 0
            },
            2: ")蚂蚁;小蚂蚁走起路来小心翼翼,眼神飘忽不定,它是一只(",
            3: {
              data: "span",
              num: 1
            },
            4: ")蚂蚁;蚂蚁小妹面带微笑,时刻愿意帮助大家,它是一只(",
            5: {
              data: "span",
              num: 2,
            },
            6: " )蚂蚁"
          },
          stemStyle: "RichTxt",
          type: "拖拽题",
          userAnswer: [
            {
              vlaue: '',
              txt: ''
            },
            {
              vlaue: '',
              txt: ''
            },
            {
              vlaue: '',
              txt: ''
            },
          ]
        },
      ]
    };
  },
  computed: {},
  watch: {},
  created() { },
  mounted() { },
  methods: {},
  async mounted() {
    const data = localStorage.getItem("math-chapterData");
    if (data) {
      this.chapterData = JSON.parse(data);
    }
    this.getPath();
    this.collectResourceList = await getCollectResource(this.config.activeBook.bookId)
   },
  methods: {
    async getPath() {
      this.videoPath = await getResourcePath(
        "a28cd862d61b5df2201406b76e9f01b0"
      );
    },
    handleChapterData() {
      localStorage.setItem(
        "math-chapterData",
        JSON.stringify(this.chapterData)
      );
    },
    handleCollect(type) {
      if (type == "img") {
        this.handleCollectResource("722FE833", "", 'images/0101-1.jpg', "图片", "json", '图3-15')
      } else if (type == "video") {
        this.handleCollectResource("a28cd862d61b5df2201406b76e9f01b0", "a28cd862d61b5df2201406b76e9f01b0", '', "视频", "bits", '视频:判数函数奇偶性的方法和步骤')
      }
      this.handleChapterData();
    },
        openMathDiaolog() {
      this.dialogVisible = true;
    },
    openThinkingDialog() {
      this.thinkingDialog = true;
    },
    showNext(num) {
      const number = this.thinkOne.findIndex((item, index) => index == num);
      console.log(number);
      this.thinkOne[number].isShow = true;
      if (this.thinkIndex <= 2) {
        this.thinkIndex++;
      }
    },
    showNextChange(num) {
      const number = this.stepOne.findIndex((item, index) => index == num);
      this.stepOne[number].isShow = true;
      if (this.stepIndex < 2) {
        this.stepIndex++;
      }
    },
    //资源收藏事件
    handleCollectResource(id, md5, resourcePath, resourceType, source, resourceName) {
      console.log(this.collectResourceList);
      let list = this.collectResourceList
      if (list.findIndex(item => item.id == id) > -1) {
        list = list.filter(item => item.id != id)
      } else {
        list.push({
          id,
          md5,
          resourcePath,
          resourceType,
          source,
          resourceName,
        })
      }
      this.collectResourceList = list
      setCollectResource(this.config.activeBook.bookId, this.collectResourceList)
    }
  },
}
</script>
<style lang="less" scoped></style>
<style lang="less" scoped>
.iframe-box {
  width: 100%;
  min-height: 800px;
  border: 1px solid #00a1e9;
  border-radius: 10px;
}
li {
  list-style: none;
}
.txt-p {
  margin-top: 0;
  padding: 10px 0;
}
.bottom-btn {
  display: flex;
  flex-direction: column;
  align-items: center;
  justify-content: center;
}
.step-num {
  position: relative;
  .step-num-box {
    position: absolute;
    top: 16px;
    left: 13px;
    color: #fff;
  }
}
</style>