import PathProxy from '../core/PathProxy';
|
import * as line from './line';
|
import * as cubic from './cubic';
|
import * as quadratic from './quadratic';
|
import * as arc from './arc';
|
import * as curve from '../core/curve';
|
import windingLine from './windingLine';
|
|
const CMD = PathProxy.CMD;
|
const PI2 = Math.PI * 2;
|
|
const EPSILON = 1e-4;
|
|
function isAroundEqual(a: number, b: number) {
|
return Math.abs(a - b) < EPSILON;
|
}
|
|
// 临时数组
|
const roots = [-1, -1, -1];
|
const extrema = [-1, -1];
|
|
function swapExtrema() {
|
const tmp = extrema[0];
|
extrema[0] = extrema[1];
|
extrema[1] = tmp;
|
}
|
|
function windingCubic(
|
x0: number, y0: number, x1: number, y1: number, x2: number, y2: number, x3: number, y3: number,
|
x: number, y: number
|
): number {
|
// Quick reject
|
if (
|
(y > y0 && y > y1 && y > y2 && y > y3)
|
|| (y < y0 && y < y1 && y < y2 && y < y3)
|
) {
|
return 0;
|
}
|
const nRoots = curve.cubicRootAt(y0, y1, y2, y3, y, roots);
|
if (nRoots === 0) {
|
return 0;
|
}
|
else {
|
let w = 0;
|
let nExtrema = -1;
|
let y0_;
|
let y1_;
|
for (let i = 0; i < nRoots; i++) {
|
let t = roots[i];
|
|
// Avoid winding error when intersection point is the connect point of two line of polygon
|
let unit = (t === 0 || t === 1) ? 0.5 : 1;
|
|
let x_ = curve.cubicAt(x0, x1, x2, x3, t);
|
if (x_ < x) { // Quick reject
|
continue;
|
}
|
if (nExtrema < 0) {
|
nExtrema = curve.cubicExtrema(y0, y1, y2, y3, extrema);
|
if (extrema[1] < extrema[0] && nExtrema > 1) {
|
swapExtrema();
|
}
|
y0_ = curve.cubicAt(y0, y1, y2, y3, extrema[0]);
|
if (nExtrema > 1) {
|
y1_ = curve.cubicAt(y0, y1, y2, y3, extrema[1]);
|
}
|
}
|
if (nExtrema === 2) {
|
// 分成三段单调函数
|
if (t < extrema[0]) {
|
w += y0_ < y0 ? unit : -unit;
|
}
|
else if (t < extrema[1]) {
|
w += y1_ < y0_ ? unit : -unit;
|
}
|
else {
|
w += y3 < y1_ ? unit : -unit;
|
}
|
}
|
else {
|
// 分成两段单调函数
|
if (t < extrema[0]) {
|
w += y0_ < y0 ? unit : -unit;
|
}
|
else {
|
w += y3 < y0_ ? unit : -unit;
|
}
|
}
|
}
|
return w;
|
}
|
}
|
|
function windingQuadratic(
|
x0: number, y0: number, x1: number, y1: number, x2: number, y2: number,
|
x: number, y: number
|
): number {
|
// Quick reject
|
if (
|
(y > y0 && y > y1 && y > y2)
|
|| (y < y0 && y < y1 && y < y2)
|
) {
|
return 0;
|
}
|
const nRoots = curve.quadraticRootAt(y0, y1, y2, y, roots);
|
if (nRoots === 0) {
|
return 0;
|
}
|
else {
|
const t = curve.quadraticExtremum(y0, y1, y2);
|
if (t >= 0 && t <= 1) {
|
let w = 0;
|
let y_ = curve.quadraticAt(y0, y1, y2, t);
|
for (let i = 0; i < nRoots; i++) {
|
// Remove one endpoint.
|
let unit = (roots[i] === 0 || roots[i] === 1) ? 0.5 : 1;
|
|
let x_ = curve.quadraticAt(x0, x1, x2, roots[i]);
|
if (x_ < x) { // Quick reject
|
continue;
|
}
|
if (roots[i] < t) {
|
w += y_ < y0 ? unit : -unit;
|
}
|
else {
|
w += y2 < y_ ? unit : -unit;
|
}
|
}
|
return w;
|
}
|
else {
|
// Remove one endpoint.
