1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
| /**
| * The algoritm is learnt from
| * https://franklinta.com/2014/09/08/computing-css-matrix3d-transforms/
| * And we made some optimization for matrix inversion.
| * Other similar approaches:
| * "cv::getPerspectiveTransform", "Direct Linear Transformation".
| */
|
| const LN2 = Math.log(2);
|
| function determinant(
| rows: number[][],
| rank: number,
| rowStart: number,
| rowMask: number,
| colMask: number,
| detCache: {[key: string]: number}
| ) {
| const cacheKey = rowMask + '-' + colMask;
| const fullRank = rows.length;
|
| if (detCache.hasOwnProperty(cacheKey)) {
| return detCache[cacheKey];
| }
|
| if (rank === 1) {
| // In this case the colMask must be like: `11101111`. We can find the place of `0`.
| const colStart = Math.round(Math.log(((1 << fullRank) - 1) & ~colMask) / LN2);
| return rows[rowStart][colStart];
| }
|
| const subRowMask = rowMask | (1 << rowStart);
| let subRowStart = rowStart + 1;
| while (rowMask & (1 << subRowStart)) {
| subRowStart++;
| }
|
| let sum = 0;
| for (let j = 0, colLocalIdx = 0; j < fullRank; j++) {
| const colTag = 1 << j;
| if (!(colTag & colMask)) {
| sum += (colLocalIdx % 2 ? -1 : 1) * rows[rowStart][j]
| // det(subMatrix(0, j))
| * determinant(rows, rank - 1, subRowStart, subRowMask, colMask | colTag, detCache);
| colLocalIdx++;
| }
| }
|
| detCache[cacheKey] = sum;
|
| return sum;
| }
|
| /**
| * Usage:
| * ```js
| * const transformer = buildTransformer(
| * [10, 44, 100, 44, 100, 300, 10, 300],
| * [50, 54, 130, 14, 140, 330, 14, 220]
| * );
| * const out = [];
| * transformer && transformer([11, 33], out);
| * ```
| *
| * Notice: `buildTransformer` may take more than 10ms in some Android device.
| *
| * @param src source four points, [x0, y0, x1, y1, x2, y2, x3, y3]
| * @param dest destination four points, [x0, y0, x1, y1, x2, y2, x3, y3]
| * @return transformer If fail, return null/undefined.
| */
| export function buildTransformer(src: number[], dest: number[]) {
| const mA = [
| [src[0], src[1], 1, 0, 0, 0, -dest[0] * src[0], -dest[0] * src[1]],
| [0, 0, 0, src[0], src[1], 1, -dest[1] * src[0], -dest[1] * src[1]],
| [src[2], src[3], 1, 0, 0, 0, -dest[2] * src[2], -dest[2] * src[3]],
| [0, 0, 0, src[2], src[3], 1, -dest[3] * src[2], -dest[3] * src[3]],
| [src[4], src[5], 1, 0, 0, 0, -dest[4] * src[4], -dest[4] * src[5]],
| [0, 0, 0, src[4], src[5], 1, -dest[5] * src[4], -dest[5] * src[5]],
| [src[6], src[7], 1, 0, 0, 0, -dest[6] * src[6], -dest[6] * src[7]],
| [0, 0, 0, src[6], src[7], 1, -dest[7] * src[6], -dest[7] * src[7]]
| ];
|
| const detCache = {};
| const det = determinant(mA, 8, 0, 0, 0, detCache);
| if (det === 0) {
| // can not make transformer when and only when
| // any three of the markers are collinear.
| return;
| }
|
| // `invert(mA) * dest`, that is, `adj(mA) / det * dest`.
| const vh: number[] = [];
| for (let i = 0; i < 8; i++) {
| for (let j = 0; j < 8; j++) {
| vh[j] == null && (vh[j] = 0);
| vh[j] += ((i + j) % 2 ? -1 : 1)
| // det(subMatrix(i, j))
| * determinant(mA, 7, i === 0 ? 1 : 0, 1 << i, 1 << j, detCache)
| / det * dest[i];
| }
| }
|
| return function (out: number[], srcPointX: number, srcPointY: number) {
| const pk = srcPointX * vh[6] + srcPointY * vh[7] + 1;
| out[0] = (srcPointX * vh[0] + srcPointY * vh[1] + vh[2]) / pk;
| out[1] = (srcPointX * vh[3] + srcPointY * vh[4] + vh[5]) / pk;
| };
| }
|
|