import PathProxy from '../../core/PathProxy';
|
import { isArray } from '../../core/util';
|
|
const PI = Math.PI;
|
const PI2 = PI * 2;
|
const mathSin = Math.sin;
|
const mathCos = Math.cos;
|
const mathACos = Math.acos;
|
const mathATan2 = Math.atan2;
|
const mathAbs = Math.abs;
|
const mathSqrt = Math.sqrt;
|
const mathMax = Math.max;
|
const mathMin = Math.min;
|
const e = 1e-4;
|
|
function intersect(
|
x0: number, y0: number,
|
x1: number, y1: number,
|
x2: number, y2: number,
|
x3: number, y3: number
|
): [number, number] {
|
const dx10 = x1 - x0;
|
const dy10 = y1 - y0;
|
const dx32 = x3 - x2;
|
const dy32 = y3 - y2;
|
let t = dy32 * dx10 - dx32 * dy10;
|
if (t * t < e) {
|
return;
|
}
|
t = (dx32 * (y0 - y2) - dy32 * (x0 - x2)) / t;
|
return [x0 + t * dx10, y0 + t * dy10];
|
}
|
|
// Compute perpendicular offset line of length rc.
|
function computeCornerTangents(
|
x0: number, y0: number,
|
x1: number, y1: number,
|
radius: number, cr: number,
|
clockwise: boolean
|
) {
|
const x01 = x0 - x1;
|
const y01 = y0 - y1;
|
const lo = (clockwise ? cr : -cr) / mathSqrt(x01 * x01 + y01 * y01);
|
const ox = lo * y01;
|
const oy = -lo * x01;
|
const x11 = x0 + ox;
|
const y11 = y0 + oy;
|
const x10 = x1 + ox;
|
const y10 = y1 + oy;
|
const x00 = (x11 + x10) / 2;
|
const y00 = (y11 + y10) / 2;
|
const dx = x10 - x11;
|
const dy = y10 - y11;
|
const d2 = dx * dx + dy * dy;
|
const r = radius - cr;
|
const s = x11 * y10 - x10 * y11;
|
const d = (dy < 0 ? -1 : 1) * mathSqrt(mathMax(0, r * r * d2 - s * s));
|
let cx0 = (s * dy - dx * d) / d2;
|
let cy0 = (-s * dx - dy * d) / d2;
|
const cx1 = (s * dy + dx * d) / d2;
|
const cy1 = (-s * dx + dy * d) / d2;
|
const dx0 = cx0 - x00;
|
const dy0 = cy0 - y00;
|
const dx1 = cx1 - x00;
|
const dy1 = cy1 - y00;
|
|
// Pick the closer of the two intersection points
|
// TODO: Is there a faster way to determine which intersection to use?
|
if (dx0 * dx0 + dy0 * dy0 > dx1 * dx1 + dy1 * dy1) {
|
cx0 = cx1;
|
cy0 = cy1;
|
}
|
|
return {
|
cx: cx0,
|
cy: cy0,
|
x0: -ox,
|
y0: -oy,
|
x1: cx0 * (radius / r - 1),
|
y1: cy0 * (radius / r - 1)
|
};
|
}
|
|
// For compatibility, don't use normalizeCssArray
|
// 5 represents [5, 5, 5, 5]
|
// [5] represents [5, 5, 0, 0]
|
// [5, 10] represents [5, 5, 10, 10]
|
// [5, 10, 15] represents [5, 10, 15, 15]
|
// [5, 10, 15, 20] represents [5, 10, 15, 20]
|
function normalizeCornerRadius(cr: number | number[]): number[] {
|
let arr: number[];
|
if (isArray(cr)) {
|
const len = cr.length;
|
if (!len) {
|
return cr as number[];
|
}
|
if (len === 1) {
|
arr = [cr[0], cr[0], 0, 0];
|
}
|
else if (len === 2) {
|
arr = [cr[0], cr[0], cr[1], cr[1]];
|
}
|
else if (len === 3) {
|
arr = cr.concat(cr[2]);
|
}
|
else {
|
arr = cr;
|
}
|
}
|
else {
|
arr = [cr, cr, cr, cr];
|
}
|
return arr;
|
}
|
|
export function buildPath(ctx: CanvasRenderingContext2D | PathProxy, shape: {
|
cx: number
|
cy: number
|
startAngle: number
|
endAngle: number
|
clockwise?: boolean,
|
r?: number,
|
r0?: number,
|
cornerRadius?: number | number[]
|
}) {
|
let radius = mathMax(shape.r, 0);
|
let innerRadius = mathMax(shape.r0 || 0, 0);
|
const hasRadius = radius > 0;
|
const hasInnerRadius = innerRadius > 0;
|
|
if (!hasRadius && !hasInnerRadius) {
|
return;
|
}
|
|
if (!hasRadius) {
|
