闫增涛
2024-10-16 d7bb63ff28f0f08f377239139893fa5b263c844f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
<template>
  <div class="chapter" num="2">
    <!-- 第二单元首页 -->
    <div class="page-box" page="38">
      <div v-if="showPageList.indexOf(38) > -1">
        <h1 id="a006">
          <img class="img-0" alt="" src="../../assets/images/dy2.jpg" />
        </h1>
        <div class="padding-116">
          <p>
            物体有轻有重,速度有快有慢,气温有高有低,光线有强有弱,面积有大有小……在实际生活中,这种不相等的数量关系无处不在.我们可以利用不等关系构建不等式,并通过不等式解决现实生活中的问题.
          </p>
          <p>
            例如,随着时代的进步,人们对住宅的要求越来越高.通常人们在选择住宅时,都会考虑采光问题,这就需要把窗户开得尽可能大.按采光标准,窗户的有效透光面积与室内地面面积的比值应不小于
            <math display="0">
              <mfrac>
                <mn>1</mn>
                <mn>7</mn>
              </mfrac>
            </math>,这个比值越大,住宅的采光效果越好.
          </p>
          <p>
            如果窗户的有效透光面积和室内地面面积同时增加相同的面积,是不是采光效果就会更好呢?解决这样的问题就需要用到有关不等式的知识.
          </p>
          <p>
            不等式是数学中的重要内容,它具有应用广泛、变换灵活的特点,是研究数量大小关系的必备知识,与数学的其他分支内容有着密切的联系,也是学习高等数学的基础和工具.
          </p>
          <p>
            本单元在初中学习的基础之上,进一步学习不等式的基本性质、区间、一元二次不等式、含绝对值的不等式等.学习根据数量关系列出相应的不等式,并利用这些不等式找到问题的解决方案,提升数学运算、直观想象、逻辑推理和数学建模等核心素养.
          </p>
        </div>
      </div>
    </div>
    <!-- 目标 -->
    <div class="page-box" page="39">
      <div v-if="showPageList.indexOf(39) > -1">
        <div class="padding-116">
          <p class="left">
            <img class="inline2" alt="" src="../../assets/images/xxmb.jpg" />
          </p>
          <div class="fieldset">
            <p>1.不等式的基本性质.</p>
            <p>(1) 掌握判断两个数(式)大小的“作差比较法”;</p>
            <p>(2) 了解不等式的基本性质.</p>
            <p>2.区间.</p>
            <p>理解区间的概念.</p>
            <p>3.一元二次不等式.</p>
            <p>(1) 了解一元二次不等式的概念;</p>
            <p>
              (2) 了解二次函数、一元二次方程与一元二次不等式三者之间的关系;
            </p>
            <p>(3) 掌握一元二次不等式的解法.</p>
            <p>4.含绝对值的不等式.</p>
            <p>
              (1)
              了解含绝对值的不等式|<i>x</i>|<<i>a</i>和|<i>x</i>|><i>a</i>(<i>a</i>>0)的含义;
            </p>
            <p>
              (2)
              掌握形如|<i>ax</i>+<i>b</i>|<<i>c</i>和|<i>ax</i>+<i>b</i>|><i>c</i>(<i>c</i>>0)的不等式的解法.
            </p>
            <p>5.不等式的应用.</p>
            <p>
              初步掌握从实际问题中抽象出一元二次不等式模型解决简单实际问题的方法.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 033 -->
    <div class="page-box" page="40">
      <div v-if="showPageList.indexOf(40) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>033</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <p class="left">
            <img class="inline2" alt="" src="../../assets/images/xxmb.jpg" />
          </p>
          <div class="fieldset">
            <p>1.不等式的基本性质.</p>
            <p>(1) 掌握判断两个数(式)大小的“作差比较法”;</p>
            <p>(2) 了解不等式的基本性质.</p>
            <p>2.区间.</p>
            <p>理解区间的概念.</p>
            <p>3.一元二次不等式.</p>
            <p>(1) 了解一元二次不等式的概念;</p>
            <p>
              (2) 了解二次函数、一元二次方程与一元二次不等式三者之间的关系;
            </p>
            <p>(3) 掌握一元二次不等式的解法.</p>
            <p>4.含绝对值的不等式.</p>
            <p>
              (1)
              了解含绝对值的不等式|<i>x</i>|<<i>a</i>和|<i>x</i>|><i>a</i>(<i>a</i>>0)的含义;
            </p>
            <p>
              (2)
              掌握形如|<i>ax</i>+<i>b</i>|<<i>c</i>和|<i>ax</i>+<i>b</i>|><i>c</i>(<i>c</i>>0)的不等式的解法.
            </p>
            <p>5.不等式的应用.</p>
            <p>
              初步掌握从实际问题中抽象出一元二次不等式模型解决简单实际问题的方法.
            </p>
          </div>
          <h2 id="b007">
            2.1 不等式的基本性质<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c012">
            2.1.1 不等式的基本性质<span class="fontsz2">>>></span>
          </h3>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block">我们知道:</p>
            <p class="block">(1) <i>a</i>><i>b</i>⇔<i>a</i>-<i>b</i>>0;</p>
            <p class="block">(2) <i>a</i>><i>b</i>⇔<i>b</i><<i>a</i>;</p>
            <p class="block">
              (3)
              若<i>a</i>><i>b</i>,<i>b</i>><i>c</i>,则<i>a</i>><i>c</i>.
            </p>
            <p class="block">初中我们还学习过不等式的下列性质:</p>
            <p class="block">
              <b>性质1</b>
              <i>a</i>><i>b</i>⇔<i>a</i>±<i>c</i>><i>b</i>±<i>c</i>.
            </p>
            <p class="block">
              <b>性质2</b>
              <i>a</i>><i>b</i>,<i>c</i>>0⇒<i>ac</i>><i>bc</i>(或<math display="0">
                <mfrac>
                  <mi>a</mi>
                  <mi>c</mi>
                </mfrac>
                <mo>></mo>
                <mfrac>
                  <mi>b</mi>
                  <mi>c</mi>
                </mfrac>
              </math>).
            </p>
            <p class="block">
              <b>性质3</b>
              <i>a</i>><i>b</i>,<i>c</i><0⇒<i>ac</i><<i>bc</i>(或<math display="0">
                <mfrac>
                  <mi>a</mi>
                  <mi>c</mi>
                </mfrac>
                <mo><</mo>
                <mfrac>
                  <mi>b</mi>
                  <mi>c</mi>
                </mfrac>
              </math>).
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p>
            有观点认为,最美人体的下半身长(肚脐至脚的触地点的长度)与全身长之比是<math display="0">
              <mfrac>
                <mrow>
                  <msqrt>
                    <mn>5</mn>
                  </msqrt>
                  <mo>−</mo>
                  <mn>1</mn>
                </mrow>
                <mn>2</mn>
              </mfrac>
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mrow>
                    <msqrt>
                      <mn>5</mn>
                    </msqrt>
                    <mo>−</mo>
                    <mn>1</mn>
                  </mrow>
                  <mn>2</mn>
                </mfrac>
                <mo>≈</mo>
                <mn>0.618</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,这被称为黄金分割比例.某芭蕾舞演员全身长166cm,下半身长98cm.表演过程中,芭蕾舞演员会立起脚尖跳舞,此时肚脐与脚的触地点的距离增加了8
            cm.试问:该芭蕾舞演员下半身长与全身长的比值,在脚尖立起前后哪个大?
            哪一个更接近0.618?
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            该芭蕾舞演员脚尖立起前,下半身长与全身长的比值为<math display="0">
              <mfrac>
                <mn>98</mn>
                <mn>166</mn>
              </mfrac>
            </math>;脚尖立起后,下半身长与全身长的比值为<math display="0">
              <mfrac>
                <mrow>
                  <mn>98</mn>
                  <mo>+</mo>
                  <mn>8 </mn>
                </mrow>
                <mrow>
                  <mn>166</mn>
                  <mo>+</mo>
                  <mn>8</mn>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>106</mn>
                <mn>174</mn>
              </mfrac>
            </math>
            .本题要求比较这两个分数的大小.
          </p>
        </div>
      </div>
    </div>
    <!-- 034 -->
    <div class="page-box" page="41">
      <div v-if="showPageList.indexOf(41) > -1">
        <ul class="page-header-odd fl al-end">
          <li>034</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            为了借助不等式知识解决上面的问题,我们需要进一步研究不等式的性质.根据初中学过的不等式的3个基本性质,可以得到一系列推论.
          </p>
          <p>根据性质1,可得下列推论.</p>
          <p>
            <b>推论1</b>
            <i>a</i>><i>b</i>,<i>c</i>><i>d</i>⇒<i>a</i>+<i>c</i>><i>b</i>+<i>d</i>.
          </p>
          <p><b>证明</b> 根据性质1,可知</p>
          <p class="center">
            <i>a</i>><i>b</i>⇒<i>a</i>+<i>c</i>><i>b</i>+<i>c</i>,
          </p>
          <p class="center">
            <i>c</i>><i>d</i>⇒<i>c</i>+<i>b</i>><i>d</i>+<i>b</i>,即<i>b</i>+<i>c</i>><i>b</i>+<i>d</i>.
          </p>
          <p>
            从而<i>a</i>+<i>c</i>><i>b</i>+<i>c</i>><i>b</i>+<i>d</i>,即<i>a</i>+<i>c</i>><i>b</i>+<i>d</i>.
          </p>
          <p>例如,5>1,3>-2,根据推论1,有5+3>1+(-2),即8>-1.</p>
          <p>
            <b>推论2</b> <i>a</i>+<i>b</i>><i>c</i>⇒<i>a</i>><i>c</i>-<i>b</i>.
          </p>
          <p>根据性质2,可得下列推论.</p>
          <p>
            <b>推论3</b>
            <i>a</i>><i>b</i>>0,<i>c</i>><i>d</i>>0⇒<i>ac</i>><i>bd</i>.
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[41]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <p>
            <span class="zt-ls"><b>例1</b></span> 已知<i>a</i>><i>b</i>>0.
          </p>
          <p>(1) 比较2<i>a</i>与2<i>b</i>的大小;</p>
          <p>(2) 比较-2<i>a</i>与-2<i>b</i>的大小;</p>
          <p>(3) 比较<i>ac</i>与<i>bc</i>的大小.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为<i>a</i>><i>b</i>,2>0,根据性质2,有2<i>a</i>>2<i>b</i>.
          </p>
          <p>
            (2)
            因为<i>a</i>><i>b</i>,-2<0,根据性质3,有-2<i>a</i><-2<i>b</i>.
          </p>
          <p>(3) 若<i>c</i>>0,根据性质2,有<i>ac</i>><i>bc</i>.</p>
          <p>若<i>c</i><0,根据性质3,有<i>ac</i><<i>bc</i>.</p>
          <p>若<i>c</i>=0,则有<i>ac</i>=<i>bc</i>=0,所以<i>ac</i>=<i>bc</i>.</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 已知<i>a</i>><i>b</i>,比较<i>a</i>-1与<i>b</i>-2的大小.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为<i>a</i>><i>b</i>,-1>-2,
          </p>
          <p>根据推论1,有<i>a</i>+(-1)><i>b</i>+(-2),</p>
          <p>即<i>a</i>-1><i>b</i>-2.</p>
        </div>
      </div>
    </div>
    <!-- 035 -->
    <div class="page-box" page="42">
      <div v-if="showPageList.indexOf(42) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>035</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[42]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h3 id="c013">2.1.2 作差比较法<span class="fontsz2">>>></span></h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            我们知道实数可以比较大小.数学中经常用下面的等价关系比较<i>a</i>,<i>b</i>的大小.
          </p>
          <p class="center"><i>a</i>-<i>b</i>>0⇔<i>a</i>><i>b</i>;</p>
          <p class="center"><i>a</i>-<i>b</i><0⇔<i>a</i><<i>b</i>;</p>
          <p class="center"><i>a</i>-<i>b</i>=0⇔<i>a</i>=<i>b</i>.</p>
          <p>
            由此可见,比较<i>a</i>,<i>b</i>的大小,只要判断它们的差<i>a</i>-<i>b</i>与0的大小关系即可.
          </p>
          <p>
            例如,我们可以作差比较<i>a</i><sup>2</sup>+1与2<i>a</i>的大小(<i>a</i>≠1).
