'a'
mh-two-thousand-and-two
2024-04-12 44d2c92345cd156a59fc327b3060292a282d2893
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
;(function (root, factory, undef) {
    if (typeof exports === "object") {
        // CommonJS
        module.exports = exports = factory(require("./core"), require("./enc-base64"), require("./md5"), require("./evpkdf"), require("./cipher-core"));
    }
    else if (typeof define === "function" && define.amd) {
        // AMD
        define(["./core", "./enc-base64", "./md5", "./evpkdf", "./cipher-core"], factory);
    }
    else {
        // Global (browser)
        factory(root.CryptoJS);
    }
}(this, function (CryptoJS) {
 
    (function () {
        // Shortcuts
        var C = CryptoJS;
        var C_lib = C.lib;
        var StreamCipher = C_lib.StreamCipher;
        var C_algo = C.algo;
 
        // Reusable objects
        var S  = [];
        var C_ = [];
        var G  = [];
 
        /**
         * Rabbit stream cipher algorithm.
         *
         * This is a legacy version that neglected to convert the key to little-endian.
         * This error doesn't affect the cipher's security,
         * but it does affect its compatibility with other implementations.
         */
        var RabbitLegacy = C_algo.RabbitLegacy = StreamCipher.extend({
            _doReset: function () {
                // Shortcuts
                var K = this._key.words;
                var iv = this.cfg.iv;
 
                // Generate initial state values
                var X = this._X = [
                    K[0], (K[3] << 16) | (K[2] >>> 16),
                    K[1], (K[0] << 16) | (K[3] >>> 16),
                    K[2], (K[1] << 16) | (K[0] >>> 16),
                    K[3], (K[2] << 16) | (K[1] >>> 16)
                ];
 
                // Generate initial counter values
                var C = this._C = [
                    (K[2] << 16) | (K[2] >>> 16), (K[0] & 0xffff0000) | (K[1] & 0x0000ffff),
                    (K[3] << 16) | (K[3] >>> 16), (K[1] & 0xffff0000) | (K[2] & 0x0000ffff),
                    (K[0] << 16) | (K[0] >>> 16), (K[2] & 0xffff0000) | (K[3] & 0x0000ffff),
                    (K[1] << 16) | (K[1] >>> 16), (K[3] & 0xffff0000) | (K[0] & 0x0000ffff)
                ];
 
                // Carry bit
                this._b = 0;
 
                // Iterate the system four times
                for (var i = 0; i < 4; i++) {
                    nextState.call(this);
                }
 
                // Modify the counters
                for (var i = 0; i < 8; i++) {
                    C[i] ^= X[(i + 4) & 7];
                }
 
                // IV setup
                if (iv) {
                    // Shortcuts
                    var IV = iv.words;
                    var IV_0 = IV[0];
                    var IV_1 = IV[1];
 
                    // Generate four subvectors
                    var i0 = (((IV_0 << 8) | (IV_0 >>> 24)) & 0x00ff00ff) | (((IV_0 << 24) | (IV_0 >>> 8)) & 0xff00ff00);
                    var i2 = (((IV_1 << 8) | (IV_1 >>> 24)) & 0x00ff00ff) | (((IV_1 << 24) | (IV_1 >>> 8)) & 0xff00ff00);
                    var i1 = (i0 >>> 16) | (i2 & 0xffff0000);
                    var i3 = (i2 << 16)  | (i0 & 0x0000ffff);
 
                    // Modify counter values
                    C[0] ^= i0;
                    C[1] ^= i1;
                    C[2] ^= i2;
                    C[3] ^= i3;
                    C[4] ^= i0;
                    C[5] ^= i1;
                    C[6] ^= i2;
                    C[7] ^= i3;
 
                    // Iterate the system four times
                    for (var i = 0; i < 4; i++) {
                        nextState.call(this);
                    }
                }
            },
 
            _doProcessBlock: function (M, offset) {
                // Shortcut
                var X = this._X;
 
                // Iterate the system
                nextState.call(this);
 