// use innerRadius as radius if no radius
|
radius = innerRadius;
|
innerRadius = 0;
|
}
|
|
if (innerRadius > radius) {
|
// swap, ensure that radius is always larger than innerRadius
|
const tmp = radius;
|
radius = innerRadius;
|
innerRadius = tmp;
|
}
|
|
const { startAngle, endAngle } = shape;
|
if (isNaN(startAngle) || isNaN(endAngle)) {
|
return;
|
}
|
|
const { cx, cy } = shape;
|
const clockwise = !!shape.clockwise;
|
|
let arc = mathAbs(endAngle - startAngle);
|
const mod = arc > PI2 && arc % PI2;
|
mod > e && (arc = mod);
|
|
// is a point
|
if (!(radius > e)) {
|
ctx.moveTo(cx, cy);
|
}
|
// is a circle or annulus
|
else if (arc > PI2 - e) {
|
ctx.moveTo(
|
cx + radius * mathCos(startAngle),
|
cy + radius * mathSin(startAngle)
|
);
|
ctx.arc(cx, cy, radius, startAngle, endAngle, !clockwise);
|
|
if (innerRadius > e) {
|
ctx.moveTo(
|
cx + innerRadius * mathCos(endAngle),
|
cy + innerRadius * mathSin(endAngle)
|
);
|
ctx.arc(cx, cy, innerRadius, endAngle, startAngle, clockwise);
|
}
|
}
|
// is a circular or annular sector
|
else {
|
let icrStart;
|
let icrEnd;
|
let ocrStart;
|
let ocrEnd;
|
|
let ocrs;
|
let ocre;
|
let icrs;
|
let icre;
|
|
let ocrMax;
|
let icrMax;
|
let limitedOcrMax;
|
let limitedIcrMax;
|
|
let xre;
|
let yre;
|
let xirs;
|
let yirs;
|
|
const xrs = radius * mathCos(startAngle);
|
const yrs = radius * mathSin(startAngle);
|
const xire = innerRadius * mathCos(endAngle);
|
const yire = innerRadius * mathSin(endAngle);
|
|
const hasArc = arc > e;
|
if (hasArc) {
|
const cornerRadius = shape.cornerRadius;
|
if (cornerRadius) {
|
[icrStart, icrEnd, ocrStart, ocrEnd] = normalizeCornerRadius(cornerRadius);
|
}
|
|
const halfRd = mathAbs(radius - innerRadius) / 2;
|
ocrs = mathMin(halfRd, ocrStart);
|
ocre = mathMin(halfRd, ocrEnd);
|
icrs = mathMin(halfRd, icrStart);
|
icre = mathMin(halfRd, icrEnd);
|
|
limitedOcrMax = ocrMax = mathMax(ocrs, ocre);
|
limitedIcrMax = icrMax = mathMax(icrs, icre);
|
|
// draw corner radius
|
if (ocrMax > e || icrMax > e) {
|
xre = radius * mathCos(endAngle);
|
yre = radius * mathSin(endAngle);
|
xirs = innerRadius * mathCos(startAngle);
|
yirs = innerRadius * mathSin(startAngle);
|
|
// restrict the max value of corner radius
|
if (arc < PI) {
|
const it = intersect(xrs, yrs, xirs, yirs, xre, yre, xire, yire);
|
if (it) {
|
const x0 = xrs - it[0];
|
const y0 = yrs - it[1];
|
const x1 = xre - it[0];
|
const y1 = yre - it[1];
|
const a = 1 / mathSin(
|
// eslint-disable-next-line max-len
|
mathACos((x0 * x1 + y0 * y1) / (mathSqrt(x0 * x0 + y0 * y0) * mathSqrt(x1 * x1 + y1 * y1))) / 2
|
);
|
const b = mathSqrt(it[0] * it[0] + it[1] * it[1]);
|
limitedOcrMax = mathMin(ocrMax, (radius - b) / (a + 1));
|
limitedIcrMax = mathMin(icrMax, (innerRadius - b) / (a - 1));
|
}
|
}
|
}
|
}
|
|
// the sector is collapsed to a line
|
if (!hasArc) {
|
ctx.moveTo(cx + xrs, cy + yrs);
|
}
|
// the outer ring has corners
|
else if (limitedOcrMax > e) {
|
const crStart = mathMin(ocrStart, limitedOcrMax);
|
const crEnd = mathMin(ocrEnd, limitedOcrMax);
|
const ct0 = computeCornerTangents(xirs, yirs, xrs, yrs, radius, crStart, clockwise);
|
const ct1 = computeCornerTangents(xre, yre, xire, yire, radius, crEnd, clockwise);
|
|
ctx.moveTo(cx + ct0.cx + ct0.x0, cy + ct0.cy + ct0.y0);
|
|
// Have the corners merged?