          </p>
          <p>
            因为(<i>a</i><sup>2</sup>+1)-2<i>a</i>=<i>a</i><sup>2</sup>-2<i>a</i>+1=(<i>a</i>-1)<sup>2</sup>,且当<i>a</i>≠1时,(<i>a</i>-1)<sup>2</sup>>0,所以<i>a</i><sup>2</sup>+1>2<i>a</i>.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 分析本节“问题提出”中的问题.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 作差可得<math display="0">
              <mfrac>
                <mn>98</mn>
                <mn>166</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>98</mn>
                  <mo>+</mo>
                  <mn>8</mn>
                </mrow>
                <mrow>
                  <mn>166</mn>
                  <mo>+</mo>
                  <mn>8</mn>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mn>98</mn>
                <mn>166</mn>
              </mfrac>
              <mo>−</mo>
              <mfrac>
                <mn>106</mn>
                <mn>174</mn>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mn>98</mn>
                  <mo>×</mo>
                  <mn>174</mn>
                  <mo>−</mo>
                  <mn>106</mn>
                  <mo>×</mo>
                  <mn>166</mn>
                </mrow>
                <mrow>
                  <mn>166</mn>
                  <mo>×</mo>
                  <mn>174</mn>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mo>−</mo>
                  <mn>544</mn>
                </mrow>
                <mrow>
                  <mn>166</mn>
                  <mo>×</mo>
                  <mn>174</mn>
                </mrow>
              </mfrac>
              <mo><</mo>
              <mn>0</mn>
            </math>,所以<math display="0">
              <mfrac>
                <mn>98</mn>
                <mn>166</mn>
              </mfrac>
              <mo><</mo>
              <mfrac>
                <mn>106</mn>
                <mn>174</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            又因为<math display="0">
              <mfrac>
                <mn>98</mn>
                <mn>166</mn>
              </mfrac>
              <mo>≈</mo>
              <mn>0.590</mn>
              <mn>4</mn>
            </math>,<math display="0">
              <mfrac>
                <mn>106</mn>
                <mn>174</mn>
              </mfrac>
              <mo>≈</mo>
              <mn>0.690</mn>
              <mn>2</mn>
            </math>,所以立起脚尖后,该芭蕾舞演员的下半身长与全身长的比值更接近0.618.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              本例中,作差时也可以这样计算:
              <math display="0">
                <mfrac>
                  <mn>98</mn>
                  <mn>166</mn>
                </mfrac>
                <mo>−</mo>
                <mfrac>
                  <mn>106</mn>
                  <mn>174</mn>
                </mfrac>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mn>1</mn>
                  <mo>−</mo>
                  <mfrac>
                    <mn>68</mn>
                    <mn>166</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>-</mo>
              </math>
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 036 -->
    <div class="page-box" page="43">
      <div v-if="showPageList.indexOf(43) > -1">
        <ul class="page-header-odd fl al-end">
          <li>036</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <div class="bk">
            <p class="block">
              <math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mn>1</mn>
                  <mo>−</mo>
                  <mfrac>
                    <mn>68</mn>
                    <mn>174</mn>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
                <mo>=</mo>
                <mfrac>
                  <mn>68</mn>
                  <mn>174</mn>
                </mfrac>
                <mo>−</mo>
                <mfrac>
                  <mn>68</mn>
                  <mn>166</mn>
                </mfrac>
              </math>
              .因为分子相同时,分母越大,分数越小,所以
              <math display="0">
                <mfrac>
                  <mn>98</mn>
                  <mn>166</mn>
                </mfrac>
                <mo>−</mo>
                <mfrac>
                  <mn>106</mn>
                  <mn>174</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mn>68</mn>
                  <mn>174</mn>
                </mfrac>
                <mo>=</mo>
                <mfrac>
                  <mn>68</mn>
                  <mn>166</mn>
                </mfrac>
                <mo><</mo>
                <mn>0</mn>
              </math>.
            </p>
          </div>
 
          <p>
            <span class="zt-ls"><b>例2</b></span> 已知<i>b</i>><i>a</i>>0,<i>c</i>>0,比较<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
              </mfrac>
            </math>与<math display="0">
              <mfrac>
                <mi>a</mi>
                <mi>b</mi>
              </mfrac>
            </math>的大小.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 作差可得<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mi>a</mi>
                <mi>b</mi>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>a</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>b</mi>
                </mrow>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>b</mi>
                </mrow>
              </mfrac>
              <mo>−</mo>
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                </mrow>
                <mrow>
                  <mi>b</mi>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>−</mo>
                    <mi>a</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>b</mi>
                </mrow>
              </mfrac>
            </math>.
          </p>
          <p>
            因为<i>b</i>><i>a</i>>0,所以<i>b</i>-<i>a</i>>0.又因为<i>c</i>>0,所以<math display="0">
              <mfrac>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>−</mo>
                    <mi>a</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mi>b</mi>
                    <mo>+</mo>
                    <mi>c</mi>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mi>b</mi>
                </mrow>
              </mfrac>
              <mo>></mo>
              <mn>0</mn>
            </math>,
          </p>
          <p>
            即<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
              </mfrac>
              <mo>−</mo>
              <mfrac>
                <mi>a</mi>
                <mi>b</mi>
              </mfrac>
              <mo>></mo>
              <mn>0</mn>
            </math>,所以<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mrow>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
              </mfrac>
              <mo>></mo>
              <mfrac>
                <mi>a</mi>
                <mi>b</mi>
              </mfrac>
            </math>.
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[43] ? questionData[43][1] : []" :hideCollect="true" sourceType="json"
              v-if="questionData">
            </examinations>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[43] ? questionData[43][2] : []" :hideCollect="true" sourceType="json"
              inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 037 -->
    <div class="page-box" page="44">
      <div v-if="showPageList.indexOf(44) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>037</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <h3 id="c014">习题2.1<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[44]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h2 id="b008">2.2 区间<span class="fontsz1">>>>>>>>></span></h2>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/gn.jpg" /></p>
            </div>
            <p class="block">闭区间</p>
            <p class="block">开区间</p>
            <p class="block">左闭右开区间</p>
            <p class="block">左开右闭区间</p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            以不等式表示元素共同特征的数集,还有一种更为简单的表示方法,叫<b>作区间表示法</b>.
          </p>
          <p>设<i>a</i><<i>b</i>,我们规定:</p>
          <p>
            (1)
            满足不等式<i>a</i>≤<i>x</i>≤<i>b</i>的<i>x</i>的集合叫作<b>闭区间</b>,表示为
            [<i>a</i>,<i>b</i>].
          </p>
          <p>
            (2)
            满足不等式<i>a</i><<i>x</i><<i>b</i>的<i>x</i>的集合叫作<b>开区间</b>,表示为(<i>a</i>,<i>b</i>).
          </p>
        </div>
      </div>
    </div>
    <!-- 038 -->
    <div class="page-box" page="45">
      <div v-if="showPageList.indexOf(45) > -1">
        <ul class="page-header-odd fl al-end">
          <li>038</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p>
            (3)
            满足不等式<i>a</i>≤<i>x</i><<i>b</i>和<i>a</i><<i>x</i>≤<i>b</i>的<i>x</i>的集合分别叫作<b>左闭右开区间</b>和<b>左开右闭区间</b>,分别表示为
            [<i>a</i>,<i>b</i>),(<i>a</i>,<i>b</i>].
          </p>
          <p>
            这里的<i>a</i>与<i>b</i>都叫作相应区间的端点.这些区间还可以用数轴表示(如表2-1所示).在数轴上,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点.
          </p>
          <p class="img">表2-1</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0049-1.jpg" /></p>
          <p>
            实数集<b>R</b>可以用区间表示为(-∞,+∞).符号“∞”读作“无穷大”,它不是一个具体的数,仅表示某个量在变化时,绝对值无限增大的趋势.“+∞”读作“正无穷大”,表示某个量沿正方向无限增大;“-∞”读作“负无穷大”,表示某个量沿负方向无限变化,其绝对值无限增大.
          </p>
          <p>
            我们还可以把满足<i>x</i>≥<i>a</i>,<i>x</i>><i>a</i>,<i>x</i>≤<i>b</i>,<i>x</i><<i>b</i>的<i>x</i>的集合用区间分别表示为
            [<i>a</i>,+∞),(<i>a</i>,+∞),(-∞,<i>b</i>],(-∞,<i>b</i>),如表2-2所示.
          </p>
          <p class="img">表2-2</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0049-2.jpg" /></p>
        </div>
      </div>
    </div>
    <!-- 039 -->
    <div class="page-box" page="46">
      <div v-if="showPageList.indexOf(46) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>039</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <div class="bk mt-80">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              区间也是一个集合,它是实数集的一个子集.但并非所有的数集都能用区间表示.例如,集合{1,3,4,5,7,8,11,12}、自然数集<b>N</b>、整数集<b>Z</b>就不能用区间表示.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>例1</b></span> 把下列集合用区间表示出来,并指出区间的类型.
          </p>
          <p>(1) {<i>x</i>|-3≤<i>x</i>≤1};(2) {<i>x</i>|-1<<i>x</i><2};</p>
          <p>
            (3)
            <math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow>
                  <mo stretchy="false">|</mo>
                </mrow>
                <mfrac>
                  <mn>3</mn>
                  <mn>2</mn>
                </mfrac>
                <mo>≤</mo>
                <mi>x</mi>
                <mo><</mo>
                <mn>4</mn>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>;(4)
            <math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">{</mo>
                <mi>x</mi>
                <mrow>
                  <mo stretchy="false">|</mo>
                </mrow>
                <mo>−</mo>
                <mn>6</mn>
                <mo><</mo>
                <mi>x</mi>
                <mo>≤</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">}</mo>
              </mrow>
            </math>;
          </p>
          <p>(5) {<i>x</i>|<i>x</i>≥2};(6) {<i>x</i>|<i>x</i><1}.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) [-3,1],是闭区间;
          </p>
          <p>(2)(-1,2),是开区间;</p>
          <p>
            (3)
            <math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mfrac>
                  <mn>3</mn>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mn>4</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,是左闭右开区间;
          </p>
          <p>
            (4)
            <math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mn>6</mn>
                <mo>,</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>1</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>,是左开右闭区间;
          </p>
          <p>(5) [2,+∞),是左闭右开区间;</p>
          <p>(6)(-∞,1),是开区间.</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 用区间表示不等式3<i>x</i><9<i>x</i>+4的解集,并在数轴上表示出来.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 解不等式3<i>x</i><9<i>x</i>+4,得
          </p>
          <math display="block">
            <mi>x</mi>
            <mo>></mo>
            <mo>−</mo>
            <mfrac>
              <mn>2</mn>
              <mn>3</mn>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>
            所以不等式的解集用区间表示为<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>2</mn>
                  <mn>3</mn>
                </mfrac>
                <mo>,</mo>
                <mo>+</mo>
                <mi mathvariant="normal">∞</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,表示在数轴上如图2-1所示.
          </p>
          <p class="center"><img class="img-f" alt="" src="../../assets/images/0050-7.jpg" /></p>
          <p class="img">图2-1</p>
          <p>
            <span
              class="zt-ls"><b>例3</b></span> 设<b>R</b>为全集,集合<i>A</i>={<i>x</i>|-5<<i>x</i><6},<i>B</i>={<i>x</i>|<i>x</i>≥3或<i>x</i>≤-3},用区间表示<i>A</i>∩<i>B</i>.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            在数轴上将集合<i>A</i>,<i>B</i>表示出来,如图2-2所示.
          </p>
          <p class="center"><img class="img-d" alt="" src="../../assets/images/0050-8.jpg" /></p>
          <p class="img">图2-2</p>
          <p>
            <i>A</i>∩<i>B</i>={<i>x</i>|-5<<i>x</i><6}∩{<i>x</i>|<i>x</i>≥3或<i>x</i>≤-3}
          </p>
          <p>={<i>x</i>|-5<<i>x</i>≤-3}∪{<i>x</i>|3≤<i>x</i><6}</p>
          <p>=(-5,-3]∪[3,6).</p>
        </div>
      </div>
    </div>
    <!-- 040 -->
    <div class="page-box" page="47">
      <div v-if="showPageList.indexOf(47) > -1">
        <ul class="page-header-odd fl al-end">
          <li>040-041</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[47] ? questionData[47][1] : []" :hideCollect="true" sourceType="json"
              inputBc="#d3edfa" v-if="questionData"></examinations>
          </div>
          <h3 id="c015">习题2.2<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[47] ? questionData[47][2] : []" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h2 id="b009">
            2.3 一元二次不等式<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c016">
            2.3.1 一元二次不等式的概念<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p class="center"><b>汽车急刹车的停车距离</b></p>
          <p>
            随着人民生活质量的提高,人们的购车意愿上升.2021年末全国民用汽车保有量30
            151万辆,比2020年末增加2
            064万辆.在此背景下,汽车行驶安全越发需要引起人们的重视。汽车行驶的过程中,由于惯性的作用,急刹车后会继续向前滑行一段距离才能停住,一般称这段距离为汽车“急刹车的停车距离”.急刹车的停车距离<i>y</i>(m)
            与车速<i>x</i>(km/h)之间具有确定的关系.不同车型的汽车急刹车的停车距离与车速之间的关系不同,同一车型的汽车急刹车的停车距离与车速之间的关系也会因为天气条件、道路状况等因素的不同而发生变化.