|
const unit = (roots[0] === 0 || roots[0] === 1) ? 0.5 : 1;
|
|
const x_ = curve.quadraticAt(x0, x1, x2, roots[0]);
|
if (x_ < x) { // Quick reject
|
return 0;
|
}
|
return y2 < y0 ? unit : -unit;
|
}
|
}
|
}
|
// TODO
|
// Arc 旋转
|
// startAngle, endAngle has been normalized by normalizeArcAngles
|
function windingArc(
|
cx: number, cy: number, r: number, startAngle: number, endAngle: number, anticlockwise: boolean,
|
x: number, y: number
|
) {
|
y -= cy;
|
if (y > r || y < -r) {
|
return 0;
|
}
|
const tmp = Math.sqrt(r * r - y * y);
|
roots[0] = -tmp;
|
roots[1] = tmp;
|
|
const dTheta = Math.abs(startAngle - endAngle);
|
if (dTheta < 1e-4) {
|
return 0;
|
}
|
if (dTheta >= PI2 - 1e-4) {
|
// Is a circle
|
startAngle = 0;
|
endAngle = PI2;
|
const dir = anticlockwise ? 1 : -1;
|
if (x >= roots[0] + cx && x <= roots[1] + cx) {
|
return dir;
|
}
|
else {
|
return 0;
|
}
|
}
|
|
if (startAngle > endAngle) {
|
// Swap, make sure startAngle is smaller than endAngle.
|
const tmp = startAngle;
|
startAngle = endAngle;
|
endAngle = tmp;
|
}
|
// endAngle - startAngle is normalized to 0 - 2*PI.
|
// So following will normalize them to 0 - 4*PI
|
if (startAngle < 0) {
|
startAngle += PI2;
|
endAngle += PI2;
|
}
|
|
let w = 0;
|
for (let i = 0; i < 2; i++) {
|
const x_ = roots[i];
|
if (x_ + cx > x) {
|
let angle = Math.atan2(y, x_);
|
let dir = anticlockwise ? 1 : -1;
|
if (angle < 0) {
|
angle = PI2 + angle;
|
}
|
if (
|
(angle >= startAngle && angle <= endAngle)
|
|| (angle + PI2 >= startAngle && angle + PI2 <= endAngle)
|
) {
|
if (angle > Math.PI / 2 && angle < Math.PI * 1.5) {
|
dir = -dir;
|
}
|
w += dir;
|
}
|
}
|
}
|
return w;
|
}
|
|
|
function containPath(
|
path: PathProxy, lineWidth: number, isStroke: boolean, x: number, y: number
|
): boolean {
|
const data = path.data;
|
const len = path.len();
|
let w = 0;
|
let xi = 0;
|
let yi = 0;
|
let x0 = 0;
|
let y0 = 0;
|
let x1;
|
let y1;
|
|
for (let i = 0; i < len;) {
|
const cmd = data[i++];
|
const isFirst = i === 1;
|
// Begin a new subpath
|
if (cmd === CMD.M && i > 1) {
|
// Close previous subpath
|
if (!isStroke) {
|
w += windingLine(xi, yi, x0, y0, x, y);
|
}
|
// 如果被任何一个 subpath 包含
|
// if (w !== 0) {
|
// return true;
|
// }
|
}
|
|
if (isFirst) {
|
// 如果第一个命令是 L, C, Q
|
// 则 previous point 同绘制命令的第一个 point
|
//
|
// 第一个命令为 Arc 的情况下会在后面特殊处理
|
xi = data[i];
|
yi = data[i + 1];
|
|
x0 = xi;
|
y0 = yi;
|
}
|
|
switch (cmd) {
|
case CMD.M:
|
// moveTo 命令重新创建一个新的 subpath, 并且更新新的起点
|
// 在 closePath 的时候使用
|
x0 = data[i++];
|
y0 = data[i++];
|
xi = x0;
|
yi = y0;
|
break;
|
case CMD.L:
|
if (isStroke) {
|
if (line.containStroke(xi, yi, data[i], data[i + 1], lineWidth, x, y)) {
|
return true;
|
}
|
}
|
else {
|
// NOTE 在第一个命令为 L, C, Q 的时候会计算出 NaN
|
w += windingLine(xi, yi, data[i], data[i + 1], x, y) || 0;
|
}
|
xi = data[i++];
|
yi = data[i++];
|
break;
|