|
if (limitedOcrMax < ocrMax && crStart === crEnd) {
|
// eslint-disable-next-line max-len
|
ctx.arc(cx + ct0.cx, cy + ct0.cy, limitedOcrMax, mathATan2(ct0.y0, ct0.x0), mathATan2(ct1.y0, ct1.x0), !clockwise);
|
}
|
else {
|
// draw the two corners and the ring
|
// eslint-disable-next-line max-len
|
crStart > 0 && ctx.arc(cx + ct0.cx, cy + ct0.cy, crStart, mathATan2(ct0.y0, ct0.x0), mathATan2(ct0.y1, ct0.x1), !clockwise);
|
// eslint-disable-next-line max-len
|
ctx.arc(cx, cy, radius, mathATan2(ct0.cy + ct0.y1, ct0.cx + ct0.x1), mathATan2(ct1.cy + ct1.y1, ct1.cx + ct1.x1), !clockwise);
|
// eslint-disable-next-line max-len
|
crEnd > 0 && ctx.arc(cx + ct1.cx, cy + ct1.cy, crEnd, mathATan2(ct1.y1, ct1.x1), mathATan2(ct1.y0, ct1.x0), !clockwise);
|
}
|
}
|
// the outer ring is a circular arc
|
else {
|
ctx.moveTo(cx + xrs, cy + yrs);
|
ctx.arc(cx, cy, radius, startAngle, endAngle, !clockwise);
|
}
|
|
// no inner ring, is a circular sector
|
if (!(innerRadius > e) || !hasArc) {
|
ctx.lineTo(cx + xire, cy + yire);
|
}
|
// the inner ring has corners
|
else if (limitedIcrMax > e) {
|
const crStart = mathMin(icrStart, limitedIcrMax);
|
const crEnd = mathMin(icrEnd, limitedIcrMax);
|
const ct0 = computeCornerTangents(xire, yire, xre, yre, innerRadius, -crEnd, clockwise);
|
const ct1 = computeCornerTangents(xrs, yrs, xirs, yirs, innerRadius, -crStart, clockwise);
|
ctx.lineTo(cx + ct0.cx + ct0.x0, cy + ct0.cy + ct0.y0);
|
|
// Have the corners merged?
|
if (limitedIcrMax < icrMax && crStart === crEnd) {
|
// eslint-disable-next-line max-len
|
ctx.arc(cx + ct0.cx, cy + ct0.cy, limitedIcrMax, mathATan2(ct0.y0, ct0.x0), mathATan2(ct1.y0, ct1.x0), !clockwise);
|
}
|
// draw the two corners and the ring
|
else {
|
// eslint-disable-next-line max-len
|
crEnd > 0 && ctx.arc(cx + ct0.cx, cy + ct0.cy, crEnd, mathATan2(ct0.y0, ct0.x0), mathATan2(ct0.y1, ct0.x1), !clockwise);
|
// eslint-disable-next-line max-len
|
ctx.arc(cx, cy, innerRadius, mathATan2(ct0.cy + ct0.y1, ct0.cx + ct0.x1), mathATan2(ct1.cy + ct1.y1, ct1.cx + ct1.x1), clockwise);
|
// eslint-disable-next-line max-len
|
crStart > 0 && ctx.arc(cx + ct1.cx, cy + ct1.cy, crStart, mathATan2(ct1.y1, ct1.x1), mathATan2(ct1.y0, ct1.x0), !clockwise);
|
}
|
}
|
// the inner ring is just a circular arc
|
else {
|
// FIXME: if no lineTo, svg renderer will perform an abnormal drawing behavior.
|
ctx.lineTo(cx + xire, cy + yire);
|
|
ctx.arc(cx, cy, innerRadius, endAngle, startAngle, clockwise);
|
}
|
}
|
|
ctx.closePath();
|
}
|