          </p>
          <p>
            在正常天气条件下,某汽车在高速公路上急刹车的停车距离<i>y</i>(m)
            与车速<i>x</i>(km/h)
            之间的函数关系为<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>,如果希望该汽车急刹车的停车距离不
          </p>
        </div>
      </div>
    </div>
    <!-- 041 -->
    <div class="page-box hidePage" page="48">
    </div>
    <!-- 042 -->
    <div class="page-box" page="49">
      <div v-if="showPageList.indexOf(49) > -1">
        <ul class="page-header-odd fl al-end">
          <li>042</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p class="t0">
            超过50m,那么其行驶速度的范围是多少?(注:高速公路上的最低速度为60
            km/h)
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            上述问题要求“汽车急刹车的停车距离不超过50
            m”,即y≤50.而该汽车急刹车的停车距离与车速之间的关系为<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>,因此得到
          </p>
          <p class="center">0.007<i>x</i><sup>2</sup>+0.2<i>x</i>≤50.</p>
          <p>
            为了求出行驶速度的范围,我们需要对这个不等式进行求解.这个不等式可以进一步整理为
          </p>
          <p class="center">0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50≤0.</p>
          <p>
            这个不等式只含有一个未知数<i>x</i>,并且未知数<i>x</i>的最高次数为2.像这样的不等式还有很多,如2<i>x</i><sup>2</sup>+5<i>x</i>-3<0,3<i>x</i><sup>2</sup>+6<i>x</i>-1>0等.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left"><img class="img-gn1" alt="" src="../../assets/images/gn.jpg" /></p>
            </div>
            <p class="block">一元二次不等式</p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            一般地,只含有一个未知数,且未知数的最高次数为2的整式不等式,叫作<b>一元二次不等式</b>.一元二次不等式的一般表达式为<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0(≥0)或<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0(≤0),其中<i>a</i>,<i>b</i>,<i>c</i>均为常数,且<i>a</i>≠0.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block"><b>1.一元二次方程</b></p>
            <p class="block">
              一元二次方程<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>=0(<i>a</i>≠0)的实数解的情况与求解公式如表2-3所示.
            </p>
            <p class="img">表2-3</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0053-1.jpg" />
            </p>
            <p class="block">
              当<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>>0时,有些一元二次方程也可以用因式分解法写成<i>a</i>(<i>x</i>-<i>x</i>1)(<i>x</i>-<i>x</i>2)=0(<i>a</i>≠0),然后再求解.
            </p>
            <p class="block"><b>2.二次函数</b></p>
            <p class="block">
              二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>(<i>a</i>≠0)的图像是一条抛物线.当<i>a</i>>0时,抛物线开口向上;当<i>a</i><0时,抛物线开口向下.抛物线与<i>x</i>轴共有3种
              位置关系.
            </p>
          </div>
        </div>
      </div>
    </div>
    <!-- 043 -->
    <div class="page-box" page="50">
      <div v-if="showPageList.indexOf(50) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>043</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <div class="bk">
            <p class="block">
              (1) 当<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>>0时,抛物线与<i>x</i>轴有两个交点;
            </p>
            <p class="block">
              (2) 当<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=0时,抛物线与<i>x</i>轴只有一个交点;
            </p>
            <p class="block">
              (3) 当<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i><0时,抛物线与<i>x</i>轴无交点.
            </p>
            <p class="block">抛物线与<i>x</i>轴的3种位置关系如表2-4所示.</p>
            <p class="img">表2-4</p>
            <p class="center">
              <img class="img-a" alt="" src="../../assets/images/0054-1.jpg" />
            </p>
            <p class="block">
              二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>(<i>a</i>≠0)的图像的对称轴方程为<math display="0">
                <mi>x</mi>
                <mo>=</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>b</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
              </math>,顶点坐标为<math display="0">
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">(</mo>
                  <mo>−</mo>
                  <mfrac>
                    <mi>b</mi>
                    <mrow>
                      <mn>2</mn>
                      <mi>a</mi>
                    </mrow>
                  </mfrac>
                  <mo>,</mo>
                  <mfrac>
                    <mrow>
                      <mn>4</mn>
                      <mi>a</mi>
                      <mi>c</mi>
                      <mo>−</mo>
                      <msup>
                        <mi>b</mi>
                        <mrow>
                          <mn>2</mn>
                        </mrow>
                      </msup>
                    </mrow>
                    <mrow>
                      <mn>4</mn>
                      <mi>a</mi>
                    </mrow>
                  </mfrac>
                  <mo data-mjx-texclass="CLOSE">)</mo>
                </mrow>
              </math>,与<i>y</i>轴的交点坐标为(0,<i>c</i>).
            </p>
          </div>
          <p><b>例</b> 已知二次函数<i>y</i>=<i>x</i><sup>2</sup>-2<i>x</i>-3,</p>
          <p>(1) 画出该函数图像;</p>
          <p>
            (2)
            指出该函数图像上纵坐标分别为<i>y</i>=0,<i>y</i>>0,<i>y</i><0的所有点;
          </p>
          <p>
            (3)
            根据函数图像写出<i>y</i>=0,<i>y</i>>0,<i>y</i><0时所对应的<i>x</i>的值或取值范围.
          </p>
          <p class="block">
            <span
              class="zt-ls2"><b>分析</b></span> ①根据<i>x</i><sup>2</sup>的系数判断函数图像(抛物线)的开口方向;②用判别式判定出一元二次方程<i>x</i><sup>2</sup>-2<i>x</i>-3=0的解的情况,从而确定二次函数<i>y</i>=<i>x</i><sup>2</sup>-2<i>x</i>-3的图像与<i>x</i>轴的交点个数和交点坐标;③计算二次函数图像的顶点坐标、与<i>y</i>轴的交点坐标;④求出二次函数图像的对称轴方程,并利用函数图像的对称性再找出一些点;⑤最后根据上述信息画出函数图像.
          </p>
          <p class="block">
            画出图像后,<i>y</i>=0,<i>y</i>>0,<i>y</i><0分别对应函数图像与<i>x</i>轴相交、函数图像在<i>x</i>轴上方、函数图像在<i>x</i>轴下方三种情形,根据图像完成(2)(3)
            两个问题.
          </p>
        </div>
      </div>
    </div>
    <!-- 044 -->
    <div class="page-box" page="51">
      <div v-if="showPageList.indexOf(51) > -1">
        <ul class="page-header-odd fl al-end">
          <li>044</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0055-1.jpg" /></p>
          <p class="img">图2-3</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1) 因为<i>a</i>=1>0,所以函数图像为开口向上的抛物线.
          </p>
          <p>
            因为<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=(-2)<sup>2</sup>-4×1×(-3)=16>0,
          </p>
          <p>
            所以一元二次方程<i>x</i><sup>2</sup>-2<i>x</i>-3=0有两个不相等的实数解.
          </p>
          <p>解方程,得<i>x</i><sub>1</sub>=-1,<i>x</i><sub>2</sub>=3.</p>
          <p>所以抛物线与<i>x</i>轴的交点坐标为(-1,0),(3,0).</p>
          <p>
            抛物线的顶点坐标为<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>b</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                    <mi>c</mi>
                    <mo>−</mo>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,即(1,-4).
          </p>
          <p>
            抛物线的对称轴方程为<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mi>b</mi>
                <mrow>
                  <mn>2</mn>
                  <mi>a</mi>
                </mrow>
              </mfrac>
            </math>,即<i>x</i>=1.抛物线与<i>y</i>轴的交点坐标为(0,<i>c</i>),即(0,-3).根据函数的对称性,可以再取一些点,如(2,-3).
          </p>
          <p>
            根据以上信息,就可以画出函数<i>y</i>=<i>x</i><sup>2</sup>-2<i>x</i>-3的图像(如图2-3所示).
          </p>
          <p>
            (2)
            观察图像可知,满足<i>y</i>=0的点是抛物线与<i>x</i>轴的交点;满足<i>y</i>>0的点是抛物线在<i>x</i>轴上方的所有点;满足<i>y</i><0的点是抛物线在<i>x</i>轴下方的所有点.
          </p>
          <p>
            (3)
            观察图像可知,当<i>y</i>=0时,对应抛物线与<i>x</i>轴的两个交点,此时<i>x</i>有两个取值,<i>x</i><sub>1</sub>=-1,<i>x</i><sub>2</sub>=3;
          </p>
          <p>
            当<i>y</i>>0时,对应抛物线在<i>x</i>轴上方的所有点,此时<i>x</i>的取值范围是<i>x</i><-1或<i>x</i>>3;
          </p>
          <p>
            当<i>y</i><0时,对应抛物线在<i>x</i>轴下方的所有点,此时<i>x</i>的取值范围是-1<<i>x</i><3.
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[51] ? questionData[51][1] : []" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>已知下列二次函数:</p>
            <p>①<i>y</i>=<i>x</i><sup>2</sup>-3<i>x</i>-4, ②<i>y</i>=<i>x</i><sup>2</sup>+<i>x</i>+2, ③<i>y</i>=<i>x</i><sup>2</sup>-6<i>x</i>+9.</p>
            <p>(1) 分别画出它们的函数图像;</p>
            <paint 
              :page="51"
              :imgUrl="this.config.activeBook.resourceUrl + '/images/a6fe3d63.png'" 
            />
            <p>
              (2) 根据函数图像写出<i>y</i>=0,<i>y</i>>0,<i>y</i><0时所对应的<i>x</i>的值或取值范围.
