# -*- coding: utf-8 -*-
|
# @file: doc_processor.py
|
# @author: lyg
|
# @date: 20250427
|
# @version:
|
# @description: 处理文档,提取章节信息,提取页码信息,提取实体词,写入图数据库(neo4j)。
|
from knowledgebase.db.neo4j import Neo4jHelper
|
from knowledgebase.doc.doc_split import DocSplit
|
from knowledgebase.doc.entity_recognition import EntityRecognition
|
import asyncio
|
|
|
class DocProcessor:
|
def __init__(self, pdf_file):
|
self.doc_split = DocSplit(pdf_file)
|
self.entity_recognition = EntityRecognition()
|
self.neo4j = Neo4jHelper()
|
|
async def gen_page_entities(self, page_info):
|
# 获取页面实体词
|
page_entities = await asyncio.to_thread(lambda: self.entity_recognition.run(page_info.text))
|
page_info.entities = page_entities
|
|
def process(self):
|
# 分批并发处理,每批10页
|
batch_size = 10
|
for i in range(0, len(self.doc_split.page_infos), batch_size):
|
batch_page_infos = self.doc_split.page_infos[i:i + batch_size]
|
tasks = []
|
for page_info in batch_page_infos:
|
tasks.append(self.gen_page_entities(page_info))
|
asyncio.run(asyncio.gather(*tasks))
|
self.save_to_neo4j()
|
|
def save_to_neo4j(self):
|
"""
|
保存页和页实体词到neo4j数据库。
|
|
1.每一页为一个Node;
|
2.每一个实体词为一个Node;
|
3.页和实体词直接建立关系 页->实体词
|
:return:
|
"""
|
for page_info in self.doc_split.page_infos:
|
# 创建页节点
|
page_node = self.neo4j.create_page_node(page_info)
|
entity_nodes = []
|
for entity in page_info.entities:
|
# 创建实体词节点
|
entity_node = self.neo4j.create_entity_node(entity)
|
# 建立关系 页->实体词
|
self.neo4j.create_page_entity_relationship(page_node, entity_node)
|
entity_nodes.append(entity_node)
|
if len(entity_nodes) > 0:
|
for i in range(len(entity_nodes)):
|
prev_entity_node = entity_nodes[i]
|
for entity_node in entity_nodes[i + 1:]:
|
# 建立关系 一页中的 实体词1->实体词2
|
self.neo4j.create_entity_relationship(prev_entity_node, entity_node)
|
|
|
if __name__ == '__main__':
|
pdf_file = "D:/workspace/PythonProjects/KnowledgeBase/doc/XA-5D无人机探测大纲(公开)111.pdf"
|
doc_processor = DocProcessor(pdf_file)
|
doc_processor.process()
|