                // Generate four keystream words
                S[0] = X[0] ^ (X[5] >>> 16) ^ (X[3] << 16);
                S[1] = X[2] ^ (X[7] >>> 16) ^ (X[5] << 16);
                S[2] = X[4] ^ (X[1] >>> 16) ^ (X[7] << 16);
                S[3] = X[6] ^ (X[3] >>> 16) ^ (X[1] << 16);
 
                for (var i = 0; i < 4; i++) {
                    // Swap endian
                    S[i] = (((S[i] << 8)  | (S[i] >>> 24)) & 0x00ff00ff) |
                           (((S[i] << 24) | (S[i] >>> 8))  & 0xff00ff00);
 
                    // Encrypt
                    M[offset + i] ^= S[i];
                }
            },
 
            blockSize: 128/32,
 
            ivSize: 64/32
        });
 
        function nextState() {
            // Shortcuts
            var X = this._X;
            var C = this._C;
 
            // Save old counter values
            for (var i = 0; i < 8; i++) {
                C_[i] = C[i];
            }
 
            // Calculate new counter values
            C[0] = (C[0] + 0x4d34d34d + this._b) | 0;
            C[1] = (C[1] + 0xd34d34d3 + ((C[0] >>> 0) < (C_[0] >>> 0) ? 1 : 0)) | 0;
            C[2] = (C[2] + 0x34d34d34 + ((C[1] >>> 0) < (C_[1] >>> 0) ? 1 : 0)) | 0;
            C[3] = (C[3] + 0x4d34d34d + ((C[2] >>> 0) < (C_[2] >>> 0) ? 1 : 0)) | 0;
            C[4] = (C[4] + 0xd34d34d3 + ((C[3] >>> 0) < (C_[3] >>> 0) ? 1 : 0)) | 0;
            C[5] = (C[5] + 0x34d34d34 + ((C[4] >>> 0) < (C_[4] >>> 0) ? 1 : 0)) | 0;
            C[6] = (C[6] + 0x4d34d34d + ((C[5] >>> 0) < (C_[5] >>> 0) ? 1 : 0)) | 0;
            C[7] = (C[7] + 0xd34d34d3 + ((C[6] >>> 0) < (C_[6] >>> 0) ? 1 : 0)) | 0;
            this._b = (C[7] >>> 0) < (C_[7] >>> 0) ? 1 : 0;
 
            // Calculate the g-values
            for (var i = 0; i < 8; i++) {
                var gx = X[i] + C[i];
 
                // Construct high and low argument for squaring
                var ga = gx & 0xffff;
                var gb = gx >>> 16;
 
                // Calculate high and low result of squaring
                var gh = ((((ga * ga) >>> 17) + ga * gb) >>> 15) + gb * gb;
                var gl = (((gx & 0xffff0000) * gx) | 0) + (((gx & 0x0000ffff) * gx) | 0);
 
                // High XOR low
                G[i] = gh ^ gl;
            }
 
            // Calculate new state values
            X[0] = (G[0] + ((G[7] << 16) | (G[7] >>> 16)) + ((G[6] << 16) | (G[6] >>> 16))) | 0;
            X[1] = (G[1] + ((G[0] << 8)  | (G[0] >>> 24)) + G[7]) | 0;
            X[2] = (G[2] + ((G[1] << 16) | (G[1] >>> 16)) + ((G[0] << 16) | (G[0] >>> 16))) | 0;
            X[3] = (G[3] + ((G[2] << 8)  | (G[2] >>> 24)) + G[1]) | 0;
            X[4] = (G[4] + ((G[3] << 16) | (G[3] >>> 16)) + ((G[2] << 16) | (G[2] >>> 16))) | 0;
            X[5] = (G[5] + ((G[4] << 8)  | (G[4] >>> 24)) + G[3]) | 0;
            X[6] = (G[6] + ((G[5] << 16) | (G[5] >>> 16)) + ((G[4] << 16) | (G[4] >>> 16))) | 0;
            X[7] = (G[7] + ((G[6] << 8)  | (G[6] >>> 24)) + G[5]) | 0;
        }
 
        /**
         * Shortcut functions to the cipher's object interface.
         *
         * @example
         *
         *     var ciphertext = CryptoJS.RabbitLegacy.encrypt(message, key, cfg);
         *     var plaintext  = CryptoJS.RabbitLegacy.decrypt(ciphertext, key, cfg);
         */
        C.RabbitLegacy = StreamCipher._createHelper(RabbitLegacy);
    }());
 
 
    return CryptoJS.RabbitLegacy;
 
}));