              <span class="btn-box" @click="isShowAnswer = !isShowAnswer">
                <svg xmlns="http://www.w3.org/2000/svg" width="16.501" height="16.501" viewBox="0 0 20.501 20.501">
                  <path class="a"
                    d="M3344.717-15308.5H3337.4a10.186,10.186,0,0,1-7.25-3,10.185,10.185,0,0,1-3-7.25A10.262,10.262,0,0,1,3337.4-15329a10.26,10.26,0,0,1,10.249,10.248,10.129,10.129,0,0,1-2.2,6.341v3.177A.734.734,0,0,1,3344.717-15308.5Zm-9.606-7.29h4.493l.527,1.419c.071.182.156.386.254.608a2.428,2.428,0,0,0,.273.512.986.986,0,0,0,.315.262.971.971,0,0,0,.454.1,1.05,1.05,0,0,0,.773-.327,1.025,1.025,0,0,0,.319-.723,3.3,3.3,0,0,0-.277-1.051l-.062-.161-2.889-7.313c-.119-.321-.228-.607-.335-.873a2.972,2.972,0,0,0-.323-.616,1.56,1.56,0,0,0-.5-.469,1.552,1.552,0,0,0-.781-.181,1.535,1.535,0,0,0-.773.181,1.475,1.475,0,0,0-.5.477,3.674,3.674,0,0,0-.362.739l-.239.627-.054.135-2.824,7.355c-.095.229-.179.46-.25.688a1.529,1.529,0,0,0-.073.477.978.978,0,0,0,.323.72,1.039,1.039,0,0,0,.746.315.838.838,0,0,0,.716-.3,4.676,4.676,0,0,0,.466-.985l.062-.165.527-1.449Zm3.747-1.5h-3.293l1.812-5.124,1.481,5.123Z"
                    transform="translate(-3327.144 15329)" />
                </svg>
              </span>
            </p>
            <el-input type="textarea"  placeholder="请输入内容" rows="6" class="question-textarea" ></el-input>
            <ul class="table-answer-box" v-if="isShowAnswer">
              <li>答案:</li>
              <li>
                <math  display="block">  <mrow>    <mo>&#x2460;</mo>  </mrow>  <mi>y</mi>  <mo>=</mo>  <msup>    <mi>x</mi>    <mrow>      <mn>2</mn>    </mrow>  </msup>  <mo>&#x2212;</mo>  <mn>3</mn>  <mi>x</mi>  <mo>&#x2212;</mo>  <mn>4</mn>  <mo>=</mo>  <mo stretchy="false">(</mo>  <mi>x</mi>  <mo>+</mo>  <mn>1</mn>  <mo stretchy="false">)</mo>  <mo stretchy="false">(</mo>  <mi>x</mi>  <mo>&#x2212;</mo>  <mn>4</mn>  <mo stretchy="false">)</mo></math>
                <math  display="block">  <mo>&#x5F53;</mo>  <mi>y</mi>  <mo>=</mo>  <mn>0</mn>  <mo>&#x65F6;&#xFF0C;</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>1</mn>    </mrow>  </msub>  <mo>=</mo>  <mo>&#x2212;</mo>  <mn>1</mn>  <mo>&#x6216;</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>2</mn>    </mrow>  </msub>  <mo>=</mo>  <mn>4</mn>  <mo>&#xFF0C;</mo></math>
                <math  display="block">  <mo>&#x5F53;</mo>  <mi>y</mi>  <mo>&gt;</mo>  <mn>0</mn>  <mo>&#x65F6;&#xFF0C;</mo>  <mi>x</mi>  <mo>&lt;</mo>  <mo>&#x2212;</mo>  <mn>1</mn>  <mo>&#x6216;</mo>  <mi>x</mi>  <mo>&gt;</mo>  <mn>4</mn>  <mo>&#xFF0C;</mo></math>
                <math  display="block">  <mo>&#x5F53;</mo>  <mi>y</mi>  <mo>&lt;</mo>  <mn>0</mn>  <mo>&#x65F6;&#xFF0C;</mo>  <mo>&#x2212;</mo>  <mn>1</mn>  <mo>&lt;</mo>  <mi>x</mi>  <mo>&lt;</mo>  <mn>4</mn>  <mo>&#xFF1B;</mo></math>
                <math  display="block">  <mo>&#x56E0;&#x6B64;&#x5F53;</mo>  <mi>y</mi>  <mo>=</mo>  <mn>0</mn>  <mo>&#x65F6;&#xFF0C;&#x6240;&#x5BF9;&#x5E94;&#x7684;&#x70B9;&#x4E3A;</mo>  <mo stretchy="false">(</mo>  <mo>&#x2212;</mo>  <mn>1</mn>  <mo>,</mo>  <mn>0</mn>  <mo stretchy="false">)</mo>  <mo>,</mo>  <mo stretchy="false">(</mo>  <mn>4</mn>  <mo>,</mo>  <mn>0</mn>  <mo stretchy="false">)</mo>  <mo>;</mo>  <mo>&#x5F53;</mo>  <mi>y</mi>  <mo>&gt;</mo>  <mn>0</mn>  <mo>&#x65F6;&#xFF0C;&#x6240;&#x5BF9;&#x5E94;&#x7684;&#x70B9;&#x4E3A;</mo>  </math>
                <math  display="block"> <mo stretchy="false">(</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>0</mn>    </mrow>  </msub>  <mo>,</mo>  <mi>y</mi>  <mo stretchy="false">)</mo>  <mo>&#xFF0C;&#x5176;&#x4E2D;&#xFF0C;</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>0</mn>    </mrow>  </msub>  <mo>&lt;</mo>  <mo>&#x2212;</mo>  <mn>1</mn>  <mo>&#x6216;</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>0</mn>    </mrow>  </msub>  <mo>&gt;</mo>  <mn>4</mn>  <mo>&#xFF1B;</mo> </math>
                <math  display="block">  <mo>&#x5F53;</mo>  <mi>y</mi>  <mo>&lt;</mo>  <mn>0</mn>  <mo>&#x65F6;&#xFF0C;&#x6240;&#x5BF9;&#x5E94;&#x7684;&#x70B9;&#x4E3A;</mo>  <mo stretchy="false">(</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>0</mn>    </mrow>  </msub>  <mo>,</mo>  <mi>y</mi>  <mo stretchy="false">)</mo>  <mo>&#xFF0C;&#x5176;&#x4E2D;</mo>  <mo>&#x2212;</mo>  <mn>1</mn>  <mo>&lt;</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>0</mn>    </mrow>  </msub>  <mo>&lt;</mo>  <mn>4</mn>  <mo>&#xFF1B;</mo></math>
                <math  display="block">  <mrow>    <mo>&#x2461;</mo>  </mrow>  <mi>y</mi>  <mo>=</mo>  <msup>    <mi>x</mi>    <mrow>      <mn>2</mn>    </mrow>  </msup>  <mo>+</mo>  <mi>x</mi>  <mo>+</mo>  <mn>2</mn>  <mo>=</mo>  <mo stretchy="false">(</mo>  <mi>x</mi>  <mo>+</mo>  <mfrac>    <mn>1</mn>    <mn>2</mn>  </mfrac>  <msup>    <mo stretchy="false">)</mo>    <mrow>      <mn>2</mn>    </mrow>  </msup>  <mo>+</mo>  <mfrac>    <mn>7</mn>    <mn>4</mn>  </mfrac>  <mo>&gt;</mo>  <mn>0</mn>  <mo>&#xFF1B;</mo></math>
                <math  display="block">  <mo>&#x5F53;</mo>  <mi>y</mi>  <mo>=</mo>  <mn>0</mn>  <mo>&#xFF0C;</mo>  <mi>y</mi>  <mo>&lt;</mo>  <mn>0</mn>  <mo>&#x65F6;&#xFF0C;&#x6CA1;&#x6709;&#x5BF9;&#x5E94;&#x7684;&#x70B9;&#xFF1B;&#x5F53;</mo>  <mi>y</mi>  <mo>&gt;</mo>  <mn>0</mn>  <mo>&#x65F6;&#xFF0C;&#x6240;&#x5BF9;&#x5E94;&#x7684;&#x70B9;&#x4E3A;</mo>  <mo stretchy="false">(</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>0</mn>    </mrow>  </msub>  <mo>,</mo>  <mi>y</mi>  <mo stretchy="false">)</mo> </math>
                <math> <mo>&#xFF0C;&#x5176;&#x4E2D;</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>0</mn>    </mrow>  </msub>  <mo>&#x2208;</mo>  <mi>R</mi>  <mo>.</mo></math>
                <math  display="block">  <mrow>    <mo>&#x2462;</mo>  </mrow>  <mi>y</mi>  <mo>=</mo>  <msup>    <mi>x</mi>    <mrow>      <mn>2</mn>    </mrow>  </msup>  <mo>&#x2212;</mo>  <mn>6</mn>  <mi>x</mi>  <mo>+</mo>  <mn>9</mn>  <mo>=</mo>  <mo stretchy="false">(</mo>  <mi>x</mi>  <mo>&#x2212;</mo>  <mn>3</mn>  <msup>    <mo stretchy="false">)</mo>    <mrow>      <mn>2</mn>    </mrow>  </msup>  <mo>.</mo></math>
                <math  display="block">  <mo>&#x5F53;</mo>  <mi>y</mi>  <mo>=</mo>  <mn>0</mn>  <mo>&#x65F6;</mo>  <mo>,</mo>  <mo>&#x6240;&#x5BF9;&#x5E94;&#x7684;&#x70B9;&#x4E3A;</mo>  <mo stretchy="false">(</mo>  <mn>3</mn>  <mo>,</mo>  <mn>0</mn>  <mo stretchy="false">)</mo>  <mo>&#xFF1B;&#x5F53;</mo>  <mi>y</mi>  <mo>&gt;</mo>  <mn>0</mn>  <mo>&#x65F6;&#xFF0C;&#x6240;&#x5BF9;&#x5E94;&#x7684;&#x70B9;&#x4E3A;</mo>  <mo stretchy="false">(</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>0</mn>    </mrow>  </msub>  <mo>,</mo>  <mi>y</mi>  <mo stretchy="false">)</mo> </math>
                <math  display="block"> <mo>&#xFF0C;&#x5176;&#x4E2D;</mo>  <msub>    <mi>x</mi>    <mrow>      <mn>0</mn>    </mrow>  </msub>  <mo>&#x2260;</mo>  <mn>3</mn>  <mo>&#xFF1B;&#x5F53;</mo>  <mi>y</mi>  <mo>&lt;</mo>  <mn>0</mn>  <mo>&#x65F6;&#xFF0C;&#x6CA1;&#x6709;&#x5BF9;&#x5E94;&#x7684;&#x70B9;</mo>  <mo>.</mo></math>
              </li>
            </ul>
          </div>
        </div>
      </div>
    </div>
    <!-- 045 -->
    <div class="page-box" page="52">
      <div v-if="showPageList.indexOf(52) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>045</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <h3 id="c017">
            2.3.2 一元二次不等式的基本解法<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            回到本节开头的问题,如何解不等式0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50≤0呢?
          </p>
          <p>
            当<i>x</i>变化时,不等式的左边可以看作<i>x</i>的二次函数<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50.这样解不等式0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50≤0的问题就可以转化为求二次函数<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50的图像上<i>y</i>≤0所对应点的<i>x</i>的取值范围问题.
          </p>
          <p>
            二次函数<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50的图像是开口向上的抛物线.因为<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=(0.2)<sup>2</sup>-4×0.007×(-50)=1.44>0,所以抛物线与<i>x</i>轴有两个交点,交点的横坐标是方程0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50=0的两个解,解方程0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50=0得<i>x</i>1=-100,<math
              display="0">
              <msub>
                <mi>x</mi>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msub>
              <mo>=</mo>
              <mfrac>
                <mn>500</mn>
                <mn>7</mn>
              </mfrac>
            </math>.所以图像与<i>x</i>轴的交点坐标为(-100,0),<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mfrac>
                  <mn>500</mn>
                  <mn>7</mn>
                </mfrac>
                <mo>,</mo>
                <mn>0</mn>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.对称轴方程为<math display="0">
              <mi>x</mi>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mi>b</mi>
                <mrow>
                  <mn>2</mn>
                  <mi>a</mi>
                </mrow>
              </mfrac>
              <mo>=</mo>
              <mo>−</mo>
              <mfrac>
                <mn>100</mn>
                <mn>7</mn>
              </mfrac>
            </math>,顶点坐标为<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mi>b</mi>
                  <mrow>
                    <mn>2</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                    <mi>c</mi>
                    <mo>−</mo>
                    <msup>
                      <mi>b</mi>
                      <mrow>
                        <mn>2</mn>
                      </mrow>
                    </msup>
                  </mrow>
                  <mrow>
                    <mn>4</mn>
                    <mi>a</mi>
                  </mrow>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>,即<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>100</mn>
                  <mn>7</mn>
                </mfrac>
                <mo>,</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>360</mn>
                  <mn>7</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0056-6.jpg" /></p>
          <p class="img">图2-4</p>
          <p>
            故二次函数<i>y</i>=0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50的简图如图2-4所示.
          </p>
          <p>观察图像可知:</p>
          <p>
            当<i>y</i>=0时,对应抛物线与<i>x</i>轴的两个交点,此时<i>x</i>1=-100,<math display="0">
              <msub>
                <mi>x</mi>
                <mrow>
                  <mn>2</mn>
                </mrow>
              </msub>
              <mo>=</mo>
              <mfrac>
                <mn>500</mn>
                <mn>7</mn>
              </mfrac>
            </math>;
          </p>
          <p>
            当<i>y</i><0时,对应抛物线在<i>x</i>轴下方的所有点,此时<i>x</i>的取值范围是<math display="0">
              <mo>−</mo>
              <mn>100</mn>
              <mo><</mo>
              <mi>x</mi>
              <mo><</mo>
              <mfrac>
                <mn>500</mn>
                <mn>7</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            故满足不等式0.007<i>x</i><sup>2</sup>+0.2<i>x</i>-50≤0的<i>x</i>所在的区间为<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mo>−</mo>
                <mn>100</mn>
                <mo>,</mo>
                <mfrac>
                  <mn>500</mn>
                  <mn>7</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>.
          </p>
          <p>
            考虑到高速公路上的最低速度为60km/h,如果希望该汽车急刹车的停车距离不超过50m,那么其行驶速度的范围是<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">[</mo>
                <mn>60</mn>
                <mo>,</mo>
                <mfrac>
                  <mn>500</mn>
                  <mn>7</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">]</mo>
              </mrow>
            </math>,行驶速度的最大值为<math display="0">
              <mfrac>
                <mn>500</mn>
                <mn>7</mn>
              </mfrac>
              <mo>≈</mo>
              <mn>71</mn>
            </math>(km/h).
          </p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            一般地,使一元二次不等式成立的值叫作这个<b>一元二次不等式的解</b>.