case CMD.C:
|
if (isStroke) {
|
if (cubic.containStroke(xi, yi,
|
data[i++], data[i++], data[i++], data[i++], data[i], data[i + 1],
|
lineWidth, x, y
|
)) {
|
return true;
|
}
|
}
|
else {
|
w += windingCubic(
|
xi, yi,
|
data[i++], data[i++], data[i++], data[i++], data[i], data[i + 1],
|
x, y
|
) || 0;
|
}
|
xi = data[i++];
|
yi = data[i++];
|
break;
|
case CMD.Q:
|
if (isStroke) {
|
if (quadratic.containStroke(xi, yi,
|
data[i++], data[i++], data[i], data[i + 1],
|
lineWidth, x, y
|
)) {
|
return true;
|
}
|
}
|
else {
|
w += windingQuadratic(
|
xi, yi,
|
data[i++], data[i++], data[i], data[i + 1],
|
x, y
|
) || 0;
|
}
|
xi = data[i++];
|
yi = data[i++];
|
break;
|
case CMD.A:
|
// TODO Arc 判断的开销比较大
|
const cx = data[i++];
|
const cy = data[i++];
|
const rx = data[i++];
|
const ry = data[i++];
|
const theta = data[i++];
|
const dTheta = data[i++];
|
// TODO Arc 旋转
|
i += 1;
|
const anticlockwise = !!(1 - data[i++]);
|
x1 = Math.cos(theta) * rx + cx;
|
y1 = Math.sin(theta) * ry + cy;
|
// 不是直接使用 arc 命令
|
if (!isFirst) {
|
w += windingLine(xi, yi, x1, y1, x, y);
|
}
|
else {
|
// 第一个命令起点还未定义
|
x0 = x1;
|
y0 = y1;
|
}
|
// zr 使用scale来模拟椭圆, 这里也对x做一定的缩放
|
const _x = (x - cx) * ry / rx + cx;
|
if (isStroke) {
|
if (arc.containStroke(
|
cx, cy, ry, theta, theta + dTheta, anticlockwise,
|
lineWidth, _x, y
|
)) {
|
return true;
|
}
|
}
|
else {
|
w += windingArc(
|
cx, cy, ry, theta, theta + dTheta, anticlockwise,
|
_x, y
|
);
|
}
|
xi = Math.cos(theta + dTheta) * rx + cx;
|
yi = Math.sin(theta + dTheta) * ry + cy;
|
break;
|
case CMD.R:
|
x0 = xi = data[i++];
|
y0 = yi = data[i++];
|
const width = data[i++];
|
const height = data[i++];
|
x1 = x0 + width;
|
y1 = y0 + height;
|
if (isStroke) {
|
if (line.containStroke(x0, y0, x1, y0, lineWidth, x, y)
|
|| line.containStroke(x1, y0, x1, y1, lineWidth, x, y)
|
|| line.containStroke(x1, y1, x0, y1, lineWidth, x, y)
|
|| line.containStroke(x0, y1, x0, y0, lineWidth, x, y)
|
) {
|
return true;
|
}
|
}
|
else {
|
// FIXME Clockwise ?
|
w += windingLine(x1, y0, x1, y1, x, y);
|
w += windingLine(x0, y1, x0, y0, x, y);
|
}
|
break;
|
case CMD.Z:
|
if (isStroke) {
|
if (line.containStroke(
|
xi, yi, x0, y0, lineWidth, x, y
|
)) {
|
return true;
|
}
|
}
|
else {
|
// Close a subpath
|
w += windingLine(xi, yi, x0, y0, x, y);
|
// 如果被任何一个 subpath 包含
|
// FIXME subpaths may overlap
|
// if (w !== 0) {
|
// return true;
|
// }
|
}
|
xi = x0;
|
yi = y0;
|
break;
|
}
|
}
|
if (!isStroke && !isAroundEqual(yi, y0)) {
|
w += windingLine(xi, yi, x0, y0, x, y) || 0;
|
}
|
return w !== 0;
|
}
|
|
export function contain(pathProxy: PathProxy, x: number, y: number): boolean {
|
return containPath(pathProxy, 0, false, x, y);
|
}
|
|
export function containStroke(pathProxy: PathProxy, lineWidth: number, x: number, y: number): boolean {
|
return containPath(pathProxy, lineWidth, true, x, y);
|
}
|