          </p>
        </div>
      </div>
    </div>
    <!-- 046 -->
    <div class="page-box" page="53">
      <div v-if="showPageList.indexOf(53) > -1">
        <ul class="page-header-odd fl al-end">
          <li>046</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p class="t0">
            一元二次不等式的所有解组成的集合,叫作这个<b>一元二次不等式的解集</b>.
          </p>
          <p>
            上面的情形表明,二次函数图像的开口方向及其与<i>x</i>轴的交点坐标,可以确定其对应的一元二次不等式的解集.
          </p>
          <p><b>例</b> 利用二次函数的图像解下列一元二次不等式.</p>
          <p>
            (1) -<i>x</i><sup>2</sup>+3<i>x</i>+4<0;(2) <i>x</i><sup>2</sup>-2<i>x</i>+3>0.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0057-1.jpg" /></p>
          <p class="img">图2-5</p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            Δ=<i>b</i><sup>2</sup>-4<i>ac</i>=3<sup>2</sup>-4×(-1)×4=25>0,所以函数<i>y</i>=-<i>x</i><sup>2</sup>+3<i>x</i>+4的图像与<i>x</i>轴有两个交点.解方程-<i>x</i><sup>2</sup>+3<i>x</i>+4=0可得,<i>x</i>1=-1,<i>x</i>2=4.
          </p>
          <p>
            函数<i>y</i>=-<i>x</i><sup>2</sup>+3<i>x</i>+4的图像是开口向下的抛物线,与<i>x</i>轴的交点坐标是(-1,0),(4,0),函数<i>y</i>=-<i>x</i><sup>2</sup>+3<i>x</i>+4的图像如图2-5所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0057-2.jpg" /></p>
          <p class="img">图2-6</p>
          <p>
            观察图像可得,不等式-<i>x</i><sup>2</sup>+3<i>x</i>+4<0的解集是(-∞,
            -1)∪(4, +∞).
          </p>
          <p>
            (2)
            <i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=(-2)<sup>2</sup>-4×1×3=-8<0,所以函数<i>y</i>=<i>x</i><sup>2</sup>-2<i>x</i>+3的图像与<i>x</i>轴无交点.
          </p>
          <p>
            函数<i>y</i>=<i>x</i><sup>2</sup>-2<i>x</i>+3的图像是开口向上的抛物线,与<i>x</i>轴无交点,其简图如图2-6所示.
          </p>
          <p>
            观察图像可得,不等式<i>x</i><sup>2</sup>-2<i>x</i>+3>0的解集为<b>R</b>.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              例(1)
              中,注意到不等式-<i>x</i><sup>2</sup>+3<i>x</i>+4<0⇔<i>x</i><sup>2</sup>-3<i>x</i>-4>0,从而可将问题转化成解不等式<i>x</i><sup>2</sup>-3<i>x</i>-4>0,即当一元二次不等式的二次项系数为负数时,可以利用不等式的性质将不等式化成二次项系数为正数的一元二次不等式,再求解.
            </p>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/tjfx.jpg" /></p>
          <p>
            通过上面的分析,发现二次函数的图像、一元二次方程的解、一元二次不等式的解集之间有着密切的联系,可以总结成表2-5.
          </p>
          <p class="img">表2-5</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0057-3.jpg" /></p>
        </div>
      </div>
    </div>
    <!-- 047 -->
    <div class="page-box" page="54">
      <div v-if="showPageList.indexOf(54) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>047</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <p class="img">续表</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0058-1.jpg" /></p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[54] ? questionData[54][1] : []" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/cxgk.jpg" /></p>
          <p>
            一般地,与二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>(<i>a</i>>0)对应的一元二次不等式有四种情形,分别是<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0,<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≥0,<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0,<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≤0.利用二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>(<i>a</i>>0)的图像求解相应的一元二次不等式,可以分为三步.
          </p>
          <p>
            第一步:确定相应的一元二次方程<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>=0的判别式<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>,从而确定二次函数的图像与<i>x</i>轴的相交情况;如果有交点,则利用方程<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>=0解出交点的横坐标.
          </p>
          <p>
            第二步:画出二次函数<i>y</i>=<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>的简图.
          </p>
          <p>第三步:观察简图,写出不等式的解集.</p>
          <div class="bj">
            <examinations :cardList="questionData[54] ? questionData[54][2] : []" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 048 -->
    <div class="page-box" page="55">
      <div v-if="showPageList.indexOf(55) > -1">
        <ul class="page-header-odd fl al-end">
          <li>048</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <h3 id="c018">
            2.3.3 特殊类型一元二次不等式的解法<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>观察下列不等式:</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mn>3</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo><</mo>
            <mn>0</mn>
            <mo>;</mo>
          </math>
          <p class="right">①</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mn>3</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>></mo>
            <mn>0</mn>
            <mo>;</mo>
          </math>
          <p class="right">②</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mn>3</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>≤</mo>
            <mn>0</mn>
            <mo>;</mo>
          </math>
          <p class="right">③</p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>+</mo>
              <mn>1</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">(</mo>
              <mi>x</mi>
              <mo>−</mo>
              <mn>3</mn>
              <mo data-mjx-texclass="CLOSE">)</mo>
            </mrow>
            <mo>≥</mo>
            <mn>0</mn>
            <mo>.</mo>
          </math>
          <p class="right">④</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0059-5.jpg" /></p>
          <p class="img">图2-7</p>
          <p>
            以上四个不等式对应的二次函数为<i>y</i>=(<i>x</i>+1)(<i>x</i>-3),对应的一元二次方程为(<i>x</i>+1)(<i>x</i>-3)=0.其解为<i>x</i>1=-1,<i>x</i>2=3.二次函数<i>y</i>=(<i>x</i>+1)(<i>x</i>-3)的图像与<i>x</i>轴有两个交点(-1,0),(3,0).
          </p>
          <p>二次函数<i>y</i>=(<i>x</i>+1)(<i>x</i>-3)的简图如图2-7所示.</p>
          <p>
            结合二次函数<i>y</i>=(<i>x</i>+1)(<i>x</i>-3)的简图,我们可以得到以下结论.
          </p>
          <p>
            (1)
            不等式(<i>x</i>+1)(<i>x</i>-3)<0的解在方程(<i>x</i>+1)(<i>x</i>-3)=0的两解之间,解集为(-1,3);
          </p>
          <p>
            (2)
            不等式(<i>x</i>+1)(<i>x</i>-3)>0的解在方程(<i>x</i>+1)(<i>x</i>-3)=0的两解之外,解集为(-∞,-1)∪(3,+∞);
          </p>
          <p>
            (3)
            不等式(<i>x</i>+1)(<i>x</i>-3)≤0的解在方程(<i>x</i>+1)(<i>x</i>-3)=0的两解之间,解集为[-1,3];
          </p>
          <p>
            (4)
            不等式(<i>x</i>+1)(<i>x</i>-3)≥0的解在方程(<i>x</i>+1)(<i>x</i>-3)=0的两解之外,解集为(-∞,-1]∪[3,+∞).
          </p>
          <p>
            一般地,一元二次方程(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)=0(其中<i>p</i>,<i>q</i>为实数,并且<i>p</i><<i>q</i>)有两个不相等的实数解<i>x</i>1=<i>p</i>,<i>x</i>2=<i>q</i>,二次函数<i>y</i>=(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)的简图如图2-8所示.
          </p>
          <p>
            观察二次函数<i>y</i>=(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)的简图,可知下列结论成立.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0059-6.jpg" /></p>
          <p class="img">图2-8</p>
          <p>
            (1)
            不等式(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)<0的解集为(<i>p</i>,<i>q</i>);
          </p>
          <p>
            (2)
            不等式(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)>0的解集为(-∞,<i>p</i>)∪(<i>q</i>,+∞);
          </p>
        </div>
      </div>
    </div>
    <!-- 049 -->
    <div class="page-box" page="56">
      <div v-if="showPageList.indexOf(56) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>049</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <p>
            (3)
            不等式(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)≤0的解集为[<i>p</i>,<i>q</i>];
          </p>
          <p>
            (4)
            不等式(<i>x</i>-<i>p</i>)(<i>x</i>-<i>q</i>)≥0的解集为(-∞,<i>p</i>]∪[<i>q</i>,+∞).
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 解下列不等式.
          </p>
          <p>
            (1)(<i>x</i>+3)(<i>x</i>+1)<0;(2)(6-<i>x</i>)(<i>x</i>+4)≤0.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)(<i>x</i>+3)(<i>x</i>+1)<0,即[<i>x</i>-(-3)][<i>x</i>-(-1)]<0.
          </p>
          <p>所以不等式的解集为(-3,-1).</p>
          <p>
            (2)
            由(6-<i>x</i>)(<i>x</i>+4)≤0得(<i>x</i>-6)(<i>x</i>+4)≥0,即
          </p>
          <p class="center">(<i>x</i>-6)[<i>x</i>-(-4)]≥0.</p>
          <p>所以不等式的解集为(-∞,-4]∪[6,+∞).</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 解下列不等式.
          </p>
          <p>
            (1)(<i>x</i>+1)<sup>2</sup>≥4;(2)(2<i>x</i>-3)<sup>2</sup><9.
          </p>
          <p class="block">
            <span
              class="zt-ls2"><b>分析</b></span> 由(<i>x</i>+1)<sup>2</sup>≥4得<i>x</i><sup>2</sup>+2<i>x</i>+1≥4,即<i>x</i><sup>2</sup>+2<i>x</i>-3≥0,从而可以利用二次函数<i>y</i>=<i>x</i><sup>2</sup>+2<i>x</i>-3的图像进行求解;注意到4=2<sup>2</sup>,也可以考虑将(<i>x</i>+1)<sup>2</sup>≥4整理为(<i>x</i>+1)<sup>2</sup>-4≥0,并使用平方差公式,即(<i>x</i>+1)<sup>2</sup>-2<sup>2</sup>≥0,得到(<i>x</i>+3)(<i>x</i>-1)≥0,此时可以借助上面的结论直接求解.下面我们将使用后一种方法进行求解.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>(1)
            由(<i>x</i>+1)<sup>2</sup>≥4得(<i>x</i>+1)<sup>2</sup>-2<sup>2</sup>≥0,
          </p>
          <p>从而  [(<i>x</i>+1)+2][(<i>x</i>+1)-2]≥0,</p>
          <p>化简得(<i>x</i>+3)(<i>x</i>-1)≥0,</p>
          <p>即   [<i>x</i>-(-3)](<i>x</i>-1)≥0,</p>
          <p>所以不等式的解集为(-∞,-3]∪[1,+∞).</p>
          <p>
            (2)
            由(2<i>x</i>-3)<sup>2</sup><9得(2<i>x</i>-3)<sup>2</sup>-3<sup>2</sup><0,
          </p>
          <p>从而  [(2<i>x</i>-3)+3][(2<i>x</i>-3)-3]<0,</p>
          <p>化简得 2<i>x</i>(2<i>x</i>-6)<0,</p>
          <p>即   <i>x</i>(<i>x</i>-3)<0,</p>
          <p>即(<i>x</i>-0)(<i>x</i>-3)<0,</p>
          <p>所以不等式的解集为(0,3).</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <p>解下列一元二次不等式.</p>
            <examinations :cardList="questionData[56]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 050 -->
    <div class="page-box" page="57">
      <div v-if="showPageList.indexOf(57) > -1">
        <ul class="page-header-odd fl al-end">
          <li>050</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <h3 id="c019">习题2.3<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[57]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 051 -->
    <div class="page-box" page="58">
      <div v-if="showPageList.indexOf(58) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>051</span></p>
          </li>
        </ul>
 
        <div class="padding-116">
          <h2 id="b010">
            2.4 含绝对值的不等式<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c020">
            2.4.1 含绝对值的不等式的基本解法<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/wttc.jpg" /></p>
          <p class="center"><b>商品房预售中的不等式知识</b></p>
          <p>
            商品房预售时,房地产开发企业将正在建设中的房屋预先出售给购房者,
            并在购房合同中约定所购买房屋的具体面积(称为“合同约定面积”).房屋竣工后,
            根据现场实测的房屋面积被称为“产权登记面积”.为保护购房者权益,
            我国相关法律规定,
            预售房屋的购房合同中应当写明“合同约定面积”与“产权登记面积”发生误差时的处理方式.合同未作约定的,
            按以下原则处理:“(一) 面积误差比绝对值在3%以内(含3%) 的,
            根据‘产权登记面积’结算房价款;(二)
            面积误差比绝对值超出3%时,购房者有权退房.其中,
            面积误差比=(产权登记面积-合同约定面积)/合同约定面积×100%.”
          </p>
          <p>
            李先生购买预售房屋时, 合同约定面积为100 m<sup>2</sup>.房屋竣工后,
            产权登记面积在什么范围时, 李先生需要根据产权登记面积结算房价款?
            或者有权退房?
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/zshg.jpg" />
              </p>
            </div>
            <p class="block">
              1.绝对值定义:数轴上表示数<i>a</i>的点与原点之间的距离叫作数<i>a</i>的绝对值,记作|<i>a</i>|.
            </p>
            <p class="block">
              2.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,即
            </p>
            <p class="block">
              <math display="0">
                <mo stretchy="false">|</mo>
                <mi>a</mi>
                <mrow>
                  <mo stretchy="false">|</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mi>a</mi>
                        <mo>,</mo>
                        <mi>a</mi>
                        <mo>></mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mn>0</mn>
                        <mo>,</mo>
                        <mi>a</mi>
                        <mo>=</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mo>−</mo>
                        <mi>a</mi>
                        <mo>,</mo>
                        <mi>a</mi>
                        <mo><</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>,也可以写成<math display="0">
                <mo stretchy="false">|</mo>
                <mi>a</mi>
                <mrow>
                  <mo stretchy="false">|</mo>
                </mrow>
                <mo>=</mo>
                <mrow data-mjx-texclass="INNER">
                  <mo data-mjx-texclass="OPEN">{</mo>
                  <mtable columnspacing="1em" rowspacing="4pt">
                    <mtr>
                      <mtd>
                        <mi>a</mi>
                        <mo>,</mo>
                        <mi>a</mi>
                        <mo>≥</mo>
                        <mn>0</mn>
                        <mo>,</mo>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                    <mtr>
                      <mtd>
                        <mo>−</mo>
                        <mi>a</mi>
                        <mo>,</mo>
                        <mi>a</mi>
                        <mo><</mo>
                        <mn>0</mn>
                      </mtd>
                      <mtd></mtd>
                      <mtd></mtd>
                    </mtr>
                  </mtable>
                  <mo data-mjx-texclass="CLOSE" fence="true" stretchy="true" symmetric="true"></mo>
                </mrow>
              </math>.
            </p>
            <p class="block">
              3.设<i>a</i>>0,数轴上与原点的距离是<i>a</i>的点有两个,它们分别在原点两侧,分别是-<i>a</i>和<i>a</i>,如图2-9所示.
            </p>
            <p class="center">
              <img class="img-c" alt="" src="../../assets/images/0062-3.jpg" />
            </p>
            <p class="img">图2-9</p>
          </div>
        </div>
      </div>
    </div>
    <!-- 052 -->
    <div class="page-box" page="59">
      <div v-if="showPageList.indexOf(59) > -1">
        <ul class="page-header-odd fl al-end">
          <li>052</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            假设产权登记面积为<i>x</i>(m<sup>2</sup>),上述问题可用一个含有绝对值的不等式表示.
          </p>
          <math display="block">
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">|</mo>
              <mfrac>
                <mrow>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>100</mn>
                </mrow>
                <mn>100</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">|</mo>
            </mrow>
            <mo>≤</mo>
            <mn>3%</mn>
            <mo>,或</mo>
            <mrow data-mjx-texclass="INNER">
              <mo data-mjx-texclass="OPEN">|</mo>
              <mfrac>
                <mrow>
                  <mi>x</mi>
                  <mo>−</mo>
                  <mn>100</mn>
                </mrow>
                <mn>100</mn>
              </mfrac>
              <mo data-mjx-texclass="CLOSE">|</mo>
            </mrow>
            <mo>></mo>
            <mn>3%</mn>
            <mo>,</mo>
          </math>
          <p>可化为 |<i>x</i>-100|≤3,或|<i>x</i>-100|>3.</p>
          <p>如果我们能解出这两个不等式,就能回答上述问题.</p>
          <p>那么,如何解这种含有绝对值的不等式呢?我们先从简单的情形开始分析.</p>
          <p>
            设<i>a</i>>0,由绝对值的意义可知,含有绝对值的方程|<i>x</i>|=<i>a</i>的解是<i>x</i>=<i>a</i>或<i>x</i>=-<i>a</i>.那么,含有绝对值的不等式(如|<i>x</i>|≥<i>a</i>,|<i>x</i>|><i>a</i>,|<i>x</i>|≤<i>a</i>,|<i>x</i>|<<i>a</i>等)
            怎么解呢?下面以不等式|<i>x</i>|≤<i>a</i>(<i>a</i>>0)
            和|<i>x</i>|><i>a</i>(<i>a</i>>0)为例进行分析.
          </p>
          <p>
            由绝对值的几何意义,|<i>x</i>|表示实数<i>x</i>对应的点与原点之间的距离.因此,不等式|<i>x</i>|≤<i>a</i>(<i>a</i>>0)
            表示数轴上到原点的距离不大于<i>a</i>的点的集合.在数轴上,满足|<i>x</i>|≤<i>a</i>(<i>a</i>>0)
            的实数<i>x</i>对应的点如图2-10所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0063-2.jpg" /></p>
          <p class="img">图2-10</p>
          <p>
            所以不等式|<i>x</i>|≤<i>a</i>(<i>a</i>>0)
            的解集是{<i>x</i>|-<i>a</i>≤<i>x</i>≤<i>a</i>},用区间表示为[-<i>a</i>,<i>a</i>].
          </p>
          <p>
            同理,不等式|<i>x</i>|><i>a</i>(<i>a</i>>0)
            表示数轴上到原点的距离大于<i>a</i>的点的集合.在数轴上,满足|<i>x</i>|><i>a</i>(<i>a</i>>0)的实数<i>x</i>对应的点如图2-11所示.
          </p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0063-3.jpg" /></p>
          <p class="img">图2-11</p>
          <p>
            所以不等式|<i>x</i>|><i>a</i>(<i>a</i>>0) 的解集是
            {<i>x</i>|<i>x</i><-<i>a</i>或<i>x</i>><i>a</i>},用区间表示为(-∞,-<i>a</i>)∪(<i>a</i>,+∞).
          </p>
          <p>由此,可以得到表2-6.</p>
          <p class="img">表2-6</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0063-4.jpg" /></p>
        </div>
      </div>
    </div>
    <!-- 053 -->
    <div class="page-box" page="60">
      <div v-if="showPageList.indexOf(60) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>053</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <p><b>例</b> 解不等式|2<i>x</i>|<5.</p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            由|2<i>x</i>|<5得-5<2<i>x</i><5,
          </p>
          <p>
            即 <math display="0">
              <mo>−</mo>
              <mfrac>
                <mn>5</mn>
                <mn>2</mn>
              </mfrac>
              <mo><</mo>
              <mi>x</mi>
              <mo><</mo>
              <mfrac>
                <mn>5</mn>
                <mn>2</mn>
              </mfrac>
            </math>.
          </p>
          <p>
            所以不等式的解集是<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mo>−</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>2</mn>
                </mfrac>
                <mo>,</mo>
                <mfrac>
                  <mn>5</mn>
                  <mn>2</mn>
                </mfrac>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>.
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[60] ? questionData[60][1] : []" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData"></examinations>
          </div>
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[60] ? questionData[60][2] : []" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
            v-if="questionData"></examinations>
          </div>
          <h3 id="c021">
            2.4.2
            |<i>ax</i>+<i>b</i>|<<i>c</i>和|<i>ax</i>+<i>b</i>|><i>c</i>(<i>c</i>>0)的解法<span class="fontsz2">>>></span>
          </h3>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/fxlj.jpg" /></p>
          <p>
            求解此类不等式时,可以将<i>ax</i>+<i>b</i>看作一个整体,再利用含绝对值不等式的基本解法,去掉绝对值,然后进行求解.
          </p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 解不等式|2<i>x</i>-1|<5.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            由|2<i>x</i>-1|<5得-5<2<i>x</i>-1<5,
          </p>
          <p>即 -4<2<i>x</i><6,</p>
          <p>  -2<<i>x</i><3.</p>
          <p>所以不等式的解集是(-2,3).</p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 解不等式|1-2<i>x</i>|<3.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 因为|1-2<i>x</i>|=|2<i>x</i>-1|,
          </p>
          <p>所以由|1-2<i>x</i>|<3得|2<i>x</i>-1|<3.</p>
        </div>
      </div>
    </div>
    <!-- 054 -->
    <div class="page-box" page="61">
      <div v-if="showPageList.indexOf(61) > -1">
        <ul class="page-header-odd fl al-end">
          <li>054</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p>由|2<i>x</i>-1|<3得-3<2<i>x</i>-1<3,</p>
          <p>即 -2<2<i>x</i><4,</p>
          <p>  -1<<i>x</i><2.</p>
          <p>所以不等式的解集是(-1,2).</p>
          <p>
            <span class="zt-ls"><b>例3</b></span> 解不等式|<i>x</i>+3|≥2.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            由|<i>x</i>+3|≥2得<i>x</i>+3≤-2或<i>x</i>+3≥2,
          </p>
          <p>即 <i>x</i>≤-5或<i>x</i>≥-1.</p>
          <p>所以不等式的解集是(-∞,-5]∪[-1,+∞).</p>
          <p>
            现在我们回到本节开始的问题,解不等式|<i>x</i>-100|≤3得97≤<i>x</i>≤103,解不等式|<i>x</i>-100|>3得<i>x</i>>103或<i>x</i><97.如果产权登记面积在97
            m<sup>2</sup>和103 m<sup>2</sup>之间(包含97 m<sup>2</sup>和103
            m<sup>2</sup>)
            时,李先生按照产权登记面积结算房款;如果产权登记面积小于97
            m<sup>2</sup>或大于103 m<sup>2</sup>时,李先生有权退房.
          </p>
          <p>
            <span class="zt-ls"><b>例4</b></span> 解不等式|3<i>x</i>-(<i>x</i>-2)|≤2.
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            由|3<i>x</i>-(<i>x</i>-2)|≤2得|3<i>x</i>-<i>x</i>+2|≤2,
          </p>
          <p>即  |2<i>x</i>+2|≤2,</p>
          <p>从而 -2≤2<i>x</i>+2≤2,</p>
          <p>   -4≤2<i>x</i>≤0,</p>
          <p>   -2≤<i>x</i>≤0.</p>
          <p>所以不等式的解集是[-2,0].</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[61]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 055 -->
    <div class="page-box" page="62">
      <div v-if="showPageList.indexOf(62) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>055</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <h3 id="c022">习题2.4<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[62]" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h2 id="b011">
            2.5 不等式的应用<span class="fontsz1">>>>>>>>></span>
          </h2>
          <h3 id="c023">
            2.5.1 不等式的简单应用<span class="fontsz2">>>></span>
          </h3>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0066-11.jpg" /></p>
          <p class="img">图2-12</p>
          <p>
            <span class="zt-ls"><b>例1</b></span> 用篱笆在墙边围一块矩形小花坛,其中一边靠墙(如图2-12所示),篱笆总长为8m.若小花坛的面积不小于6
            m<sup>2</sup>,则小花坛垂直于墙的一边的长度范围是多少?
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            设小花坛垂直于墙的一边的长度为<i>x</i>(m),则与墙平行的一边的长度为(8-2<i>x</i>)m.考虑到实际情况,有<i>x</i>>0,并且8-2<i>x</i>>0,所以<i>x</i>满足0<<i>x</i><4.
          </p>
        </div>
      </div>
    </div>
    <!-- 056 -->
    <div class="page-box" page="63">
      <div v-if="showPageList.indexOf(63) > -1">
        <ul class="page-header-odd fl al-end">
          <li>056</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p>设小花坛的面积为<i>S</i>(m<sup>2</sup>),则</p>
          <p class="center"><i>S</i>=<i>x</i>(8-2<i>x</i>),</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0067-1.jpg" /></p>
          <p class="img">图2-13</p>
          <p>整理得 <i>S</i>=-2<i>x</i><sup>2</sup>+8<i>x</i>.</p>
          <p>
            由题意得 <i>S</i>=-2<i>x</i><sup>2</sup>+8<i>x</i>≥6,即<i>x</i><sup>2</sup>-4<i>x</i>+3≤0.
          </p>
          <p>
            画出二次函数<i>y</i>=<i>x</i><sup>2</sup>-4<i>x</i>+3的简图(如图2-13所示).
          </p>
          <p>由图像得不等式的解为{<i>x</i>|1≤<i>x</i>≤3}.</p>
          <p>结合0<<i>x</i><4,得</p>
          <p class="center">
            {<i>x</i>|0<<i>x</i><4}∩{<i>x</i>|1≤<i>x</i>≤3}={<i>x</i>|1≤<i>x</i>≤3}.
          </p>
          <p>所以小花坛垂直于墙的一边的长度在1m至3m之间(含1m和3m).</p>
          <p>
            <span
              class="zt-ls"><b>例2</b></span> 某网店销售一种电动玩具,成本为10元/个.平时按单价20元销售,日平均销售量为100个.为进一步提升业绩,该网店决定在“双11”期间举办降价促销活动.根据以往的统计,如果该电动玩具的单价每降低0.5元,日平均销售量就会大约增加10个.为了使促销活动期间日平均利润不低于平时,应如何确定降价的范围?
          </p>
          <p class="block">
            <span
              class="zt-ls2"><b>分析</b></span> 利润=(销售单价-成本单价)×销售量.降价过程中,单价降低能够使销售量变大,但也使销售单价与成本单价的差减小,所以降价的范围应保证利润不低于促销前.
          </p>
          <div class="bk">
            <div class="bj1">
              <p class="left">
                <img class="img-gn1" alt="" src="../../assets/images/tbts.jpg" />
              </p>
            </div>
            <p class="block">
              由例1和例2可知,在解决与一元二次不等式有关的实际问题时,不仅要解一元二次不等式,而且要考虑实际背景对未知数的限制.在例1中,实际背景对未知数的限制是0<<i>x</i><4;在例2中,实际背景对未知数的限制是0<<i>x</i><10.
            </p>
          </div>
          <p>
            <span class="zt-ls"><b>解</b></span>
            假设降价<i>x</i>元.考虑到实际情况,价格的降幅应小于10元,即保证销售价高于成本价,所以要求<i>x</i>>0并且<i>x</i><10,即0<<i>x</i><10.
          </p>
          <p>平时的日平均利润为(20-10)×100=1 000(元).</p>
          <p>
            降价<i>x</i>元后,销售单价为(20-<i>x</i>)元,单个玩具的利润为(20-<i>x</i>)-10=(10-<i>x</i>)元,日平均销售量为<math display="0">
              <mrow data-mjx-texclass="INNER">
                <mo data-mjx-texclass="OPEN">(</mo>
                <mn>100</mn>
                <mo>+</mo>
                <mfrac>
                  <mn>10</mn>
                  <mn>0.5</mn>
                </mfrac>
                <mi>x</mi>
                <mo data-mjx-texclass="CLOSE">)</mo>
              </mrow>
            </math>个.因此,降价<i>x</i>元后的日平均利润为(10-<i>x</i>)(100+20<i>x</i>)元.
          </p>
          <p>由题意得(10-<i>x</i>)(100+20<i>x</i>)≥1 000.</p>
          <p>化简得<i>x</i><sup>2</sup>-5<i>x</i>≤0,即<i>x</i>(<i>x</i>-5)≤0.</p>
          <p>所以不等式的解集为 {<i>x</i>|0≤<i>x</i>≤5}.</p>
          <p>
            由于0<<i>x</i><10,所以<i>x</i>的范围是{<i>x</i>|0<<i>x</i><10}∩{<i>x</i>|0≤<i>x</i>≤5},即{<i>x</i>|0<<i>x</i>≤5}.所以降价的范围应在0至5元之间(含5元,不含0元),即单价定在15元至20元之间(含15元,不含20元),便能满足要求.
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[63]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 057 -->
    <div class="page-box" page="64">
      <div v-if="showPageList.indexOf(64) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>057</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0068-1.jpg" /></p>
          <p class="img">第2题图</p>
          <p class="left"><img class="img-gn" alt="" src="../../assets/images/stlx.jpg" /></p>
          <div class="bj">
            <examinations :cardList="questionData[64]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
          <h3 id="c024">
            2.5.2 不等式与复杂实际问题<span class="fontsz2">>>></span>
          </h3>
          <p>
            <span
              class="zt-ls"><b>例1</b></span> 我国交通法规对小型汽车驾驶员的年龄限制如下:最低年龄18周岁,最高年龄70周岁.已有研究表明,小型汽车驾驶员对红绿灯变化的反应时间<i>y</i>(ms)
            与驾驶员年龄<i>x</i>(周岁)
            的关系为<i>y</i>=0.005<i>x</i><sup>2</sup>-0.2<i>x</i>+22,其中18≤<i>x</i>≤70.问:反应时间超过24.5ms的驾驶员所处的年龄范围是多少?
          </p>
          <p>
            <span class="zt-ls"><b>解</b></span> 由题意得,<i>y</i>=0.005<i>x</i><sup>2</sup>-0.2<i>x</i>+22>24.5,即
          </p>
          <p>     0.005<i>x</i><sup>2</sup>-0.2<i>x</i>-2.5>0.</p>
          <p>化简得 <i>x</i><sup>2</sup>-40<i>x</i>-500>0.</p>
          <p class="center"><img class="img-c" alt="" src="../../assets/images/0068-2.jpg" /></p>
          <p class="img">图2-14</p>
          <p>
            考查二次函数<i>y</i>=<i>x</i><sup>2</sup>-40<i>x</i>-500,<i>a</i>=1>0,<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=(-40)<sup>2</sup>-4×1×(-500)=3
            600>0,所以二次函数<i>y</i>=<i>x</i><sup>2</sup>-40<i>x</i>-500的图像开口向上,并且与<i>x</i>轴有两个交点.其简图如图2-14所示.
          </p>
          <p>
            由图像可知,不等式<i>x</i><sup>2</sup>-40<i>x</i>-500>0的解集为(-∞,-10)∪(50,+∞),这也是不等式0.005<i>x</i><sup>2</sup>-0.2<i>x</i>-2.5>0的解集.
          </p>
          <p>
            考虑到18≤<i>x</i>≤70,所以<i>x</i>的范围是(50,70],即反应时间超过24.5
            <i>ms</i>
            的驾驶员所处的年龄范围在50岁至70岁之间(不包含50岁,包含70岁).
          </p>
          <p>
            <span class="zt-ls"><b>例2</b></span> 身体质量指数(Body Mass
            Index,BMI)是衡量人体胖瘦程度的一个常用标准,计算公式为<math display="0">
              <mi>B</mi>
              <mi>M</mi>
              <mi>I</mi>
              <mo>=</mo>
              <mfrac>
                <mrow>
                  <mo>体重</mo>
                </mrow>
                <msup>
                  <mrow data-mjx-texclass="INNER">
                    <mo data-mjx-texclass="OPEN">(</mo>
                    <mo>身高</mo>
                    <mo data-mjx-texclass="CLOSE">)</mo>
                  </mrow>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msup>
              </mfrac>
            </math>(BMI单位:kg/m<sup>2</sup>).一项研究指出,中职学生身体质量指数与身体素质之间存在一定的关系.研究中使用身体素质指标来衡量学
          </p>
        </div>
      </div>
    </div>
    <!-- 058 -->
    <div class="page-box" page="65">
      <div v-if="showPageList.indexOf(65) > -1">
        <ul class="page-header-odd fl al-end">
          <li>058</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p>
            生的身体素质,该指标是指学生参加50m跑,立定跳远,力量(男生引体向上、女生1分钟仰卧起坐),耐力跑(男生1
            000m跑、女生800m跑),坐位体前屈等项目的成绩总和.身体素质指标为正数说明身体素质较好.上述研究发现,身体素质指标(<i>y</i>)与BMI(<i>x</i>)
            之间的关系如表2-7所示.
          </p>
          <p>问:身体素质较好的男生和女生,其BMI的范围分别是多少?</p>
          <p class="img">表2-7</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0069-1.jpg" /></p>
          <p>
            <span class="zt-ls"><b>解</b></span>
            先考虑男生的情况.由题意得,<i>y</i>=-0.05<i>x</i><sup>2</sup>+2<i>x</i>-19.2>0,即
          </p>
          <p class="center">0.05<i>x</i><sup>2</sup>-2<i>x</i>+19.2<0.</p>
          <p>化简得 <i>x</i><sup>2</sup>-40<i>x</i>+384<0.</p>
          <p>
            考查二次函数<i>y</i>=<i>x</i><sup>2</sup>-40<i>x</i>+384,<i>a</i>=1>0,<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=40<sup>2</sup>-4×1×384=64>0,所以二次函数<i>y</i>=<i>x</i><sup>2</sup>-40<i>x</i>+384的图像开口向上,与<i>x</i>轴有两个交点.
          </p>
          <p>
            所以不等式<i>x</i><sup>2</sup>-40<i>x</i>+384<0的解集为(16,24),这也是不等式-0.05<i>x</i><sup>2</sup>+2<i>x</i>-19.2>0的解集.
          </p>
          <p>
            再考虑女生的情况.由题意得,<i>y</i>=-0.01<i>x</i><sup>2</sup>+0.39<i>x</i>-3.68>0,即
          </p>
          <p class="center">0.01<i>x</i><sup>2</sup>-0.39<i>x</i>+3.68<0.</p>
          <p>化简得 <i>x</i><sup>2</sup>-39<i>x</i>+368<0.</p>
          <p>
            考查二次函数<i>y</i>=<i>x</i><sup>2</sup>-39<i>x</i>+368,<i>a</i>=1>0,<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>=(-39)<sup>2</sup>-4×1×368=49>0,所以二次函数<i>y</i>=<i>x</i><sup>2</sup>-39<i>x</i>+368的图像开口向上,与<i>x</i>轴有两个交点.
          </p>
          <p>
            所以不等式<i>x</i><sup>2</sup>-39<i>x</i>+368<0的解集为(16,23),这也是不等式-0.01<i>x</i><sup>2</sup>+0.39<i>x</i>-3.68>0的解集.
          </p>
          <p>
            因此,身体素质较好的男生BMI 的范围是(16,24),身体素质较好的女生BMI
            的范围是(16,23).
          </p>
          <div class="bk-hzjl">
            <div class="bj1-hzjl">
              <p class="left">
                <img class="img-gn2" alt="" src="../../assets/images/hzjl.jpg" />
              </p>
            </div>
            <examinations :cardList="questionData[65]" :hideCollect="true" sourceType="json"
            v-if="questionData" ></examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 059 -->
    <div class="page-box" page="66">
      <div v-if="showPageList.indexOf(66) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>059-060</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <p class="left">
            <img class="img-gn" alt="" src="../../assets/images/stlx.jpg" />
          </p>
          <div class="bj">
            <examinations :cardList="questionData[66] ? questionData[66][1] : []" :hideCollect="true" sourceType="json" inputBc="#d3edfa"
              v-if="questionData"></examinations>
          </div>
          <h3 id="c025">习题2.5<span class="fontsz2">>>></span></h3>
          <div class="bj">
            <examinations :cardList="questionData[66] ? questionData[66][2] : []" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 060 -->
    <div class="page-box hidePage" page="67">
 
    </div>
    <!-- 061 -->
    <div class="page-box" page="68">
      <div v-if="showPageList.indexOf(68) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>061</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <h2 id="b012">数学园地<span class="fontsz1">>>>>>>>></span></h2>
          <p>
            本单元中,我们学习了不等式的一些性质,以及如何解一元二次不等式和含绝对值的不等式.实际上,数学领域中还有很多不等式,也被用来解决生产生活中的实际问题.尤其是微积分体系建立以前,不等式是计算最大值和最小值问题的最佳工具.下面我们介绍一些著名的不等式.
          </p>
          <p>
            填写表2-8,并观察<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>b</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>,<math display="0">
              <msqrt>
                <mi>a</mi>
                <mi>b</mi>
              </msqrt>
            </math>,<math display="0">
              <mfrac>
                <mn>2</mn>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mi>a</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>b</mi>
                  </mfrac>
                </mrow>
              </mfrac>
            </math>这三个数的大小关系.
          </p>
          <p class="img">表2-8</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0072-4.jpg" /></p>
          <p>
            填写表2-9,并观察<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>,<math display="0">
              <mroot>
                <mrow>
                  <mi>a</mi>
                  <mi>b</mi>
                  <mi>c</mi>
                </mrow>
                <mn>3</mn>
              </mroot>
            </math>,<math display="0">
              <mfrac>
                <mn>3</mn>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mi>a</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>b</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>b</mi>
                  </mfrac>
                </mrow>
              </mfrac>
            </math>这三个数的大小关系.
          </p>
          <p class="img">表2-9</p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0072-8.jpg" /></p>
          <p>通过填写和观察上面两个表格,你有什么发现和猜想?</p>
          <p>实际上,若<i>a</i>,<i>b</i>,<i>c</i>均为正数,则可给出如下定义.</p>
          <p>
            (1)
            <math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>b</mi>
                </mrow>
                <mn>2</mn>
              </mfrac>
            </math>叫作<i>a</i>,<i>b</i>两数的算术平均数,<math display="0">
              <mfrac>
                <mrow>
                  <mi>a</mi>
                  <mo>+</mo>
                  <mi>b</mi>
                  <mo>+</mo>
                  <mi>c</mi>
                </mrow>
                <mn>3</mn>
              </mfrac>
            </math>叫作<i>a</i>,<i>b</i>,<i>c</i>三数的算术平均数;
          </p>
        </div>
      </div>
    </div>
    <!-- 062 -->
    <div class="page-box" page="69">
      <div v-if="showPageList.indexOf(69) > -1">
        <ul class="page-header-odd fl al-end">
          <li>062</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
        <div class="padding-116">
          <p>
            (2)
            <math display="0">
              <msqrt>
                <mi>a</mi>
                <mi>b</mi>
              </msqrt>
            </math>叫作<i>a</i>,<i>b</i>两数的几何平均数,<math display="0">
              <mroot>
                <mrow>
                  <mi>a</mi>
                  <mi>b</mi>
                  <mi>c</mi>
                </mrow>
                <mn>3</mn>
              </mroot>
            </math>叫作<i>a</i>,<i>b</i>,<i>c</i>三数的几何平均数;
          </p>
          <p>
            (3)
            <math display="0">
              <mfrac>
                <mn>2</mn>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mi>a</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>b</mi>
                  </mfrac>
                </mrow>
              </mfrac>
            </math>叫作<i>a</i>,<i>b</i>两数的调和平均数,<math display="0">
              <mfrac>
                <mn>3</mn>
                <mrow>
                  <mfrac>
                    <mn>1</mn>
                    <mi>a</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>b</mi>
                  </mfrac>
                  <mo>+</mo>
                  <mfrac>
                    <mn>1</mn>
                    <mi>c</mi>
                  </mfrac>
                </mrow>
              </mfrac>
            </math>叫作<i>a</i>,<i>b</i>,<i>c</i>三数的调和平均数.
          </p>
          <p>观察上面两个表格,可以发现</p>
          <math display="block">
            <mfrac>
              <mrow>
                <mi>a</mi>
                <mo>+</mo>
                <mi>b</mi>
              </mrow>
              <mn>2</mn>
            </mfrac>
            <mo>⩾</mo>
            <msqrt>
              <mi>a</mi>
              <mi>b</mi>
            </msqrt>
            <mo>⩾</mo>
            <mfrac>
              <mn>2</mn>
              <mrow>
                <mfrac>
                  <mn>1</mn>
                  <mi>a</mi>
                </mfrac>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <mi>b</mi>
                </mfrac>
              </mrow>
            </mfrac>
            <mo>,</mo>
            <mfrac>
              <mrow>
                <mi>a</mi>
                <mo>+</mo>
                <mi>b</mi>
                <mo>+</mo>
                <mi>c</mi>
              </mrow>
              <mn>3</mn>
            </mfrac>
            <mo>⩾</mo>
            <mroot>
              <mrow>
                <mi>a</mi>
                <mi>b</mi>
                <mi>c</mi>
              </mrow>
              <mn>3</mn>
            </mroot>
            <mo>⩾</mo>
            <mfrac>
              <mn>3</mn>
              <mrow>
                <mfrac>
                  <mn>1</mn>
                  <mi>a</mi>
                </mfrac>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <mi>b</mi>
                </mfrac>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <mi>c</mi>
                </mfrac>
              </mrow>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>
            大胆地想一想,对于<i>n</i>个正数的算术平均数、几何平均数、调和平均数,怎样用符号表示?它们的大小关系能确定吗?
          </p>
          <p>
            一般地,若<i>a</i>1,<i>a</i>2,<i>a</i>3,…,<i>an</i>为<i>n</i>个正数,则有
          </p>
          <math display="block">
            <mfrac>
              <mrow>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>1</mn>
                  </mrow>
                </msub>
                <mo>+</mo>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msub>
                <mo>+</mo>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msub>
                <mo>+</mo>
                <mo>⋯</mo>
                <mo>+</mo>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mi>n</mi>
                  </mrow>
                </msub>
              </mrow>
              <mi>n</mi>
            </mfrac>
            <mo>⩾</mo>
            <mroot>
              <mrow>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>1</mn>
                  </mrow>
                </msub>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>2</mn>
                  </mrow>
                </msub>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mn>3</mn>
                  </mrow>
                </msub>
                <mo>⋯</mo>
                <msub>
                  <mi>a</mi>
                  <mrow>
                    <mi>n</mi>
                  </mrow>
                </msub>
              </mrow>
              <mi>n</mi>
            </mroot>
            <mo>⩾</mo>
            <mfrac>
              <mi>n</mi>
              <mrow>
                <mfrac>
                  <mn>1</mn>
                  <msub>
                    <mi>a</mi>
                    <mrow>
                      <mn>1</mn>
                    </mrow>
                  </msub>
                </mfrac>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <msub>
                    <mi>a</mi>
                    <mrow>
                      <mn>2</mn>
                    </mrow>
                  </msub>
                </mfrac>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <msub>
                    <mi>a</mi>
                    <mrow>
                      <mn>3</mn>
                    </mrow>
                  </msub>
                </mfrac>
                <mo>+</mo>
                <mo>⋯</mo>
                <mo>+</mo>
                <mfrac>
                  <mn>1</mn>
                  <msub>
                    <mi>a</mi>
                    <mrow>
                      <mi>n</mi>
                    </mrow>
                  </msub>
                </mfrac>
              </mrow>
            </mfrac>
            <mo>.</mo>
          </math>
          <p>
            其中,当<i>a</i><sub>1</sub>=<i>a</i><sub>1</sub>=<i>a</i><sub>1</sub>=…=<i>an</i>时,等号成立.
          </p>
          <p>
            随着学习的进一步深入,我们就能够证明数学史上这个著名的不等式,并且知道它的广泛应用.
          </p>
        </div>
      </div>
    </div>
    <!-- 063 -->
    <div class="page-box" page="70">
      <div v-if="showPageList.indexOf(70) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>063</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <h2 id="b013">单元小结<span class="fontsz1">>>>>>>>></span></h2>
          <p class="bj2"><b>学习导图</b></p>
          <p class="center"><img class="img-a" alt="" src="../../assets/images/0074-1.jpg" /></p>
          <p class="bj2"><b>学习指导</b></p>
          <p>1.不等式的基本性质.</p>
          <p>(1) 比较数(式)的大小常用“作差比较法”.</p>
          <p>(2) 运用不等式的性质时,要注意验证条件是否都满足.</p>
          <p>2.区间.</p>
          <p>
            区间是集合的一种表示形式,主要包括开区间、闭区间、左开右闭区间和右开左闭区间.
          </p>
          <p>3.一元二次不等式.</p>
          <p>
            (1) 将一元二次不等式统一化成<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0(≥0)
            或<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0(≤0)
            的形式.
          </p>
          <p>
            (2) 若<i>a</i>>0,此时二次函数的图像开口向上,计算判别式<i>Δ</i>=<i>b</i><sup>2</sup>-4<i>ac</i>.
          </p>
          <p>
            ①当<i>Δ</i>>0时,二次函数的图像与<i>x</i>轴有两个不同的交点(<i>x</i><sub>1</sub>,0),(<i>x</i><sub>2</sub>,0)(<i>x</i><sub>1</sub><<i>x</i><sub>2</sub>).画出函数简图,可得如下结论.
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0的解集为(-∞,<i>x</i><sub>1</sub>)∪(<i>x</i><sub>2</sub>,+∞);
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≥0的解集为(-∞,<i>x</i><sub>1</sub>]∪[<i>x</i><sub>2</sub>,+∞);
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0的解集为(<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>);
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≤0的解集为 [<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>].
          </p>
          <p>
            ②当<i>Δ</i>=0时,二次函数的图像与<i>x</i>轴只有一个交点(<i>x</i><sub>0</sub>,0).画出函数简图,可得如下结论.
          </p>
        </div>
      </div>
    </div>
    <!-- 064 -->
    <div class="page-box" page="71">
      <div v-if="showPageList.indexOf(71) > -1">
        <ul class="page-header-odd fl al-end">
          <li>064</li>
          <li>数学.基础模块</li>
          <li>上册</li>
        </ul>
 
        <div class="padding-116">
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0的解集为(-∞,<i>x</i><sub>0</sub>)∪(<i>x</i><sub>0</sub>,+∞);
          </p>
          <p><i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≥0的解集为<b>R</b>;</p>
          <p><i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0的解集为 ∅;</p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≤0的解集为 {<i>x</i>|<i>x</i>=<i>x</i><sub>0</sub>}.
          </p>
          <p>
            ③当<i>Δ</i><0时,二次函数的图像与<i>x</i>轴没有交点.画出函数简图,可得如下结论.
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>>0和<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≥0的解集均为<b>R</b>;
          </p>
          <p>
            <i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i><0和<i>ax</i><sup>2</sup>+<i>bx</i>+<i>c</i>≤0的解集均为 ∅.
          </p>
          <p>
            (3)
            若<i>a</i><0,则可以转化为-<i>ax</i><sup>2</sup>-<i>bx</i>-<i>c</i>>0(≥0)或-<i>ax</i><sup>2</sup>-<i>bx</i>-<i>c</i><0(≤0)的情形,然后再按步骤(2)
            的方法进行求解.
          </p>
          <p>4.含绝对值的不等式.</p>
          <p>
            (1)
            不等式|<i>x</i>|≤<i>a</i>(<i>a</i>>0)的解集是{<i>x</i>|-<i>a</i>≤<i>x</i>≤<i>a</i>},用区间表示为[-<i>a</i>,<i>a</i>].
          </p>
          <p>
            (2)
            不等式|<i>x</i>|><i>a</i>(<i>a</i>>0)的解集是{<i>x</i>|<i>x</i><-<i>a</i>或<i>x</i>><i>a</i>},用区间表示为(-∞,-<i>a</i>)∪(<i>a</i>,+∞).
          </p>
          <p>
            (3)
            求解形如|<i>ax</i>+<i>b</i>|<<i>c</i>和|<i>ax</i>+<i>b</i>|><i>c</i>(<i>c</i>>0)的不等式时,可以将<i>ax</i>+<i>b</i>看作一个整体,
            再利用含绝对值不等式的基本解法, 去掉绝对值, 然后进行求解.
          </p>
          <p>5.不等式的应用.</p>
          <p>
            (1)
            在解决问题的过程中体验如何使用二次函数的图像直观地得出一元二次不等式的解集,学会利用数形结合的思想方法解决问题.
          </p>
          <p>(2) 应用一元二次不等式解决实际问题时,要注意未知量的实际意义.</p>
        </div>
      </div>
    </div>
    <!-- 065 -->
    <div class="page-box" page="72">
      <div v-if="showPageList.indexOf(72) > -1">
        <ul class="page-header-box">
          <li>
            <p>第二单元 不等式</p>
          </li>
          <li>
            <p><span>065-066</span></p>
          </li>
        </ul>
        <div class="padding-116">
          <h2 id="b014">单元检测<span class="fontsz1">>>>>>>>></span></h2>
          <div class="bj">
            <examinations :cardList="questionData[72]" :hideCollect="true" sourceType="json" v-if="questionData">
            </examinations>
          </div>
        </div>
      </div>
    </div>
    <!-- 066 -->
    <div class="page-box hidePage" page="73">
    </div>
  </div>
</template>
 
<script>
import paint from '@/components/paint/index.vue'
import examinations from '@/components/examinations/index.vue'
export default {
  name: "",
  props: {
    showPageList: {
      type: Array,
      default: [],
    },
    questionData: {
      type: Object,
    },
  },
  components: { examinations,paint },
  data() {
    return {
      isShowAnswer:false
    };
  },
  mounted() { },
  methods: {},
};
</script>
 
<style lang="less" scoped>
.pr {
  position: relative;
}
 
.pa-bk {
  position: absolute;
  right: 45px;
  top: 0;
  width: 140px;
}
.question-textarea {
  margin-left: 20px;
  width: 94%;
  border-color:#DCDFE6;
}
.table-answer-box {
  math {
    width: max-content;
    height: 36px;
  }
}
</style>